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Abstract
A generalization of Run-length-limited (RLL) codes has been introduced and its dynamical
properties as a symbolic dynamical system under the shift map will be investigated. A formula for
entropy and zeta function will be given and when our system is shift of finite type, its Bowen-Franks
groups are obtained.
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1 Introduction
Digital optical discs such as CD, DVD and Blu-ray use extensively Run-length-limited (RLL) codes
denoted by X(d, k) ([1, 2]). An RLL code limits the run of 0 to be at least d and at most k. A
generalization of RLL code is the Maximum Transition Run (MTR) code denoted by MTR(j, k) limiting
the run of 0 (resp. 1) to be at most k (resp.j) ([3]). A further generalization of these two concepts is
the following.

Definition 1.1. Let S and S′ be two increasing subsequences of N0. The coded system Z generated
by

U = {0s+11s
′+1 : s ∈ S, s′ ∈ S′}

is called the (S, S′)-gap shift and is denoted by X(S, S′).

The system Z = X(S, S′) is a natural extension of RLL code and a subclass of intertwined
systems introduced in [4]. Hence Z is a synchronized system and its simplicity with respect to a
general intertwined system will make it possible to determine the Fischer cover for a given S and S′

which is done in Section 2. This in turn gives a rather simple routine to compute the entropy and zeta
function for Z. When Z is SFT, we also compute the Bowen-Franks groups. These computations are
done in Section 3 after discussing some dynamical properties of (S, S′)-gap shifts. The last section
is devoted to the conjugacy problem for these systems and we will give some sufficient conditions for
two (S, S′)-gap shifts being conjugate or entropy conjugate.
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2 Background and Notations
Let A be an alphabet, which is a non-empty finite set. In this section, we will bring from [5] some
basic definitions of symbolic dynamics on A. The full A-shift denoted by AZ, is the collection of all
bi-infinite sequences of symbols in A. A word (or block) over A is a finite sequence of symbols from
A. The empty word, denoted by ε, includes the sequence of no symbols. If x ∈ AZ and i ≤ j, then
we will denote a word of length j − i by x[i, j] = xixi+1...xj . If n ≥ 1, then the concatenation of n
copies of u denoted by un and put u0 = ε. The shift map σ on AZ is defined by (σ(x))i = xi+1.

Let F be a collection of words over A. Define XF to be the subset of sequences in AZ not
containing any word in F . A shift space is a closed subset X of a full shift AZ such that X = XF for
some collection F of forbidden words over A. If F is finite, then XF is called shift of finite type (SFT).

Let Bn(X) denote the set of all admissible words of length n. The Language ofX is the collection
B(X) =

⋃∞
n=0 Bn(X). A shift space X is irreducible if for u, v ∈ B(X), there is w ∈ B(X) so that

uwv ∈ B(X). It is mixing if for u, v ∈ B(X), there is an N such that for each n ≥ N there is
a word w ∈ Bn(X) such that uwv ∈ B(X). The word v ∈ B(X) is synchronizing if whenever
uv, vw ∈ B(X), implies that uvw ∈ B(X). An irreducible shift space X is a synchronized system if it
has a synchronizing word ([6]).

Let A and D be alphabets and X a shift space over A. Fix integers m and n with m ≤ n. Define
the (m+ n+ 1)-block map Φ : Bm+n+1(X)→ D by

yi = Φ(xi−mxi−m+1...xi+n), (2.1)

where yi is a symbol in D. The map φ = Φ
[m,n]
∞ : X → DZ defined by y = φ(x) whose ith coordinate

given by (2.1) is called the sliding block code with memory m and anticipation n induced by Φ. An
onto sliding block code φ : X → Y is called a factor code. If the map φ is invertible, it is a conjugacy.

An edge shift, denoted by XG, is a shift space consisting of all bi-infinite walks in a directed graph
G. Let E = E(G) be the edge set of G and V = V(G) the vertices or states of G. A labeled graph G is
a pair (G,L) where L : E → A is the labeling. Let L∞(XG) = {L∞(ξ) : ξ ∈ XG}. Then our subshift
X = XG = L∞(XG) and we say G is a cover of X. If G is finite, then X is called sofic and any sofic
system is synchronized.

A labeled graph G = (G,L) is right-resolving if for each vertex I ∈ V(G) the edges starting at I
carry different labels. It is right-closing with delay D if whenever two paths of length D + 1 starting
at the same vertex and having the same label, have the same initial edge. Similarly, left-closing will
be defined. A labeled graph is bi-closing, if it is simultaneously right-closing and left-closing. An
irreducible sofic shift is called almost-finite-type (AFT) if it has a bi-closing cover.

Call F (I) = {u : u is the label of some paths starting at I} the follower set of I. Also the follower
set of w ∈ B(X) is F (w) = {v ∈ B(X) : wv ∈ B(X)}. The labeled graph G is follower-separated if
distinct vertices have distinct follower sets. A shift space X is sofic if and only if it has a finite number
of follower sets. In this case, we have a labeled graph G = (G,L) called the follower set graph of X.
The vertices of G are the follower sets and if wa ∈ B(X), then draw an edge labeled a from F (w) to
F (wa). If wa 6∈ B(X), then do nothing.

A minimal right-resolving cover of a sofic shiftX, also called the Fischer cover, is a right-resolving
cover of X having the least vertices among all right-resolving covers of X. A right-resolving graph G
is the Fischer cover of X if and only if it is irreducible and follower-separated.

