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Abstract 
The current work will be focused upon the study of the effects of the earth’s gravitational 

field on the motion of an artificial satellite constellation and a computational model for this 
perturbation on the constellation orbit will be done; the earth’s gravitational field up to second 
zonal harmonics is considered. This perturbation make a drift for the orbital elements of 
satellite constellation that make continues coverage and lead to a shift of the whole 
constellation structure. The equations of motion under effects of oblatenees force are solved 
numerically by using Rung-Kotta method. The results show that this model has efficiency to 
compute the perturbations for satellite constellation which already congruent with observing 
data. 

1. Introduction 

With the continual development of astronautical technology, small satellites have 
attracted more and more attention of the public. This is because they are small, light 
and inexpensive, their period of development is short, and they can be launched 
conveniently (either individually, or as pick-ups, or several small satellites may be 
launched with one rocket). Constellation of medium-small satellites (sometimes also 
known as network constellation or cluster of satellites) is an important subject of 
research in the application of small satellites. 

 A constellation is formed by a number of satellites, which have basically the 
same orbital elements (semi-major axes, inclinations and eccentricities) and close 
latitudes and nodal longitudes. The constellations of small satellites have a wide and 
practical significance, and one of its applications is the positioning of locations on 
the earth’s surface. 

When defining the same reference orbit for all the satellites of the constellation, 
the difficulty is to choose a realistic dynamical model which is independent of the 
initial conditions of each satellite. A dynamical model which includes only the main 
zonal deformations of the Earth gravity field can provide the desired reference orbit. 

According to Kaula's theory (Kaula, 1966), these coefficients produce three 
types of orbital perturbations on a satellite moving around the Earth: 
1- Secular perturbations, due to the even coefficients, on the ascending node, on the 

argument of perigee and on the mean anomaly, 
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2- Long-period perturbations, mainly due to the odd coefficients, on all the orbital 
elements except on the semi-major axis at the revolution period of the perigee 
and at the sub-multiples of this period, 

3- Short-period perturbations on all the orbital elements at the revolution period of 
the satellite around the Earth, the mean anomaly, and at the sub-multiples of this 
period. 

Finally the phasing of the orbit can be first executed by only considering the 
secular variations of the mean parameters. 

Some forces which are difficult to forecast, like the drag, the radiation pressure 
and also the thermal effects, are usually not included into the dynamical model of 
the reference orbit. The most convenient solution in that case is to calculate the same 
reference orbit for all the satellites of the constellation. To respect such a definition 
of the reference orbit, only zonal coefficients of the Earth gravity field have to be 
included in the dynamical model. This orbit is firstly calculated in terms of mean 
parameters numerically in an iterative process where the cycle duration, the semi-
major axis and the eccentricity of the orbit are recomputed each time. We obtain a 
frozen and phased orbit very stable over every cycle.  

The final reference orbit preserves the stability properties of the mean reference 
orbit.                                                                  

To solve the problem in this work, its more convenient to use Gauss 
form of Lagrange’s equations which defined as, 
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The three components of the perturbation force are: 
 
 
 
where 
S:  along the instantaneous radius vector, 
T:  perpendicular to the instantaneous radius vector in the direction of the motion, 
W: normal to the osculating plane of the orbit. 
 
2. Formulation: 

The Earth gravitational potential expressed as  

   (2) 

      
            is the product of the Earth's gravitational constant and the mass of the earth,  

    (398600.8
23 sec/Km ) 

G       is the universal constant of gravity, 

          is the mass of the Earth, 

R      is the equatorial radius of the Earth (6378.135 km.) 

are respectively the geocentric distance, latitude and east longitude of the   

     sub vehicle point from Greenwich,                  

                  are the associated Legendre polynomial of the first kind, of degree n,  

                of order m and m   n. 

 nmC  and nmS  are harmonic coefficients 

Then the potential V (in this study) will be described as 
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It is convenient to change the independent variable from the time (t) to the 
unperturbed true anomaly ( f ) by using the relation  

        

So, the Lagrange planetary equation, will be    
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3. Application and numerical results 

3.1 The algorithm of problem: 

Assume that the values for the orbital elements are given at the start time t = 0: 
Step 1: Obtain the six orbital elements from TLE (Tow Line Element) for a 

constellation of Satellites.            
Step 2: At  t = 0 calculate the satellite position and velocity for the given orbital  
            elements. 
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Step 3: At  t = 0 compute the three components S, T, W of the perturbation force. 
Step 4: At  t = 0, using the given values for the orbital elements, and the radial, 
             transverse, and lateral components of the perturbing accelerations, S, T, W  
             compute the six rates of change of the orbital elements. 
 Step 5: Numerically integrate the rates of change over a time interval △ t (by using     
             a Runge-Kutta method). 
Step 6: Determine the values of the orbital elements at the end of the time interval,  
             go back to step 2, and repeat until the end time is reached. 

