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ABSTRACT 
 

Knowledge of flow exchange between surface and groundwater is of great importance for use of 
water resources. The determination of seepage between a stream and an underlying aquifer 
requires an accurate estimation of the river stage and of the head in the aquifer. An approach is 
presented to estimate analytically river flow and stage while using the SAFE conductance to 
calculate the seepage.  A major contribution of this article lies in the methodology for river routing 
with its use of a modified Linear Reservoir model.  The parameter C is related to discharge based 
on Manning’s equation. That relation breathes into an empirical model a dynamic character. A 
second major contribution is to show that it is possible to simultaneously calculate river stage and 
aquifer head in the aquifer cell that contains the river.  As a result iteration is not necessary to 
estimate that river cell head as river stage changes, as opposed to what is usually done in most 
numerical groundwater models.  Iteration is still needed for the adjacent cells to the river cell.  
Because the influence of a change in the adjacent cell head on the river cell head is much delayed 
and attenuated the iteration is not sensitive to that change. A goal of this document is to show how 
that method can be used within a simple physically based routing procedure [1] to estimate the 
river stage that has a definite influence on seepage.  
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1. INTRODUCTION 
 
The practical contribution of this paper beyond 
what had been accomplished in previously 
published works needs some explanation. The 
author’s interest has been to find the simplest 
possible way to improve the accuracy in 
MODFLOW (IWFM, MIKE-SHE, 
HydroGeoSphere, PIHM and other similar codes) 
to calculate the seepage from a river in saturated 
hydraulic connection with the aquifer without 
substantial changes in the codes.  
 

The importance of the flow exchange between 
stream and aquifer is well recognized (e.g. [2,3]). 
The ability to predict accurately the flow 
exchange and the parameters and variables that 
determine it e.g. [4,5,6,7,8,9,10], is a necessary 
condition for successful planning, operations and 
abidance with law.  That need has been 
recognized for a long time (e.g. [11]) by many 
scientists and it is becoming even more urgent.  
For example the recent California law, the 
Sustainable Groundwater Management Act, 
SGMA, September 16, 2014, requires that new 
agencies, Sustainable Groundwater Agencies, 
SGA, be created in all groundwater basins.  
These new agencies, which had to be created by 
June 30, 2017, must provide the Dept. of Water 
Resources by January 31, 2020 or 2022 a plan 
that would show that the SGA has taken action 
for sustainability of the groundwater resource.  
The majority of these plans will be supported by 
simulations with groundwater models.   
 

For investigations over a very limited 
geographical extent it is possible to use very 
small-scale grids and thus obtain great accuracy 
for the results using numerical models.   In large-
scale regional studies using such small-scale 
grids is not practical.  For example, in a 
California study for the Santa Rosa Plain 
Watershed Groundwater Management Plan 
([12]) the square grid size is 660 feet and the 
area under investigation is 262 square miles.  
None of the rivers in the area have widths that 
exceed 100 feet.  Thus all river reaches are 
included in cells that have dimensions far in 
excess of the river widths. In addition the water-
table aquifer is treated as a single calculation 
layer even though its varying thickness always 
exceeds 90 feet. In such contexts the boundary 
condition to determine the seepage discharge is 
chosen to be of the third type (also named 
Cauchy, or General Head).  The discharge is 

calculated as being proportional to the difference 

between the head in the river, hS , and the head 

in the aquifer, hf , at the center of the aquifer 

cell that includes the river (the river cell).   The 
proportionality coefficient depends upon a 
“leakance coefficient”, essentially treated in the 
past as an empirical parameter ([13]). Recently 
new procedures to estimate that coefficient that 
are based on physical principles were presented 
([14,15,16,17]).  
 

2. PREVIOUS WORK  
 
In earlier articles ([14,15,17]), values of a 
dimensionless conductance were obtained 
analytically for a variety of cross-sections. This 
one-sided Stream-Aquifer Flow Exchange 
(SAFE) dimensionless conductance (in short the 
conductance), Ganis-stand-D-rcl

, accounts for 

degree of anisotropy, possible presence of a real 
clogging layer in the streambed, normalized 

wetted perimeter Wp
N

, defined as wetted 

perimeter, WP
, divided by the aquifer thickness, 

Daq , 
WP

N =
WP

Daq

(1) and maximum degree of 

penetration, dp
, defined as H /Daq  (2).  H is 

the maximum depth of water in the river (the river 
stage), from the water surface to the streambed. 

KH is the horizontal hydraulic conductivity.  D
stands for the excess far distance over the 
standard far distance, which in the present case 

(see Fig. 1) is:   
D =

G

4
- (2

Daq

ranis
+ B)

 (3) where G  

is the lateral grid size,  B  is the half width of the 

river and, ranis =
KV

KH

 (4) is a measure of 

anisotropy.   The standard far distance is the 
minimum distance away from the river banks 
where the flow has essentially turned horizontal 
and the groundwater head behavior follows the 
Dupuit-Forchheimer approximation.  

 
It is a goal of this document to show how that 
method can be incorporated within a simple 
physically based routing procedure for the river 
flow ([1]) to estimate accurately the river stage 
that has a definite influence on the seepage rate 
from the river.  It is then possible to compare 
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how various estimates of the leakance coefficient 
affect the estimates of the flow exchange.  
 

Importantly because the procedure is analytical it 
is possible to jointly estimate the river flow and 
the seepage without the need for iteration 
between river stage and head in the river cell.  
That iteration is very sensitive and hence difficult 
because seepage is proportional to the 
difference between these two successively 
approximated heads.  With the proposed 
procedure the iteration is between the river stage 
and the head in an adjacent cell.  That adjacent 
cell being distant from the river the iteration is not 
as sensitive to that head.  
 

3. GENERAL STATEMENT OF THE 
PROBLEM 

 

To test the new procedure for the river flow and 
for the seepage a simple geometrical-
configuration is used.  Fig. 1 shows a cross-
section of the system.  The streambed could be 
a clogging layer, as shown in the figure below 
the river bottom. Given an inflow at the upstream 
end of a river reach water will propagate toward 
the downstream end, the wave getting delayed 
and attenuated as it travels the reach.  On the 
way it may lose to or gain from the water-table 
aquifer. 
 