Now let X be a not necessarily sofic system and x ∈ B(X). Then x+ = (xi)i∈Z+ (resp. x− =
(xi)i∈Z− ) is called right (resp. left) infinite X-ray. For a left infinite X-ray, say x−, its follower set is
ω+(x−) = {x+ ∈ X+ : x−x+ is a point in X}. Consider the collection of all follower sets ω+(x−) as
the set of vertices of a graph X+. There is an edge from I1 to I2 labeled a if and only if there is an
X-ray x− such that x−a is an X-ray and I1 = ω+(x−), I2 = ω+(x−a). This labeled graph is called
the Krieger graph for X. If X is a synchronized system with synchronizing word α, the irreducible
component of the Krieger graph containing the vertex ω+(α) is called the right Fischer cover of X
([7]).
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The entropy of a shift space X is defined by h(X) = limn→∞(1/n) log |Bn(X)|. Other entropies
will be used in this note as well. One is the entropy h(G) for a directed graph G given by Gurevich
and defined as

h(G) = lim
n→∞

1

n
logBIJ(n), (2.2)

where BIJ(n) is the number of paths of length n starting at vertex I and ending at vertex J ([8,
Proposition 1.2]).

3 Fischer Cover of X(S, S ′)

In the sequel we will construct the Fischer cover of Z from the Fischer covers of X(S) and X(S′),
which we will need in this note. It turns out that the most involved case is when X(S) and X(S′) are
sofic. So we require some more detailed information for a sofic X(S) and thus we borrow some facts
and notations for such systems from [9]

If X(S) is sofic, then by [10, Theorem 3.4], one has

∆(S) = {d1, d2, . . . , dk, g1, g2, . . . , gl}, g =

l∑
i=1

gi, (3.1)

where d1 = s1, di = si − si−1, 2 ≤ i ≤ k and gj = sk+j − sk+j−1, 1 ≤ j ≤ l. Here k and l are the
least integers such that (3.1) holds. Also

VS = {F (1), F (10), · · · , F (10n(S))} (3.2)

is the set of follower sets which one may consider as the set of vertices for the Fischer cover of X(S)
where n(S) is defined in the following.

Definition 3.1. 1. Suppose X(S) is sofic. If |S| <∞, then set n(S) = |S|. If |S| =∞, then n(S)
will be defined as follows.

(a) For k = 1 and gl > s1,

i. if gl = s1 + 1, then F (10sl+1) = F (1) and n(S) = sl (Figure 1);
ii. if gl > s1 + 1, then F (10g) = F (1) and n(S) = g − 1 (Figure 2).

(b) For k 6= 1, if gl > dk, then F (10g+sk−1+1) = F (10sk−1+1) and n(S) = g + sk−1 (Figure
3).

(c) For k ∈ N, if gl ≤ dk, then F (10sk+l−1+1) = F (10sk−gl+1) and n(S) = sk+l−1 (Figure
4).

2. If X(S) is not sofic, then n(S) =∞.

3.1 Constructing Fischer cover of X(S, S ′) from X(S) and X(S ′)

Suppose
S = {si}1≤i≤n(S) and S′ = {s′i}1≤i≤n(S′) (3.3)

are two increasing sequences in N0 and let GS and GS′ be the Fischer covers for shifts X(S) and
X(S′) respectively. Note that the main difference between a S-gap shift and a S′-gap shift is that
the former restricts the number of 0’s between two 1’s whereas the latter restricts the number of 1’s
between two 0’s. The vertices for the Fischer cover of a S-gap shift given in (3.2) where n(S) is
defined in Definition 3.1. See Figures 1, 2, 3 and 4. Similar arguments show that such vertices for a
S′-gap shift is VS′ = {FS′(0), FS′(01), . . . , FS′(01n(S

′))} where n(S′) is defined accordingly. When
X(S) is not sofic, no different case arises for Fischer cover: any edge from FS(10i) to FS(10i+1) is
labeled 0 and edges from FS(10s), s ∈ S to FS(1) is labeled 1.
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FS(1) FS(10) . . . FS(10
si) . . . FS(10

sl)0 0 0 00

1

1

0

Figure 1: A Fischer cover representing Definition 3.1 (1a(i)).

FS(1) FS(10) . . . FS(10
sl) . . . FS(10

g−1)0 0 0 00

1

0

Figure 2: A Fischer cover representing Definition 3.1 1(a)ii.

FS(1) . . . FS(10
sk−1+1) . . . FS(10

sk) . . . FS(10
g+sk−1)0 0 0 0

1

0 0

0

Figure 3: A Fischer cover representing Definition 3.1 (1b).
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FS(1) . . . FS(10
sk−gl+1) . . . FS(10

sk) . . . FS(10
sk+l−1)0 0 0 0

1

0 0

0

1

Figure 4: A Fischer cover representing Definition 3.1 (1c).

First arrange the vertices of the Fischer covers of X(S) and X(S′) in two rows. Then rename the
vertex FS(10i) (resp. FS′(01j)) to FZ(10i+1) (resp. FZ(01j+1)), 0 ≤ i ≤ n(S) (resp. 0 ≤ j ≤ n(S′)).
Recall that the terminating vertex of any edge labeled 1 (resp. 0) is FS(1) (resp. FS′(0)) in GS (resp.
GS′ ) now turning to FZ(10) (resp. FZ(01)). To construct GZ , cut off these edges from FZ(10) (resp.
FZ(01)) and glue them to FZ(01) (resp. FZ(10)). Now GZ is a cover but not necessarily a Fischer
cover. See Figure 5 for the case where X(S) and X(S′) are SFT.

Theorem 3.1. GZ is the Fischer cover for Z = X(S, S′), when

1. X(S) and X(S′) are sofic and

(a) S and S′ are finite.

(b) S is finite and S′ does not satisfy 1(a)ii in Definition 3.1.

(c) S and S′ are infinite and either S or S′ does not satisfy 1(a)i in Definition 3.1.
In above cases, GZ is finite and if it is not the Fischer cover for Z = X(S, S′), then the
cover H obtained from GZ by merging FZ(10n(S)+1) and FZ(01n(S

′)+1) is the Fischer
cover where n(S) is defined in Definition 3.1.