3.2  Numerical Example 

          Numerical example for “Molniya” satellite constellation. 
(http://celestrak.com/molniya.txt) 

Molniya 1-80 
Perigee 
(Km) 

Apogee 
(Km) 

Inclination 
(deg) 

Period 
(min.) 

Semi major axis(Km) 

401 40,003 61.55 718.7 26577.518489 
Two Line Element Set (TLE) 

1  21118U  91012A    13003.58929428    -.00001434    00000-0   55725-3 0  2195 
2  21118  061.5508  076.6737  7449661  272.4937  345.7705  2.00342991160342 

Molniya 1-81 
Perigee 
(Km) 

Apogee 
(Km) 

Inclination 
(deg) 

Period 
(min.) 

Semi major axis(Km) 

672 39,681 62.3005 717.8 26552.454414 
Two Line Element Set (TLE) 

1  21426U  91043A    13003.60264829   -.00000087   00000-0  -24908-2  0  8199 
2  21426  062.3005  057.5927  7345172  277.9569  313.0757  2.00633155157905 

Molniya 1-87 
Perigee 
(Km) 

Apogee 
(Km) 

Inclination 
(deg) 

Period 
(min.) 

Semi major axis(Km) 

789 39,619 61.664 718.8 26574.63125 
Two Line Element Set (TLE) 

1  22949U  93079A    13003.51843969    -.00000003   00000-0  00000+0  0    24 
2  22949  61.6639  221.3050  7303846  260.2914   18.0963   2.00316052134455 

 
Since the adopted physical constants are 
R= 6378.135 Km. 
µ = 398600.8 Km3/sec2 

J2 = 1.08263×10-3 
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Using the above values to compute the change in the six orbital elements for 
Molniya three satellite constellations, but in this work one satellite from this 
constellation will be mentioned.  
 

Comparison between Observing and Model data for MOLNIYA 1-80 

Orbital 
Element 

At 3 
Jan.2013 
(Initial 
values) 

(TLE)  
after 100 

revolutions 
MODEL The 

variation 

 
Error 

 

a 26577.5184 26588.320 26577.524 5.6×10-3 4.06×10-4 

e 0.7449661 0.7465474 0.7450589 9.2×10-5 1.99×10-3 

i 61.5508 61.5602 61.551 2×10-4 1.49×10-4 

Ω 76.6737 68.2282 72.674 3.99 -6.5×10-3 

ω 272.4937 273.8575 273.139 3.5×10-1 2.62×10-3 

f 206.332 240.145 206.85 5.18×10-1 13.8×10-2 

The figures from (1 to 6) represent the relation between time (day) and  a, e, i, Ω, 
ω, f  respectively for satellite (1-80). 

We note that the semi major axis increasing with the time after hundred 
revolutions as shown in Fig.(1) Also for argument of perigee and true anomaly we 
noted clearly that its increasing with time as shown in Fig.(5) and (6). But for 
eccentricity and inclination the changes nearly constant as shown in Fig. (2) and (3), 
and for Longitude of Ascending node the trend line show decreases for this element 
with time, as Shown in Fig. (4). 

These features denoted that the oblateness force has great affect on the Longitude 
of Ascending node and the True Anomaly but for semi major axis, eccentricity and 
inclination has less effect. 
 

 
Fig.(1): Change of semi major axis with time for Molniya 1-80 
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Fig. (2): Change of Eccentricity with time for Molniya 1-80 

 

 
Fig.(3): Change of Inclination with time for Molniya 1-80 

 

 

 
Fig.(4): Change of Longitude of A. Node with time for Molniya 1-80 

 

 
Fig.(5): Change of Arg. of perigee with time for Molniya 1-80 
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Fig.(6): Change of True Anomaly with time for Molniya 1-80 

 

4. Conclusion 

In this work, the definition of the reference orbit and via the simulative 
calculations are described; From the results its clear that the Rung-Kotta method is 
more convenient to compute the perturbations on the six orbital elements due to 
effect of oblateness force, because the results were nearly congruent with the 
observing data. So this model is more convenient to detect the perturbations on the 
orbital element due to J2 and predict the position of any satellite in its orbit after 
interval time.  
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