For the description of the routing of flow in the 
river a modified version of the classic Linear 
Reservoir model ([18,19,20,21]) is used because 
the time constant is allowed to vary as a function 
of the discharge in the river. The relation gives to 
the originally empirical model a dynamic 
character because the time constant C is related 
to discharge based on Manning’s equation 
(Morel-Seytoux, 2000), namely: 
 

                                (5) 

 
This suggestion to incorporate dynamic 
characteristics within a conceptual routing model 
is not particularly new ([22,23]) though it has 

hardly been used.  In Eq.(5) nM  is Manning’s n, 

W is the river width, L is the river reach length, 

SR  is the river slope and O is the river outflow 

discharge.  As that discharge increases, the time 
constant decreases.  In other words the wave 
propagation celerity increases and any upstream 
disturbance, such as an increase in inflow, 
travels faster downstream.  Eq. (5) provides a 
kinematic wave component for the flow while the 
incorporation of Eq.(5) in the LR. framework 
adds a diffusive component. This routing model 

 
 

Fig. 1.  Cross-section view of the river aquifer system showing the aquifer cells 
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for the river flow has been used for simulation of 
the Seine river basin upstream of Paris ([1,24, 
25]). 
 

4. MATHEMATICAL GENERAL 
FORMULATION 

 
The mass balance governing equation for the 
classic Linear Reservoir (LR) routing model is: 
 

dS

dt
=
d(CO)

dt
=C

dO

dt
= I -O

                

(6) 

  
 

orC
dO

dt
+O = I                                     (7) 

 
whereS =CO  is storage, t is time, O is outflow 
rate (a discharge) and I is inflow rate. C is the LR 
“time constant, has dimension of time and in the 
classic LR model it is treated indeed as a 
constant in time.  If the time constant is allowed 
to vary the governing equation takes the slightly 
different form:  
 

C
dO

dt
+ (1+

dC

dt
)O = I                               (8) 

 
Now this equation does not include the seepage 
rate so that a more correct mass balance 
equation needs to be written as: 
 

C
dO

dt
+ (1+

dC

dt
)O = I -QS

                             (9)  

 
where QS is the seepage rate, algebraically 

counted positive if it is a gain for the aquifer, a 
loss from the river, thus a real seepage loss; if 
negative it is an aquifer return flow to the river. In 
short the word “seepage” is used in this 

document in lieu of the longer combination “flow 
exchange”.  It now remains to describe physically 
and mathematically the seepage rate. 
 

5. DETERMINATION OF THE SEEPAGE 
RATE 

 
Assuming a rectangular river cross-section and 
an elongated rectangular aquifer cell of smaller 

lateral side, G, and greater longitudinal side, LR
, one can relate the seepage to storage and river 
discharge.  If the river cross-section is not 
rectangular an equivalent rectangular cross-
section is one with the same maximum depth, 
which defines the head in the stream, and the 
same wetted perimeter, which conditions the 
area through which seepage takes place.  
 
The total (i.e. two-sided) SAFE seepage 
discharge is:  
 

QS = 2LRKHG(hS - hf ) = T (hS - hf )   (10) 

 

withKL = KHG   and   T = 2LRKL  

 

where LR  is the river reach length (usually the 

same as the longitudinal size of the rectangular 

cell while G is the lateral size of the cell), Wp  is 

the wetted perimeter of the cross-section,  G 

written short for Ganis-stand-D-rcl  , as the 

case may be, is the one-sided SAFE 

dimensionless conductance ([14,15,16]), hS  is 

the head in the river and hf  is the head in the 

river cell. T has dimension of transmissivity (area 

per time).  It plays the same role as Criv  in 

MODFLOW. 

 
In the case of MODFLOW the total discharge is given by the expression: 
 

QS = LRWpL(hS - hf ) =Criv(hS - hf )  (11) whereL is the leakance coefficient 

 
Comparing Eqs.(10) and (11) one can see that the SAFE leakance coefficient is simply:   
 

 

Lsafe =
2KHG

Wp

=
KHG

B+H
                                                                                              

(12) 
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If heads are measured from the aquifer bottom then:  
 

hS = hb +H                                                                                                                       (13) 

 

Where hb  is the elevation of the river bottom from a chosen datum (e.g. the aquifer bottom) and H  

is the river stage.  Storage is S =CO =WLRH  with W = 2B  being the river width.  (A true or 

equivalent rectangular cross-section is assumed). In other words:    
 

QS = T (hb +H - hf ) =
KLC

B
O-TDhf     (14)  withDhf = hf - hb               (15) 

 

Any head measured from the river bottom is preceded by the symbol D .  Substituting in Eq.(9) 
yields:  
 

C
dO

dt
+[1+

dC

dt
+
KLC

B
]O = I +TDhf                                           (16) 

For simplicity in writing we define the average value of 
dC

dt
 over the period of time (time step) 

dC

dt
= l  (17a) and similarly  

KLC

B
= m  (17b).  Note that m  may change because both KL  and 

C  will change.  
 
With these notations the governing equation becomes: 
 

(Ci + lt)
dO

dt
+[1+l +m]O = I(t -t )+TDhf                                                    (18a) 

or setting d =1+ l +m   (Ci + lt)
dO

dt
+dO = I(t -t )+TDhf

                    

(18b) 

 

or     
(Ci+lt)

d

dO

dt
+O =

1

d
{I(t -t )+TDhf }

                

(18c) 

 

withCi  the initial value of C and where we have added the possibility that an inflow change at the 

upstream end of the reach may not be felt downstream without a delay t .  This is adding a 
hyperbolic aspect to the basic routing model that otherwise would be purely parabolic.  In Eq.(18) 

appears the head in the river cell, Dhf .   