2. X(S) or X(S′) is non-sofic.

Proof. The cover GZ = (GZ , LZ) is an irreducible right-resolving cover of Z but not necessarily
minimal. The merged graph of GZ , say H, is minimal and is the Fischer cover of Z. We show that
H = GZ for our cases by showing that GZ is follower separated. In fact we exclude cases where GZ
is not follower-separated.

Vertices in either rows ofGZ correspond to vertices of GS and G′S , so the follower sets representing
vertices cannot be equal. Hence we look for those equal vertices in different rows. That is it is
sufficient to consider the equality amongst a vertex v = F (10s+1), s ∈ S and v′ = F (01s

′+1), s′ ∈ S′.
As in (3.1), let

∆(S′) = {d′1, d′2, . . . , d′k′ , g′1, g′2, . . . , g′l′} (3.4)

and g′ =
∑l′

i=1 g
′
i.

1. (a) Suppose S and S′ are finite and let S = {s1, . . . , sk} and S′ = {s′1, . . . , s′k′}. Fix
1 ≤ i ≤ k and first let i 6= k and set v = FZ(10si+1). Then v can be only equal to a
v′ = FZ(01s

′
j+1) for some s′j ∈ S′ \ {s′l}. But 0sk+1 ∈ FZ(01s

′+1) for all s′ ∈ S′ \ {s′l}
and 0sk+1 is not in v as a follower set and consequently equality does not happen.
Therefore, we let i = k and we notice that in this case the out-degree of v is one with
label 1. Thus v can only be equal to v′ = FZ(01j1+1) for some j1 6∈ S′. However,
1s
′
l+1 ∈ FZ(10sk+1) \ FZ(01j+1) for all j 6∈ S′ and this implies GZ is follower separated.

(b) Suppose S is finite and |S′| = ∞. We show that unless n(S′) satisfies 1(a)ii GZ is
follower-separated.
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FS(1) FS(10) . . . FS(10
si) . . . FS(10

sk)0 0 0 00

1

1

FS′(0) FS′(01) . . . FS′(01
s′j ) . . . FS′(01

s′l)
1 1 1 11

0

0

FZ(10)

FZ(01)

. . .

. . .

FZ(10
si+1)

FZ(01
s′j+1)

. . .

. . .

FZ(10
sk+1)

FZ(01
s′l+1)

0

1

0

1

0

1

1

0

0

1

1 0

Figure 5: From above, the Fischer covers of X(S), X(S′) and X(S, S′) respectively.

Suppose v = v′. Thus the out-degree and labelings of outer edges of v and v′ must
be the same and first, suppose their out-degree is one and call the associated edges
ev and ev′ respectively. If v = FZ(10i) (resp. v′ = FZ(01j)), 1 ≤ i < n(S) + 1 (resp.
1 ≤ j ≤ n(S′) + 1), then ev (resp. ev′ ) is labeled 0 (resp. 1) and if v = FZ(10n(S)+1),
then ev is labeled 1. In order to have v = v′, one must have v being the far right vertex
in its row. The situation where |S| < ∞, |S′| = ∞ and X(S′) satisfies 1(a)ii is the only
case with v = v′. In this situation, ev and ev′ both terminate at FZ(01) and are labeled 1
and this implies that both have the same follower sets and merging is required.
If the out-degree is two for v and v′, then v = FZ(10s+1) for s ∈ S \ {sk} and v′ =

FZ(01s
′+1) for s′ ∈ S′. But then 0sk+1 ∈ FZ(01s

′+1) \ FZ(10s+1) and so v 6= v′.

(c) Suppose both S and S′ are infinite and assume v = v′. Recall that when |S| = ∞
(resp. |S′| = ∞), any edge starting from a vertex with the out-degree one, is labeled
0 (resp. 1). So the out-degrees of v and v′ must be two. Let v = FZ(10si+1). Then
there is a path labeled 0sj−si1, i ≤ j ≤ k + l starting at v. This implies there exists
a path with the same label starting at v′ as well which contradicts the fact that k was
the least integer. Thus H = GZ and no merging is needed. It remains to check for
v = FZ(10n(S)+1) = FZ(01n(S

′)+1) = v′ and both with out-degree 2. In fact, for the case
where both X(S) and X(S′) satisfy 1(a)i, v = v′: both v and v′ have one edge with label
0 and terminating at the same vertex FZ(10) and one edge with label 1 and terminating
at the same vertex FZ(01). Again merging is required.

2. The above proof showed that merging is only required for the two far right vertices in different
rows. Such a vertex does not exist if GS or GS′ is infinite.
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3.2 Adjacency Matrix for X(S, S ′)

When S and S′ are finite, Z = X(S, S′) is SFT and so the adjacency matrix AZ carries most of
the information about the system. Here we use this matrix to give the Bowen-Franks groups of
X(S, S′). One way to obtain AZ is to use the Fischer cover given by Theorem 3.1. So AZ will be the
(n(S) + n(S′) + 2)× (n(S) + n(S′) + 2) matrix

AZ =

(
A1 0
A2 A3

)
(3.5)

where A1 and A3 are (n(S) + 1)× (n(S) + 2), (n(S′) + 1)×n(S′) matrices respectively and nonzero
entries are as follows.

1. A1
i(i+1) = A1

j(n(S)+2) = 1 for 1 ≤ i ≤ n(S) + 1, j ∈ S \ {n(S) + 1}.

2. A2
(i+1)1 = 1 for i ∈ S′.

3. A3
ii = 1 for 1 ≤ i ≤ n(S′).

4 Dynamical Properties of (S, S ′)-gap Shifts

In this section we investigate the dynamical properties of (S, S′)-gap shifts in terms of S and S′. We
also give a formula for computing the entropy and zeta function of these systems. So far we know
that (S, S′)-gap shifts are all synchronized and so coded generated by {0s+11s

′+1 : s ∈ S, s′ ∈ S′}.

