Discovery of Interstellar 2-Cyanoindene (2-C 9 H 7 CN) in GOTHAM Observations of TMC-1

Sita, Madelyn L. and Changala, P. Bryan and Xue, Ci and Burkhardt, Andrew M. and Shingledecker, Christopher N. and Kelvin Lee, Kin Long and Loomis, Ryan A. and Momjian, Emmanuel and Siebert, Mark A. and Gupta, Divita and Herbst, Eric and Remijan, Anthony J. and McCarthy, Michael C. and Cooke, Ilsa R. and McGuire, Brett A. (2022) Discovery of Interstellar 2-Cyanoindene (2-C 9 H 7 CN) in GOTHAM Observations of TMC-1. The Astrophysical Journal Letters, 938 (2). L12. ISSN 2041-8205

[thumbnail of Sita_2022_ApJL_938_L12.pdf] Text
Sita_2022_ApJL_938_L12.pdf - Published Version

Download (1MB)

Abstract

We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2-${{\rm{C}}}_{9}{{\rm{H}}}_{7}\mathrm{CN}$) in GOTHAM line survey observations of the dark molecular cloud TMC-1 using the Green Bank Telescope at centimeter wavelengths. Using a combination of Markov Chain Monte Carlo, spectral stacking, and matched filtering techniques, we find evidence for the presence of this molecule at the 6.3σ level. This provides the first direct observation of the ratio of a cyano-substituted polycyclic aromatic hydrocarbon to its pure hydrocarbon counterpart, in this case indene, in the same source. We discuss the possible formation chemistry of this species, including why we have only detected one of the isomers in TMC-1. We then examine the overall hydrocarbon:CN-substituted ratio across this and other simpler species, as well as compare to those ratios predicted by astrochemical models. We conclude that while astrochemical models are not yet sufficiently accurate to reproduce absolute abundances of these species, they do a good job at predicting the ratios of hydrocarbon:CN-substituted species, further solidifying -CN tagged species as excellent proxies for their fully symmetric counterparts.

Item Type: Article
Subjects: Eprint Open STM Press > Physics and Astronomy
Depositing User: Unnamed user with email admin@eprint.openstmpress.com
Date Deposited: 06 May 2023 10:09
Last Modified: 31 Jan 2024 04:31
URI: http://library.go4manusub.com/id/eprint/176

Actions (login required)

View Item
View Item