 
The solution (see Appendix 1 in online supporting information) is: 
 

O(n) = rOnO(n-1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n -1)

dn
+bOn

Tn
dn
Dhf (n)+aOn

Tn
dn
Dhf (n-1)

 (19) 
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withrOn = (
Cn

Cn-1

)pn

                                                                                                      

(20a)     

 

Cnt =Ci +lt
                                                                                                                

(20b)   

 

sOn = (
Cn

Cnt
)pnn

                                                                                                              

(20c) 

 

aOn = [(1- rOn )(1+
Cn-1

ln +dn
)-

dn
ln +dn

]
                                                              

(20d) 

 

bOn =
1

(ln +dn )
[dn - (1- rOn )Cn-1]

                                                                    

(20e) 

 
However that head is not likely to be a decision variable but rather a state variable.  If that is the case 

the real decision variable is the head in the adjacent cell, Dhadj .  Thus it is necessary to find how 

the river cell aquifer head responds to the head in the adjacent cell.  
 

6. DETERMINATION OF THE AQUIFER HEAD IN THE RIVER CELL 
 
The head associated with the center of the river cell, as calculated by the finite difference method, is 
not the punctual head at that location, but the average head over the entire river cell.  Thus the head 
associated with the center of each half-cell on either side of the center of symmetry is the same as the 
head in the (full) river cell.  To guarantee that the flow between the center of the half river cell and the 

adjacent cell is horizontal one must require (see Fig. 1) that 
G

4
-B ³ 2

Daq

ranis
 (21a) or 

G ³ 8
Daq

ramis

+ 4B  (21b).  The excess distance over the minimum far distance necessary to assure 

horizontal flow is:  
 

D =
G

4
- (2

Daq

ranis
+ B) (21c)  

 
Mass balance for the aquifer in either half river cell (right or left), is as expected:  
 

fe
G

2
LR

¶Dhf

¶t
= KLLR (DhS -Dhf ) -KHDaqLR

(Dhf -Dhadj )

G / 4+G / 2
            (22a) 

 
In other words storage in the (aquifer) half river 
cell increases if the river seepage (first term on 
the right) exceeds the lateral flow to the adjacent 
cell.  Eq.(22a) is a differential equation, not a 
finite difference equation.   When solved 
analytically it provides the spatial average value 
of the head in the half river cell continuously in 

time.  In addition the seepage rate is not 
estimated by a finite difference vertical 
approximation of the flux across the bottom of 
the river but by an estimate of seepage that 
accounts for the turning, convergence and 
divergence of the flow between the river wetted 
perimeter and the center of the half river cell 
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([14];[15];[17]).  Because the location of the 
center of the half river cell is far enough away 
from the river bank the flow beyond that point is 
horizontal and the flux across the boundary with 
the adjacent cell is expressed by Darcy’s law for 
horizontal flow. On the other hand the head in 
the adjacent cell would be expected to be 
obtained by solution of the system of finite 
difference equations for the overall configuration 
of the regional aquifer. The method of solution 
combines a local analytical technique in the 
vicinity of the river with a regional finite difference 
formulation for the overall aquifer system.  In that 
way a local finite difference discretization near 
the river is avoided while still representing the full 

local 2-dimensional aspect in the solution.  
Unnecessary numerical work is avoided and 
accuracy is improved.  
 

G is the lateral size of the rectangular cell, fe  is 

the specific yield (effective porosity) of the river 

cell aquifer, Daq is the average aquifer 

thickness in the vicinity of the river and Dhadj  
is the head in the adjacent cell on the right or left 

side.  Bringing all the heads, Dhf , on the left 

hand side yields: 

 
 

Gfe
¶Dhf

¶t
+ 2[KL +

4

3

Daq

G
KH ]Dhf = 2KLDhS +

8

3

Daq

G
KHDhadj

            

(22b) 

 

orGfe
¶Dhf

¶t
+ 2[KL +

4

3

Daq

G
KH ]Dhf = KL

CO

BLR

+
8

3

Daq

G
KHDhadj

         

(22c) 

 

and with: Cf =
Gfe

2[KL +
4

3
KHDaq /G]

  (23a) dimension of time,              r f = e
-
1

Cf (23b) 

CS =Cstage =
KL

KL +
4

3
KHDaq /G

 (23c) Cadj =

4

3
KHDaq /G

KL +
4

3
KHDaq /G

                      

 (23d)  

both dimensionless, one obtains:  
 

Cf
¶Dhf

¶t
+Dhf =gOO+CadjDhadj  (24)   withgO =CS

C

BLR

                              (25)  

dimension inverse of transmissivity.  This equation has the same structure as the classic LR.  
 
The solution for this equation (Appendix 1 in online supplementary information) is:  
 

witha f = [Cf (1- r f )- r f ]         (26a)     and    b f = [1-Cf ([1- r f )]     
(26b) 

 

Dhf (n) = r fDhf (n-1)+ b fgOnO(n)+a fgOn-1O(n-1) 

+b f CadjDhadj (n)+a f CadjDhadj (n-1)                                         (27) 
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7. FINAL EQUATION FOR THE OUTLFLOW AFTER ELIMINATION OF THE RIVER CELL 
HEAD 

 
The governing equation (see Appendix 1 in online supporting information for derivations) at end of 
period (day) n for the river flow is: 
 

[1- bOn
Tn
dn

b fgOn ]O(n) = [rOn + bOn
Tn
dn
a fgOn-1]O(n-1)  

+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n-1)

dn
 

+[bOn
Tn
dn

r f ]Dhf (n-1)  

+[bOn
Tn
dn
a f Cadj ]Dhadj (n-1) 

+[bOn
Tn
dn
b f Cadj ]Dhadj (n)                                                                   (28) 

 

withCn =Cn-1+ln  (29a) dn =1+ln +mn(29b)  pn = -
dn
ln

                             (29c) 

rOn=(
Cn

Cn-1
)pn

                                                                                                           

 (25d) 

 

Ctn =Cn-1+lnt   (29e)    sOn = (
Cn

Ctn
)pn   (25f)     r f = e

-
1

Cf

                     
(29g) 

 

a f = [Cf (1- r f )- r f ]    (29h)     b f = [1-Cf ([1- r f )]                          (29i) 

 
Note that the influences of the decision variables, 

namely the inflows for the current period  I (n)   

and for the previous period, I (n-1)  and the 

heads in the adjacent cells, Dhadj (n)  and 

Dhadj (n -1) , are explicitly described.  