Theorem 4.1. The following are equivalent for a (S, S′)-gap shift Z.

1. Z is mixing;

2. gcd{sn + s′m + 2 : sn ∈ S, s′m ∈ S′} = 1.

Proof. 1 ⇒ 2. If Z is mixing, then there exists N > 0 such that for all n ≥ N , there exists
w ∈ Bn(Z) with 01w01 ∈ B(Z). Thus there are words of length N + 1 and N + 2 of the form
1s
′
i1

+10sj1+11s
′
i2

+10sj2+1 · · · 1s
′
ir

+10sjr+1 with sj ∈ S, s′i ∈ S′ implying that gcd{sn + s′m + 2 : sn ∈
S, s′m ∈ S′} = 1.

2⇒ 1. If gcd{sn + s′m + 2 : sn ∈ S, s′m ∈ S′} = 1, then for all sufficiently large n, there is a word
of length n of the form 01s

′
i1

+10sj1+11s
′
i2

+1 · · · 0sjr+11. Since 01 is synchronizing and Z is irreducible,
the result follows.

Let G = (G, L) be a labeled graph, I a vertex of G and A = AG the associated adjacency
matrix. The follower set FG(I) of I in G is the collection of all labels of paths starting at I. The period
of a vertex I, denoted by per(I), is the greatest common divisor of those integers n ≥ 1 for which
(An)II > 0. The period of the matrix A denoted by per(A) is the greatest common divisor of all the
numbers per(J) where J is a vertex. If A is irreducible, then all vertices have the same period. The
period of a graph G is the period of its adjacency matrix and is denoted by per(G). Let XG be an
irreducible edge shift and p = per(G). Then there exists a unique partition {D0, D1, ..., Dp−1} of
the vertices of G, called period classes, so that every edge starting in Di terminates in D(i+1) mod p.
Recall that for a S-gap shift, per(G) = gcd(S + 1) where G is the underlying graph of Fischer cover
of X(S).

Lemma 4.2. Suppose X(S, S′) is a sofic shift with the Fischer cover G = (G,L). Then per(G) =
gcd(S + S′ + 2).
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Proof. Let A be the adjacency matrix of G and I = F (10). Starting at I on G, we are back again at I
if we have traced on G a path labeled 0si1, si ∈ S followed by a path labeled 1s

′
j 0, s′j ∈ S′. Therefore,

{n : (An)II > 0, n ∈ N} =
{∑

(si + s′j + 2) : si ∈ S, s′j ∈ S′
}
. (4.1)

On the other hand,

gcd
{∑

(si + s′j + 2) : si ∈ S, s′j ∈ S′
}

= gcd
{
s+ s′ + 2 : s ∈ S, s′ ∈ S′

}
. (4.2)

So (4.1) and (4.2) imply that per(I) = gcd(S + S′ + 2). Since A is irreducible, we are done.

The rest of this section is devoted to other similarities of (S, S′)-gap shifts with S-gap shifts.
We srart with the following theorem which characterizes some properties of X(S, S′) in terms of the
combinatorial properties of S and S′; compare [11, Example 3.4] and [10, Theorems 3.3, 3.4 and
3.6]. Before, recall that ∆(S) = {dn}n and ∆(S′) = {d′n}n where d1 = s1, d′1 = s′1, dn = sn − sn−1

and d′n = s′n − s′n−1, n ≥ 2. Note that ∆(S) (resp. ∆(S′)) here is in consistence with (3.1) (resp.
(3.4)).

Theorem 4.3. X(S, S′) is

1. SFT if and only if S and S′ are finite or cofinite.

2. sofic if and only if ∆(S) and ∆(S′) are eventually periodic.

3. AFT if and only if ∆(S) and ∆(S′) are eventually constant.

4. SVGL if and only if supi |si+1 − si| <∞ and supi |s′i+1 − s′i| <∞.

Proof. The necessity and sufficient conditions for a S-gap shift being SFT, sofic and AFT was given
in [10]. Also, a necessity and sufficient condition for a SVGL S-gap is in [11, Example 3.5]. Using
those results, (1), (2), (4) and the necessity condition for (3) will be deduced from respective results
in [4, Theorems 3.3, 3.5 and 3.6]. So it remains to prove the sufficiency of part (3). Suppose ∆(S)
and ∆(S′) are eventually constant. Then

∆(S) = {d1, d2, ..., dk, g}, ∆(S′) = {d′1, d′2, ..., d′k′ , g′} (4.3)

where g = sk+1−sk and g′ = s′k′+1−s′k′ . A proof is established by showing that the cover ofX(S, S′)
given in subsection 3.1 is left-closing by giving a delay.

If it is not left-closing, then there are two paths ξ− and ξ′− labeled the same and terminating at
the same vertex. Noticing the cover of our X(S, S′) given in subsection 3.1, the vertices with more
than one inner edges are F (10), F (01), F (10(n(S)+2) mod g) and F (01(n(S′)+2) mod g′).

The label of a path of length s′k′ + 2 (resp. sk + 2) terminating at F (10) (resp. F (01)) determines
its ending edge. On the other hand, The label of a path of length (n(S) + 2)( mod g) + 1 (resp.
(n(S′)+2)( mod g′)+1) terminating at F (10(n(S)+2) mod g) (resp. F (01(n(S′)+2) mod g′)) determines
its ending edge. So the cover has D = max{sk + 2, s′k′ + 2, (n(S) + 2)( mod g) + 1, (n(S′) + 2)(
mod g′) + 1} as its delay and the proof is complete.

An irreducible sofic shift space X is near Markov when it is AFT and its derived shift space ∂X
is finite ([12]).

Theorem 4.4. Any AFT (S, S′)-gap shift is near Markov.