Similarly the influence of the initial conditions at 
the beginning of the period is shown in the terms 

including O(n-1)  and Dhf (n-1). 
 
(In statistical parlance this is a typical 
Autoregresive Moving Average model ([26]; 
multiple variables ARMA(1,2),  except that in the 

statistical literature the coefficients are not 
allowed to vary in time).  
 

8. PURPOSE AND TYPES OF RUNS 
 
The purpose of the runs is to compare several 
estimations of the leakance coefficient and to 
assess the resulting differences on the values of 
seepage.  It is also to demonstrate that the head 
in the river cell is primarily dependent upon the 
seepage amount and not so strongly influenced 
by the head in the adjacent cell.  Table 1 shows 
the different types of scenario using different 
ways to estimate the leakance coefficient 
 

Type (scenario) number Leakance coefficient 
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1. Use of the SAFE dimensionless 

conductance Ganis-stand-D-rcl  
and as a 

result a variable leakance coefficient 
2. An average value of the above leakance 

coefficient over the period of simulation 
3. Zero.   The river bottom is impervious 
4. The maximum value of the leakance 

coefficient in scenario 1 
5. The minimum value of the leakance 

coefficient in scenario 1 
 

To ease interpretation of the results in the figures 
the same color is associated with a run type. 
Type 1 is black, type 2 is blue, type 3 is green, 
type 4 is red, and type 5 is magenta. 
 

9. THE RIVER AQUIFER SYSTEM USED 
IN THIS STUDY 

 

The river and aquifer system used in this 
document is not a specific real system though 
parameters for the river correspond to a real 
river.  Thus it may be viewed as a “theoretical” 
system.  In studies to be performed for SGMA a 
real groundwater basin will be simulated using a 
groundwater code, often MODFLOW or IWFM.  
Following calibration, when making future 
predictions under different management 
strategies, the model used will not be the real 

system but a calibrated approximation of the real 
system, in other words itself a “theoretical” 
model.   Similarly the excitations will not be real 
observed ones but conceptual ones, such as 
releases from an upper dam and pumping from 
wells that did not exist during the historical 
calibration period, etc.   Thus the inflow pattern 
used in the present study can be thought to be 
the controlled release from a dam upstream from 
the chosen Marne river reach.  The excitation 
pattern in the adjacent cell can be thought to be 
the result of a pattern of pumping and/or 
recharge in the system.  For easier interpretation 
of the results that pattern is chosen to be simple.  
Similarly the release from the upper reservoir is 
chosen to represent a situation of a flood 
followed by a long recession.  

 
10. NUMERICAL EXAMPLE  
 
The parameters for the system are indicated in 
Table 1. 

 
If not specified all lengths are in meters and the 
period of time is the day.  Parameters for the 
river correspond to an upper reach of the Marne 
river, a tributary to the Seine river in France ([24]; 
[25]).   

 
Table 1.  Parameters for river geometry, river dynamics, aquifer characteristics and initial 

conditions 
 
Parameters L(km) B G KH  Dbrb  fe  anisotropy t  

Case 1 40.00 10.0 350.0 20.0 10.0 0.20       0.10           0.00 
Parameters Hini  Dh f

ini  Dhadj
ini  Hmax  Oini  (cms) Cini    

 1.4610    1.4610      1.4610         3.00          78.0            0.1734     
Parameters Krcl  ercl  hce  Slope         Manning’s n    

 0.10      0.00 0.30       0.00087 0.03333    
 

Table 2. Evolution of inflow discharge (cms) with time (day) 
 

Period n £16  17 £ n £ 70  

I (n) 320- 240cos[ (n-1)p /18) ] 
I (16)e

-
(n-16)

20  

  
Table 3.  Evolution of head in the adjacent cell with time (days) 

 
Period n £ 2  n = 3 4 £ n £ 20  21£ n £ 70       

 Dhadj (n) 1.4610 0.0 -2.0 2.0  
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11. NUMERICAL EXAMPLE.  CASE OF 
ANISOTROPY AND NO CLOGGING 
LAYER  

 

Because the magnitude of seepage is small 
compared to the river discharge, figures showing 
the outflows in cases there is seepage or no 
seepage will not provide much information. In 
Fig. 2 only the outflows for runs of types 1 and 3 
(no seepage) are shown. The outflows for the 
other 3 types were visually the same.  One can 

hardly discern a difference between the outflows.  
In practice what this means is that when 
calibrated flows show a certain amount of 
difference compared to observations, it is almost 
impossible to know if the difference is partly due 
to error in estimation of seepage, due to 
measurement errors or due to the calibration.  
 
Fig. 3 shows the seepage rates for the different 
types. The discharges in ordinate axis in the 
figures are in cubic meters per second (cms). 

 

 
 

Fig. 2. Outflow pattern between case of seepage or no seepage 
 

 
 

Fig. 3. Seepage patterns for the various types of runs 
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Type 2 does not match perfectly type 1, the 
benchmark with the correct analytical answer. 
The difference is quite small but can be of the 
order 0.1 cubic meters per second (cms) or 3.6 
cubic feet per second or 0.14 cfs/mile in this 
case.   In the Poudre river area of Colorado a 
rough estimate for leakage from unlined irrigation 
canals is 1 cfs/mile.  With type 4 the differences 
are larger and can be as much as 0.5 cms or 18 
cfs or 0.75 cfs/mile. It is now of the (gross) order 
of magnitude for seepage for unlined irrigation 
canals in Colorado.  
 
As shown in Fig. 4 the leakance coefficients can 
vary significantly with time and with the scenario. 
 