Proof. Let Z = X(S, S′) be a strictly AFT shift. Two words 10 and 01 are synchronizing words.
Hence, points having both 0 and 1 as some of its entries are not in ∂Z and ∂Z ⊆ {0∞, 1∞}. So ∂Z
is finite.
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Set F to be a finite collection of words over a finite alphabet A where each wj ∈ F is associated
with a non-negative integer index nj . Write

F = {w(n1)
1 , w

(n2)
2 , ..., w

(n|F|)

|F| } (4.4)

and associate with the indexed list F a period T , where T is a positive integer satisfying T ≥
max{n1, n2, ..., n|F|}+ 1.

A shift space X is a shift of periodic-finite-type (PFT) if there exists a pair {F , T} with |F| and T
finite so that X = X{F,T} is the set of bi-infinite sequences that can be shifted such that the shifted
sequence does not contain a word wnj

j ∈ F starting at any index m with m mod T = nj . A strictly
PFT shift cannot be represented as an SFT.

Let G be the Fischer cover of an irreducible sofic shift, p = per(AG) and D0, D1, ..., Dp−1 the
period classes of G. An indexed word w(n) = (w0, w1, ..., wl−1)(n) is a periodic first offender of
period class n if w 6∈ ∪I∈DnFG(I) but for all i, j ∈ [0, l − 1] with i ≤ j and w[i,j] 6= w, w[i,j] ∈
∪I∈D(n+i) mod p

FG(I). An irreducible sofic shift is PFT if and only if the set of periodic first offenders
is finite ([13, Corollary 14]).

A S-gap shift is strictly PFT if and only if it is AFT and non-mixing ([10, Theorem 3.7]). A main
ingredient of the proof for this fact given in [10, Theorem 3.7] is defining a set of periodic first offenders
O = {1(i) : 0 ≤ i ≤ p − 2}. If one defines O = {(10)i, (01)i : 1 ≤ i ≤ p − 1} for (S, S′)-gaps, then
the same proof will give the following result.

Theorem 4.5. Suppose Z = X(S, S′) is not SFT. Then it is strictly PFT if and only if it is AFT and
non-mixing.

There are also other similarities between S-gap and (S, S′)-gap shifts in Theorems 4.8 and 4.9.

Remark 4.1. Not all the properties of X(S) and X(S′) transfer to Z = X(S, S′) or vice versa. Mixing
and PFT are two such properties. As an example, let S = S′ = 2N and GX = (GX ,LX) be the
Fischer cover of X. Then both X(S) and X(S′) are mixing ([14]) while gcd(S + S′) = 2 and so Z
does not have mixing property by Theorem 4.1. Also the same S and S′ as above will imply that
Z is PFT. This is a consequence of the fact that per(GZ) = 2 (Lemma 4.2)and the fact that the
irreducible components of GZ and G2Z are definite graphs ([13, Proposition 8]). On the other hand,
since per(GX(S)) =per(G(X(S′)) = 1, X(S) and X(S′) are not PFT ([15, Proposition 1]).

Now set S = 3N− 1 and S′ = 5N− 1. Then

gcd{s+ 1 : s ∈ S} = 3, gcd{s′ + 1 : s′ ∈ S′} = 5

which means X(S) and X(S′) are not mixing ([14]) and since ∆(S) = {2, 3} and ∆(S′) = {4, 5},
both X(S) and X(S′) are PFT ([10, Theorem 3.8]). However, gcd(S+S′+ 2) = 1 and so Z is mixing
(Theorem 4.1) but not PFT ([15, Proposition 1]).

4.1 Entropy and Zeta function of (S, S ′)-gap Shifts
Let S and S′ be the subsets of N0. If the multiplicity in S+S′ is important we will show it by {{S+S′}};
for instance, if S = {1, 3} and S′ = {2, 4}, then S + S′ = {3, 5, 7} but {{S + S′}} = {{3, 5, 5, 7}}.
When no multiplicities exists, we have S + S′ = {{S + S′}}. When S and S′ are finite, note that
{{S+S′}} = |S||S′|. We will see that {{S+S′}} is a conjugacy invariant and in particular characterizes
the entropy.

For a dynamical system (X,T ), let pn be the number of periodic points in X having period n.
When pn <∞, the zeta function ζT (t) is defined as

ζT (t) = exp

(
∞∑
n=1

pn
n
tn
)
. (4.5)
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v ...
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. . .

Figure 6: An infinite loop graph.

Then by Taylor’s formula,
dn

dtn
log ζT (t)|t=0 = n!

pn
n

= (n− 1)!pn. (4.6)

A loop graph G` consists of disjoint loops of lengths l1, l2, . . . with li ≤ li+1 (Figure 6). Let fn be the
number of first-return loops of length n from v to v and define f =

∑∞
n=1 fnx

n. Boyle in [16] shows
that the zeta function of XG is

ζσG`
(x) =

1

1− f(x)
. (4.7)

Theorem 4.6. Let

g(x) =
∑

n∈S+S′

( ∑
k+l=n

χS(k)χS′(l)

)
x(n+2). (4.8)

1. The zeta function of a (S, S′)-gap shift is

ζσ(x) =
1

(1− x)p1(X(S, S′))(1− g(x))
.

2. The entropy of a (S, S′)-gap shift is log λ where λ is the unique non-negative solution of

g(
1

x
) =

∑
s+s′∈{{S+S′}}

x−(s+s′+2) = 1. (4.9)

Proof. (1) Construct a loop graph G` with a base vertex at v such that for any s + s′ ∈ {{S + S′}},
there is a cycle of length s + s′ + 2 from v to v. The number of cycles of length n = s + s′ + 2 is
fn =

∑
k+l=(n−2)∈S+S′ χS(k)χS′(l). Therefore, g(x) = f(x) =

∑∞
n=1 fnx

n and by (4.7),

ζσG`
(x) =

1

1− g(x)
.

Note that all the periodic points in X(S, S′) can be represented by a cycle or concatenating some
cycles in G` except possibly 0∞ and 1∞, the fix points of X(S, S′). Let 0 ≤ p1 ≤ 2 be the number of
fix points of X(S, S′). If p1 = 0, ζσG (x) = ζσG`

(x). If p1 = 1, pn(σG) = pn(σG`) + 1 for all n ∈ N. So

ζσG (x) = exp

(
∞∑
n=1

pn(σG`) + 1

n
xn
)

=
1

(1− x)
ζσG`

(t).
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By the same argument, if p1 = 2,

ζσG (x) =
1

(1− x)2
ζσG`

(t).

(2) Since Z = X(S, S′) is synchronized, h(Z) = max{h(G), h(∂Z)} where h(G) is the Gurevich
entropy of the Fischer cover of Z ([17, Theorem 6.16]). We prove the theorem by showing that
h(G) = h(G`). Let u = F (10) in G. Any cycle starting from u again must travel a path of length s ∈ S
consisting of 0’s followed by a path labeled 1s

′+10, s′ ∈ S′. So corresponding to any cycle of length
s + s′ + 2 in G`, there is a path π of the same length with i(π) = t(π) = u and vice versa. By (2.2),
h(G) = h(G`). On the other hand, ∂Z ⊆ {0∞, 1∞}. So h(Z) = h(G). Now a minor alteration of
arguments in [11, p. 11] yields the result.

Recall that two SFT subshifts X and Y with the same zeta function, have the same entropy ([5,
Corollary 7.4.13]). This is not the case in a general coded system; however, (S, S′)-gap shifts have
this property.

Theorem 4.7. If ζσ(S, S′)(X(S, S′)) = ζσ(T, T ′)(X(T, T ′)), then {{S + S′}} = {{T + T ′}}. In particular,
h(X(S, S′)) = h(X(T, T ′)).

Proof. Let {{S+S′}} = {{v1, v2, · · ·}}with vi ≤ vi+1, i ≥ 1. For n = 1, v1 = s1+s′1 = t1+t′1 ∈ {{T+T ′}}.
Assume for any n < N , vn = tm + t′m′ ∈ {{T + T ′}} for some (tm, t

′
m′) ∈ T × T ′ and consider

vN = sn0 + s′n′0
, (sn0 , s

′
n′0

) ∈ S × S′.
By equality of zeta functions and (4.6), we have that for all i, pi(X(S, S′)) = pi(X(T, T ′)); in

particular,
pvN (X(S, S′)) = pvN (X(T, T ′)). (4.10)

Now if (sn0 + s′n′0
) 6∈ {{T + T ′}}, then (4.10) implies that sn0 + s′n′0

=
∑p
r=1(tur + t′u′r ) with p > 1 and

(tur + t′u′r ) < vN . But any periodic point of period n of X(S, S′) looks like

(1s
′
i1+10sj1+11s

′
i2+10sj2+1 · · · 1s

′
iq+10sjq+1)∞ (4.11)

where
∑q
r=1(s′ir+sjr+2) = n. Thus by our induction assumption, there is a one to one correspondence

between those elements of {{S + S′}} and {{T + T ′}} whose values are less than vN . As a result, we
must have pvN (X(S, S′)) ≥ pvN (X(T, T ′)) + 1 which contradicts (4.10).

A shift space X is called almost sofic if h(X) = sup{h(Y ) : Y ⊆ X is a sofic subshift} ([18,
Definition 6.7]).

Theorem 4.8. Every (S, S′)-gap shift is almost sofic.

Proof. If X(S, S′) is sofic, the statement is obvious. Thus suppose X(S, S′) is not sofic and for
every k ≥ 1, define Sk = {s1, s2, ..., sk} and S′k = {s′1, s′2, ..., s′k}. Then for all k, X(Sk, S

′
k) is a sofic

subsystem ofX(S, S′) and {h(X(Sk, S
′
k))}k≥1 is an increasing sequence. By (4.9), h(X(Sk, S

′
k))↗

h(X(S, S′)) which implies X(S, S′) is almost sofic.

A (S, S′)-gap shift is synchronized; so their non-trivial subshift factors are coded with positive
entropy ([6]). Moreover, the next theorem shows that every subshift factor of a (S, S′)-gap shift is
intrinsically ergodic: there is a unique measure of maximal entropy. This fact was established for
S-gap shifts by Climenhaga and Thompson in [19].

Theorem 4.9. 1. Every subshift factor of a (S, S′)-gap shift is intrinsically ergodic.

2. If at least one of the S or S′ is infinite and Y is a non-trivial subshift factor of X(S, S′), then Y
has positive entropy.
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Proof. (1). Let

L1 = {0k1m10n1 · · · 1mp0np1l : mi − 1 ∈ S′;ni − 1 ∈ S, k, l ∈ N},

L2 = {1k
′
0n
′
11m

′
10n

′
1 · · · 0n

′
q1m

′
q0l
′

: m′j − 1 ∈ S′;n′j − 1 ∈ S, k, k′, l′ ∈ N}.
Then language of (S, S′)-gap shift is L1 ∪L2. So a uniform CGC-decomposition for X(S, S′) is given
by

G = {0n1m : n− 1 ∈ S,m− 1 ∈ S′},
Cp = {0k, 1k : k ≥ 0},
Cs = {0l, 1l : l ≥ 1}.

Let (Cp ∪ Cs)n be the words in Cp ∪ Cs of length n. Then |(Cp ∪ Cs)n| = 2 for all n ≥ 1 and so
h(Cp ∪ Cs) = 0. Therefore, it follows that every subshift factor of a (S, S′)-gap shift is intrinsically
ergodic ([19]).