An average value for the leakance does not work 
perfectly well even if calibrated exactly on the 
average value of the correct leakance variation 
with time.  Theimplication is that using a constant 
leakance coefficient for a river reach, as typically 
obtained by calibration, may not provide an 
accurate estimate of the seepage unless close to 
the mean value for type 1.  This is the case for 
type 4 where the leakance coefficient is constant 
but clearly too large leading to differences in 
seepage, actually excessive return flows, 
between days 15 to 70.  During those 55 days 
the ratio of the return flow between type 4 and 
type 1 is 1.1148 at day 35 and 1.1235 at day 70.  
These two values are close to the ratio of the 
leakance coefficients at those times respectively, 
1.1075 and 1.1970, but not identical.  The 
seepage values depend upon the leakance 
coefficients but also upon the head differences 

between the river stage and the heads in the 
river cell, both of which are affected by the river 
flow and by the head in the adjacent aquifer cell.  
There is a strong compensation effect because if 
under one scenario there is more actual seepage 
than for another scenario the head in the river 
cell will rise more in that scenario than in the 
other scenario thus reducing the difference in 
head for the next day and in seepage. This is 
particularly true if the river cell has difficulty to 
move water toward the adjacent cell, which is the 
situation if the head in the adjacent cell exceeds 
that in the river cell.  
 
Finally Fig. 5 provides the values of river stage 
and heads in the aquifer cells. 
 
In case of no seepage it is clear that the head in 
the adjacent cell will tend to influence more 
strongly the head in the river cell but still slowly, 
if for no other reason than it is far away.  If the 
head in the adjacent aquifer cell remains the 
same eventually the head in the river cell will 
take its value.  On the other hand when there is 
seepage as with types 1, 2, 4 and 5, very clearly 
the head in the river cell is far more influenced by 
the seepage, that is by the river stage, than it is 
by the head in the distant adjacent cell. That 
suggests the merit of a joint analytical evaluation 
of river stage and river cell head and iteration 
only for the head in the adjacent cell.  
 
Full results for this numerical example are 
provided in tabular form in online Appendix 2.   

 

 
 

Fig. 4. Leakance coefficients used for the various run types 
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Fig. 5. River stage and aquifer head patterns for the 5 types of runs 
 

12. DISCUSSION 
 
There is a complex relation between seepage, 
river stage, heads in river cell and in the adjacent 
cells.   That relation is affected by the grid size.  
Ideally the correct amount of flow exchange 
between the river and the water table aquifer 
should not be affected by the grid size selected 
in the finite difference approximation of the 
system [27]. In the numerical example shown in 
this article the grid size is still relatively small but 
getting close to the typical size used in large-
scale regional studies.  As a result the influence 
of the adjacent aquifer cell head is felt relatively 
rapidly though not too strongly.  With a larger 
grid size that influence would be felt even more 
slowly and less strongly.  In other words river cell 
head influences the seepage far more rapidly 
and strongly than the adjacent cell head. The 
process of iteration for river stage and river cell 
head to determine seepage, as used in typical 
finite difference or element approaches, can 
have great difficulty to converge.   If on the other 
hand the relation between river and river cell is 
done analytically, as proposed, the process of 
iteration would be between river stage and 
adjacent aquifer cell head and its convergence 
will be more rapid.  
 
For ease of introduction to new concepts the 
present article describes a system with symmetry 
of heads in the adjacent cells. However that 
limitation can be removed and the resulting 

equations are not more complicated, as 
previously indicated [16]. 
 
In most groundwater models used in regional 
studies the criterion for incipient desaturation of 
the stream-aquifer hydraulic connection is fairly 
crude and the description of the seepage under 
transient unsaturated connection is quite 
empirical.  With the analytical approach a 
physical description of seepage under 
unsaturated connection can be secured without 
relying on a costly numerical solution of an 
unsaturated flow equation (e.g. Richards’ 
equation).   
 

13. CONCLUSION 
 
The leakance coefficient cannot be considered 
constant in time as the excitation patterns of river 
flow and adjacent cell head change with time.  
Even if a constant value, obtained as the precise 
average value of the exact leakance coefficient 
variation in time, is used, the estimation of 
seepage will not be perfectly accurate as shown 
for example in Fig. 3.  Naturally it is not likely that 
a calibrated value of a constant leakance 
coefficient will happen to be the precise value of 
the average of the correct variation of the exact 
leakance coefficient with time, and the errors 
may be as much as shown with type 4 or 5 in 
Figs. 4 and 7, possibly less or more depending 
on circumstances.  
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Using an analytically derived routing procedure 
has the advantage that it allows to obtain an 
explicit relation between river outflow, a state 
variable, and the excitation of river inflow and 
adjacent aquifer head, the decision variables.  
The disadvantage of the classical Linear 
Reservoir approach is that it assumes a time 
invariant behavior of the system. With the 
proposed approach the system is represented as 
a time-variant linear system.  The advantage is 
that the system remains linear but is able to 
account indirectly for the nonlinearity existing 
between river flow and river stage [1].  
 

The explicit character of the relation between 
outflow and the excitation variables would make 
it easy, or at least somewhat easier, to determine 
the probability distribution (or more humbly the 
variance) of outflow in terms of the distribution of 
the external excitations or of the various 
parameters which appear in the coefficients of 
the relation.   With greater awareness and 
concerns with climate change and uncertain 
population growth, decision makers would like to 
be informed of the probable consequences of the 
considered management decisions for the future.  
 

Maybe more importantly if such analytical 
scheme was used in a numerical model the 
iterative procedure to determine in turn river 
stage and river cell head would be replaced by 
the determination in turn of river stage and 
adjacent cell head. That procedure, as 
suggested by the simulations in this article, 
should converge more rapidly.  
 

Naturally the behavior of a surface-ground 
waters system subject to diverse river flows and 
aquifer withdrawal or recharge rates will vary 
immensely from one region to another, from a 
season to another.  What this article suggests is 
that the continuing practice of using a constant 
empirical leakance coefficient, even when 
calibrated, will lead to errors in the evaluation of 
the seepage rates, the magnitude of which could 
be small or large.  It would be wise to modify that 
practice and an alternative is presented in this 
article.   
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APPENDIX 1. To routing paper 
 
Solution to the Governing Equation for Outflow:  
 

(Ci + lt)
dO

dt
+[1+ l +m]O = I (t -t )+TDhf   (a)  

 

For simplicity in writing let d = [1+l +m]  (b) 

 

Eq.(a) becomes:  (Ci + lt)
dO

dt
+dO = I(t -t )+TDhf   (c) 

 
There are two different types of excitation.  One corresponds to a time delay in an average value of 
the excitation and one to a time linear variable one. 
 