(2). In [19], Climenhaga and Thompson proved that any shift with uniform CGC-decomposition,
either has positive entropy or comprises a single periodic orbit and they also proved that a factor shift
of a shift with uniform CGC-decomposition has uniform CGC-decomposition. Now suppose Y is a
shift space over the alphabet A and let φ : X(S, S′) → Y be a factor code with memory m and
anticipation n induced by the block map Φ and suppose |S| =∞. Then Φ(0m+n+1) is a symbol in A,
say a. Since |S| =∞, the language of Y must contain ak for any k ∈ N. This means Y = {a∞}.

4.2 The Bowen-Franks Groups of (S, S ′)-gaps
Let A be an n× n integer matrix. The Bowen-Franks group of A is

BF (A) = Zn/Zn(Id−A),

where Zn(Id − A) is the image of Zn under the matrix Id − A acting on the right. See [9, §4], for
computing Bowen-Franks group using the Smith form.

Note that BF (A) (or denoted by BF0(A) in some papers) is the cokernel of Id−A acting on the
row space Zn. The kernel is another Bowen-Franks group BF1(A) := Ker(Id− A). Similarly, acting
on the column space (Zn)t, Id − A defines another two groups as cokernel and kernel, denoted by
BF t(A) and BF t1(A) respectively. These four groups are called the BF-groups ([20]).

Theorem 4.10. Let X(S, S′) be a SFT shift.

1. If |S|, |S′| <∞, then BF (A) ' Z(|S||S′|−1) ' BF t(A).

2. If |S| <∞ and |S′| =∞, then BF (A) ' Z|S| ' BF t(A).

3. If |S|, |S′| =∞, then BF (A) ' Z1 ' BF t(A).

4. BF1(A) = BF t1(A) = {0}.

Proof. The adjacency matrix of the Fischer cover of X(S, S′) is obtained in Subsection 3.2. Then
BF1(A) = BF t1(A) = {0} is a consequence of the definition. Groups BF (A) and BF t(A) can be
found by computing the Smith forms of Id−A and Id−At respectively.

Two subshifts are flow equivalent if they have topologically equivalent suspension flows ([5]).
Franks in ([21]) classified irreducible SFT’s up to flow equivalent by showing that two non-trivial
irreducible SFT’s XA and XB are flow equivalent if and only if BF (A) ' BF (B) and sgn(det(Id −
A)) = sgn(det(Id−B)).

Corollary 4.11. Suppose X(S, S′) is a SFT shift.
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1. If |S|, |S′| <∞, then X(S, S′) is flow equivalent to full |S||S′|-shift.

2. If |S| <∞ and |S′| =∞, then X(S, S′) is flow equivalent to full (|S|+ 1)-shift.

3. If |S|, |S′| =∞, then X(S, S′) is flow equivalent to full 2-shift.

The Bowen-Franks groups for an RLL shift was announced in [9]. By above corollary, for an
asymmetric-RLL X = X(d1, k1, d0, k0) constraint with the adjacency matrix A,

BF (A) ' Z(k0−d0+1)(k1−d1+1)−1 ' BF t(A)

and X is flow equivalent to full (k0 − d0 + 1)(k1 − d1 + 1)-shift.

5 The Conjugacy Problem for (S, S ′)-gap Shifts
The conjugacy problem has been solved completely for S-gap shifts ([10]). Here, we give a general
necessary condition and some sufficient conditions for special cases.

The following result is a consequence of Theorem 4.7.

Theorem 5.1. If X(S, S′) and X(T, T ′) are conjugate, then {{S + S′}} = {{T + T ′}}.

The converse is not true. For instance, let S = {1, 2}, S′ = 2N0+1, T = {1} and T ′ = {1, 2, · · · }.
Then {{S + S′}} = {{T + T ′}}. By Theorem 4.6, h(X(S, S′)) = h(X(T, T ′)). But X(S, S′) is a strictly
sofic shift while X(T, T ′) is a SFT shift, so they are not conjugate. However, in sequel we show that
{{S + S′}} = {{T + T ′}} implies entropy-conjugacy.

Also,

ζX(S, S′)(t) = ζX(T, T ′)(t) =
1

1− t− t4 .

Thus unlike S-gap shifts ([10, Corollary 4.2 ]), the zeta function is not a complete invariant for
conjugacy.

Theorem 5.2. If {{S + S′}} = {{T + T ′}}, then X(S, S′) and X(T, T ′) are conjugate in the following
cases.

1. si + s′j = ti + t′j for all i and j,

2. X(S, S′) and X(T, T ′) are SFT and S + S′ = {{S + S′}} = {{T + T ′}} = T + T ′. In particular,
they are conjugate to a S-gap shift X(S′′), S′′ = S + S′ + 1.

Proof. (1). Without loss of generality assume s′1 > t′1. Let n = s′1 − t′1 + 1 and define Φ :
Bn(X(S, S′))→ {0, 1},

Φ(w) =

{
1 w = 1n,
0 otherwise.

Then φ = Φ
[0, n−1]
∞ : X(S, S′) → X(T, T ′) is a conjugacy map. In fact, what φ does is to replace

1s
′
i+10sj+11n with 1t

′
i+10tj+1. This is because the word 1s

′
i+1 contains (s′i + 1 − (n − 1)) times the

word 1n; the first starting from the first position of 1s
′
i+1, the second from the second position and so

forth. But s′i + 1− (n− 1) = s′i − s′1 + t′1 + 1 and also by (1),

s1 + s′i = t1 + t′i, s1 + s′1 = t1 + t′1.

So s′i − s′1 + t′1 = t′i. By the same reasoning, (n− 1) + sj + 1 = tj + 1 and so we are done.
(2). A conjugacy map can be set via a S-gap shiftX(S′′) as follows. First define Φ : B2(X(S, S′))→

{0, 1},

Φ(w) =

{
1 w = 10,
0 otherwise.

(5.1)
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Now let S′′ = S + S′ + 1 and φ : X(S, S′) → X(S′′) be the sliding block code with memory 0
and anticipation 1 induced by Φ. Then φ defines a conjugacy map. Also, X(T, T ′) and X(S′′) are
conjugate with the same conjugacy map by letting Φ : B2(X(T, T ′))→ {0, 1} be defined as (5.1).

Which (S, S′)-gap shifts, as a generalization for the Run-length-limited (RLL) shifts, are conjugate
to a given RLL shift?

Although the problem of conjugacy for (S, S′)-gap shifts has not been sorted out for general
settings, in most cases there are several (S, S′)-gap shifts conjugating to a given RLL shift. For
instance, let |S| = p and |S′| = p′. If X(S, S′) and an RLL shift X(d, k) are conjugate, then by
Theorem 5.1, {{S + S′}} = {d− 1, d− 2, . . . , k − 1}. So we have

d = s1 + s′1 + 1, and k = sp + s′p′ + 1 (5.2)

where s1, s′1 are minimum and sp, s′p′ are maximum of the respective spaces.
Now suppose d and k are the natural numbers such that k > d and k − d + 1 is not prime. Also

set k − d+ 1 = p× p′, 1 < p ≤ p′. Then RLL shift X(d, k) and X(S, S′) are conjugate for some

S = {s1, s2, · · · , sp}, and S′ = {s′1, s′2, · · · , s′p′} (5.3)

satisfying (5.2) and
si+1 − si = p′, s′j+1 − s′j = 1

for 1 ≤ i ≤ p−1 and 1 ≤ j ≤ p′−1. The conjugacy follows from the case (2) of Theorem 5.2. So other
(S, S′)-gap shifts conjugate to X(d, k) may be found when {{S+S′}} equals {d−1, d−2, . . . , k−1}.

Corollary 5.3. 1. If X(S, S′) and an RLL shift X(d, k) are conjugate, then S and S′ are SFT
with |S| = p and |S′| = p′ for some p, p′ ∈ N and d and k satisfies (5.2).

2. Suppose X(d, k) is an RLL shift with k − d + 1 = p × p′, 1 < p ≤ p′. Then X(d, k) and
X(S, S′) are conjugate for some S and S′ as in (5.3).

3. Let p ∈ N be a prime number and X(d, k) be an RLL shift with k− d+ 1 = p. Then X(d, k) is
conjugate to a X(S, S′), with S = {s}, s ≤ d− 1 and S′ = {d− s− 1, d− s, . . . , k − s− 1}.

Example 5.4. The RLL shift X(2, 9) and X(S, S′) are conjugate for

1. S = {1, 5}, S′ = {1, 2, 3, 4},
2. S = {1, 2}, S′ = {1, 3, 5, 7},
3. S = {1, 3}, S′ = {1, 2, 5, 6}.

The first two are implied by Corollary 5.3(2) and the third where S and S′ do not satisfy the conditions
of S and S′ in 5.3 is a consequence of Theorem 5.2(2).

A set E ⊆ X is entropy-negligible for X if there is ε > 0 such that µ(X \ E) = 1 for every X-
invariant ergodic Borel probability µ with h(X,µ) > h(X)−ε and a set is entropy-full if its complement
is entropy negligible. Systems X and Y are entropy conjugate if there is a Borel isomorphism of their
actions on entropy full sets ([16]).

Theorem 5.5. If ζX(S, S′)(t) = ζX(T, T ′)(t), then X(S, S′) and X(T, T ′) are entropy conjugate.

Proof. By Theorem 4.7, {{S + S′}} = {{T + T ′}}. So there is a one-to-one correspondence α :
{{S+S′}} → {{T+T ′}}. LetE be the set of points inX(S, S′) whose starting and ending segments are
not 0∞ or 1∞ and observe that the set of recurrent points ofX(S, S′) are in (X(S, S′)\E)∪{0∞, 1∞}.
Now let M1 = {µ ∈ M(X) : µ({0∞, 1∞}) 6= 0} and hM1(X(S, S′)) = supµ∈M1

hµ(X(S, S′)) and

choose 0 < ε <
h(X(S, S′))−hM1

(X(S, S′))

2
. Then by definition, E is entropy-negligible. Let B(S, S′) =

X(S, S′) \ E and let B(T, T ′) be the corresponding set for X(T, T ′).

2778



British Journal of Mathematics and Computer Science 4(19), 2765-2780, 2014

Define f : B(S, S′) → B(T, T ′) such that any word of form 0s+11s
′+1 maps to 0t+11t

′+1 where
α(s+ s′) = t+ t′. Clearly f is a bijection. Also, note that if {xn}n is a sequence of points in B(S, S′)
mapping to x ∈ B(S, S′), then f(xn) → f(x) and so f is continuous and so Borel on B(S, S′). This
proves entropy conjugacy.

Remark 5.1. Note that the converse of Theorem 5.5 does not hold necessarily. For instance, let
|S|, |S′| = ∞ with {{S + S′}} = S + S′ and set T = {1} and T ′ = S + S′ − 1. Then P1(X(S, S′)) =
{0∞, 1∞} and P1(X(T, T ′)) = {1∞}. So ζX(S, S′)(t) 6= ζX(T, T ′)(t). However, a map f as in the
above theorem can be defined.

6 Conclusions
In this work, a generalization of Run-length-limited (RLL) codes, called (S, S′)-gap shifts, has been
introduced. This also can be considered as a generalization of an S-gap shift. First, the Fischer cover
of an (S, S′)-gap shift is determined in terms of the Fischer covers of two S-gap shifts, one called
S-gap shift and the other S′-gap shift. Next, some of its dynamical properties as a subshift has been
investigated. Furthermore, its zeta function and entropy is computed. In addition, when (S, S′)-gap
shift is SFT, its Bowen-Franks group is obtained. Finally, we give a general necessary condition and
some sufficient conditions for conjugacy of (S, S′)-gap shifts.
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