So let us find the solutions separately to two types of equations, namely first: 
 

(Ci + lt)
dU

dt
+dU = E(t -t )  (A1)  and second   

 

(Ci+lt)

d

dU

dt
+U = Eo + (Eu -Eo)t   (B1) 

 
Solution to Eq.(A1) 
 

The solution is of the form, in the interval of time 0 £ t £ t :  
 
 

U(t) = A+D[
Ci + lt

Ci
]p  (A2) and thus   

dU

dt
= pD[

Ci +lt

Ci
]p-1

l

Ci
 (A3) 

 
Substitution in Eq.(A1) yields: 
 

pDl[
Ci + lt

Ci
]p +d[A+D[

Ci +lt

Ci
]p ]= E(0)  (A4)  0 £ t £ t  

 

whereE(0) represents the average excitation for the previous period. For the left hand side to match 

the right hand side the coefficient of the function of time must be zero. Thus:  

 pDl +dD = 0which yields p = -
d

l
 (A5) 

 

(note that since p+1= -
(1+m]

l
  it is always of the opposite sign of l ) 
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and (p+1)l = -(1+m) is always negative. Similarly A =
E(0)

d
  (A6). 

 
Using these values in Eq.(A2) yields: 
 

U(t) =
E(0)

d
+D[

Ci + lt

Ci
]p (A7) 

 

At time zero the value of U is the initial value Ui .  Thus D =Ui -
E(0)

d
 

 
Finally the expression for U(t) is:   
   

U(t) =Ui[
Ci +lt

Ci
]p +{1-[

Ci +lt

Ci
]p}

E(0)

d
 (A8a)  for 0 £ t £ t  

 

In particular at time  t = t  then we have : 
 

Ut =Ui[
Ci + lt

Ci
]p +{1-[

Ci + lt

Ci
]p}

E(0)

d
 

 

or setting Ci + lt =Ct  :  Ut =Ui(
Ct
Ci
)p +[1- (

Ct
Ci
)p ]

E(0)

d
  (A9) 

 

For period n, defining :rtn = (
Ctn
Cn-1

)pn   (A10) and dn =1+ln +mn  (A11) 

 

Utn = rtnU(n-1)+ (1- rtn )
E(n-1)

dn
   (A12) 

 

For the remainder of the period, during the time interval  t £ t £1, we have: 
 

U(t) =Ut [
Ci + lt

Ct
]p +{1-[

Ci +lt

Ct
]p}

E(1)

d
 (A13) 

 

For period n, with sn = (
Cn

Ctn
)pn  (A14)   

 

U(n) =snUtn + (1-stn )
E(n)

dn
 (A15) 
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Elimination of Ut yields: 

 

U(t) = {Ui (
Ct
Ci
)p +[1- (

Ct
Ci
)p ]

E(0)

d
}[

Ci + lt

Ct
]p +{1-[

Ci + lt

Ct
]p}

E(1)

d
 (A16) 

 

In particular at time period n, with t =1 : 
 

U(n) = (
Cn

Cn-1
)pnU(n-1)+[1- (

Cn

Ctn
)pn ]

E(n)

dn
+[(

Cn

Ctn
)pn - (

Cn

Cn-1
)pn ]

E(n-1)

dn

(A17)  Defining,  

as before, rUn = (
Cn

Cn-1
)pn  (A18) sUn = (

Cn

Ctn
)pn (A19) then we 

 

obtain:    U(n) = rUnU(n-1)+[1-sUn ]
E(n)

dn
+[sUn - rUn ]

E(n-1)

dn
 (A20) 

 
Solution to Equation (B1) 
 

The equation is of the type:  
(Ci+lt)

d

dU

dt
+U = Eo + (Eu - Eo )t   (B1) 

 
The time “constant” varies linearly with time and so does the excitation.    
 

Solution is of the form: U(t) = A+Mt +D(
Ci + lt

Ci
)p   (B2) 

 

The derivative is:   
dU

dt
=M +D

pl

Ci
(
Ci + lt

Ci
)p-1 (B3) 

 
Substitution in Eq.(B1) yields: 
 

(Ci + lt)

d
{M +D

pl

Ci

(
Ci + lt

Ci

)p-1}+{A+Mt +D(
Ci +lt

Ci

)p} = Eo + (En -Eo )t  (B4) 

 
For the solution to be satisfied requires that: 
 

CiM

d
+ A = Eo  (B5)  (

l

d
+1)M = (En -Eo)  (B6) D[

pl

d
+1]= 0  (B7) 

 

M =d
(En -Eo )

(l +d)
 (B8) A = Eo -

CiM

d
= Eo -Ci

(En -Eo )

(l +d)
  (B9)  p = -

d

l
  (B10) 

 
Substitution of these parameters in Eq,(B2) yields: 
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U(t) = Eo -Ci
(En - Eo)

(l +d)
+
d(En -Eo)

(l +d)
t +D(

Ci + lt

Ci

)p    (B11) 

 
At time t=0 one must have the following relation that identifies D:  
 
 

U(0) = Eo -Ci
(En -Eo)

(l +d)
+D  (B12) 

 
Substitution in Eq,(B11) yields: 
 

U(t) = Eo -Ci
(En -Eo)

(l +d)
+
d(En -Eo )

(l +d)
t +{U(0)-[Eo -Ci

(En - Eo )

(l +d)
]}(

Ci + lt

Ci

)p       (B13) 

 
Grouping terms we obtain: 

U(t) =U(0)(
Ci +lt

Ci

)p +[1- (
Ci + lt

Ci

)p ]Eo -Ci
(En -Eo )

(l +d)
]+
d(En - Eo )

(l +d)
t          (B14) 

 

At the end of period n with t = 1,  Ci =Cn-1 and Cn =Cn-1+l  we obtain: 

 

U(n) =U(n-1)(
Cn

Cn-1

)pn +[1- (
Cn

Cn-1

)pn ]Eo -Cn-1
(En -Eo )

(ln +dn )
]+
dn(En -Eo )

(ln +dn )
(B15) 

 
For simplicity in notation let:  
 

(
Cn

Cn-1
)pn = (

Cn

Cn-1
)
-
dn
ln = rUn  (B16)    

 

(En - Eo) = E(n)-E(n-1) = DE(n)(B17) 

 
Eq,(B15) becomes:  
 

U(n) = rUnU(n-1)+[1- rUn ][E(n-1)-Cn-1
DE(n)

(ln +dn )
]+

dnDE(n)

(ln +dn )
 (B18) 

 
More explicitly:  
 

U(n) = rUnU(n-1)+[1- rUn ][E(n-1)-Cn-1
E(n)-E(n -1)

(ln +dn )
]+
dn[E(n)- E(n -1)]

(ln +dn )
 

(B19)      and grouping the excitations: 
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U(n) = rUnU(n-1)+
1

(ln +dn )
[dn - (1- rUn )Cn-1]E(n)  

 

+{[1- rUn ][1+
Cn-1

(ln +dn )
]-

dn
(ln +dn )

}E(n-1)  (B20) 

 
Application of these two solutions for the outflow yields first for the inflow excitation that might be 
delayed:  

O(n) = rOnO(n-1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n-1)

dn
      (B21) 

 
then for the head in the river cell: 

O(n) = rOnO(n-1)+
Tn

(ln +dn )
[1- (1- rOn )

Cn-1

dn
]Dhf (n) 

 

+Tn{[1- rOn ][

1+
Cn-1

(ln +dn )

dn
]-

1

(ln +dn )
}Dhf (n-1)      (B22) 

 
Adding the outflow due to inflow and exchange with the river cell yields: 
 

O(n) = rOnO(n-1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n-1)

dn
 

 

+
1

(ln +dn )
[dn - (1- rOn )Cn-1]{

TnDhf (n)

dn
}  

 

+[(1- rOn )(1+
Cn-1

ln +dn
)-

dn
ln +dn

]{
TnDhf (n-1)

dn
}   (B23)  

 

Defining the coefficients aOn = [(1- rOn )(1+
Cn-1

ln +dn
)-

dn
ln +dn

]  (B24)  

 

And bOn =
1

(ln +dn )
[dn - (1- rOn )Cn-1]  (B25) 

the writing of the equation simplifies to:  
 

O(n) = rOnO(n -1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n -1)

dn
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+bOn
Tn
dn
Dhf (n)+aOn

Tn
dn
Dhf (n-1)  (B26) 

 
Solution for head in the river cell 
 

Cf
dDhf

dt
+Dhf =gOO+ 2CadjDhadj     (C1) 

 
This is an equation of the form with a constant C: 
 

C
dU

dt
+U = Eo + (En -Eo )t           (C2) 

 

The solution is of the form:  U(t) = De
-
t

C +Mt + A   (C3) 

 

dU

dt
= -

D

C
e
-
t

C +M    Substitution in Eq.(C2) yields: 

 

C(-
D

C
e
-
t

C +M )+De
-
t

C +Mt + A = Eo + (En -Eo)twhich yields: 

 

MC + A = Eo
    (C3)   M = En -Eo

   (C4) and   A = Eo -C(En -Eo ) (C5) 

 
Substitution in Eq.(C3) yields: 

U(t) = De
-
t

C + (En -Eo)t + Eo -C(En -Eo)   (C6) 

 

At time zero then U(0) = D+Eo -C(En -Eo )  which defines 

D =U(0)-[Eo -C(En -Eo)]  (C7) 

 
Substitutionyields:  
 

U(t) = {U(0)-[Eo -C(En -Eo)]}e
-
t

C + (En -Eo)t +Eo -C(En -Eo)or 

 

U(t) =U(0)e
-
t

C +[Eo -C(En -Eo)]([1- e
-
t

C )+ (En - Eo )t   (C8) 
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In particular at time n we have setting: rUn = e
-
1

C  (C9) 

U(n) = rUnU(n-1)+{E(n-1)-C[E(n)-E(n -1)]}([1- rUn )+[E(n)-E(n-1)]  

(C10) 
 
Grouping the excitation terms we have:  
 

U(n) = rUnU(n-1)+[1-C([1- rUn )]E(n)+[C(1- rUn )- rUn ]E(n-1)  (C11) 

 
Application of this result to the head in the river cell equation  
 

Cf
dDhf

dt
+Dhf = gOO+CadjDhadj   (C1) yields: 

 

Dhf (n) = r fDhf (n-1)+[1-Cf ([1- r f )]gOnO(n)+[Cf (1- r f )- r f ]gOn-1O(n-1)  

 

+Cadj[1-Cf ([1- r f )]Dhadj (n)+Cadj[Cf (1- r f )- r f ]Dhadj (n-1) (C12) 

 
For simplifying notation we set:  
 

a f = [Cf (1- r f )- r f ]  (C13) and b f = [1-Cf ([1- r f )]   (C14) and the equation 

becomes: 
 

Dhf (n) = r fDhf (n-1)+b fgOnO(n)+a fgOn-1O(n-1) 
 

+b f CadjDhadj (n)+a f CadjDhadj (n-1)  (C15) 

 

Relation between Outflow, Inflow and Head in Adjacent Cells 
 

To obtain that relation one needs to eliminate Dhf (n) from Eq.(B27)  

 

O(n) = rOnO(n-1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n -1)

dn
 

 

Tn
(ln +dn )

bOnDhf (n)+
Tn

(ln +dn )
{aOn -bOn +zOn ]}Dhf (n -1) (B27) 

 
using the equation 
 

Dhf (n) = r f Dhf (n-1)+ b fgOnO(n)+[a f -b f ]gOn-1O(n-1) 
 

+2Cadj[b f Dhadj (n)+ (a f -b f )Dhadj (n-1)]  (C15) 

 
Leading to:  
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O(n) = rOnO(n-1)+[1-sOn ]
I (n)

dn
+[sOn - rOn ]

I (n-1)

dn
 

 

+
Tn

(ln +dn )
bOn{r f Dhf (n-1)+b f gOnO(n)+[a f -b f ]gOn-1O(n-1)} 

 
 

+
Tn

(ln +dn )
[aOn - bOn +zOn ]Dhf (n-1)  

 

+
Tn

(ln +dn )
2CadjbOn{b fDhadj (n)+ (a f -b f )Dhadj (n -1)}  (C16) 

 
Grouping terms with each variable one obtains:  

[1-
Tn

(ln +dn )
bOnb f gOn ]O(n) = [1-sOn ]

I (n)

dn
+[sOn - rOn ]

I (n-1)

dn
 

 

+[rOn +
Tn

(ln +dn )
bOn(a f -b f )gOn-1]O(n -1)  

 

+
Tn

(ln +dn )
[bOnr f +aOn -bOn +zOn ]Dhf (n -1)  

 

+[2
Tn

(ln +dn )
CadjbOnb f ]Dhadj (n) 

 

+[2
Tn

(ln +dn )
CadjbOn (a f -b f )]Dhadj (n-1)}    (C17) 

 
 
C *************************** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Seytoux; IJECC, 9(3): 167-192, 2019; Article no.IJECC.2019.014 
 
 

 
189 

 

APPENDIX 2. Results for numerical example 
 
routingflow.mpw 
 
DAY     AI       O1      O2      O3      O4      O5      O6   DS1 DS2 DS3 DS4 DS5 DS6 
1     80.00   82.90   82.91   84.79   82.71   83.04    0.00   0   00000 
2     83.65   82.59   82.61   83.57   82.56   82.66    0.00   0   00000 
3     94.47   94.07   94.09   95.26   94.03   94.14    0.00   0   00000 
4    112.15  111.88  111.91  113.34  111.85  111.96    0.00   0   00000 
5    136.15  135.82  135.87  137.66  135.80  135.93    0.00   0   00000 
6    165.73  165.22  165.29  167.45  165.21  165.36    0.00   0   00000 
7    200.00  199.22  199.31  201.84  199.23  199.39    0.00   0   00000 
8    237.92  236.82  236.93  239.80  236.86  237.01    0.00   0   00000 
9    278.32  276.91  277.03  280.19  276.98  277.10    0.00   0   00000 
10    320.00  318.31  318.41  321.80  318.39  318.46    0.00   0   00000 
11    278.32  274.76  274.69  276.63  274.86  274.60    0.00   0   00000 
12    237.92  235.39  235.21  236.32  235.47  235.06    0.00   0   00000 
13    200.00  198.28  198.03  198.41  198.36  197.82    0.00   0   00000 
14    165.73  164.69  164.40  164.20  164.78  164.16    0.00   0   00000 
15    136.15  135.67  135.38  134.74  135.77  135.12    0.00   0   00000 
16    112.15  112.14  111.86  110.93  112.26  111.59    0.00   0   00000 
17    106.68  107.43  107.19  106.42  107.55  106.94    0.00   0   00000 
18    101.48  102.18  101.95  101.17  102.31  101.72    0.00   0   00000 
19     96.53   97.22     97.01   96.24     97.35    96.78     0.00   0   00000 
20     91.82   92.49    92.30    91.54    92.62    92.08      0.00   0   00000 
21     87.35   88.08    87.90    87.07    88.22    87.68      0.00   0   00000 
22     83.09   83.96    83.79    82.82    84.11    83.57      0.00   0   00000 
23     79.03   80.03    79.86    78.78    80.18    79.65      0.00   0   00000 
24     75.18   76.27    76.12    74.93    76.44    75.90      0.00   0   00000 
25     71.51   72.69    72.55    71.27    72.86    72.33      0.00   0   00000 
26     68.02   69.27    69.14    67.79    69.45    68.93      0.00   0   00000 
27     64.71   66.01    65.90    64.48    66.20    65.68      0.00   0   00000 
28     61.55   62.91    62.80    61.34    63.10    62.59      0.00   0   00000 
29     58.55   59.95    59.85    58.34    60.14    59.65      0.00   0   00000 
30     55.69   57.12   57.04     55.49    57.32    56.84      0.00   0   00000 
31     52.98   54.43   54.35     52.79    54.63    54.16      0.00   0   00000 
32     50.39   51.87   51.80     50.21    52.06    51.61      0.00   0   00000 
33     47.94   49.42   49.36    47.76     49.62    49.18      0.00   0   00000 
34     45.60   47.09   47.04    45.43     47.29     46.86     0.00   0   00000 
35     43.37   44.87   44.83    43.21     45.07     44.66     0.00   0   00000 
36     41.26   42.76   42.72    41.10     42.96     42.56     0.00   0   00000 
37     39.25   40.74   40.72    39.10     40.94     40.55     0.00   0   00000 
38     37.33   38.82   38.80   37.19   39.02   38.65    0.00   0   00000 
39     35.51   37.00   36.98   35.37   37.19   36.83    0.00   0   00000 
40     33.78   35.25   35.25   33.65   35.45   35.10    0.00   0   00000 
41     32.13   33.60   33.59   32.00   33.79   33.45    0.00   0   00000 
42     30.57   32.02   32.02   30.44   32.20   31.88    0.00   0   00000 
43     29.07   30.51   30.52   28.96   30.70   30.39    0.00   0   00000 
44     27.66   29.08   29.09   27.55   29.26   28.96    0.00   0   00000 
45     26.31   27.71   27.73   26.20   27.90   27.61    0.00   0   00000 
46     25.02   26.41   26.44   24.92   26.59   26.32    0.00   0   00000 
47     23.80   25.18   25.20   23.71   25.35   25.09    0.00   0   00000 
48     22.64   24.00   24.03   22.55   24.17   23.92    0.00   0   00000 
49     21.54   22.88   22.91   21.45   23.05   22.80    0.00   0   00000 
50     20.49   21.81   21.84   20.41   21.98   21.74    0.00   0   00000 
51     19.49   20.79   20.83   19.41   20.96   20.73    0.00   0   00000 
52     18.54   19.82   19.86   18.46   19.99   19.77    0.00   0   00000 
53     17.63   18.90   18.94   17.56   19.06   18.85    0.00   0   00000 
54     16.77   18.02   18.07   16.71   18.18   17.98    0.00   0   00000 
55     15.96   17.19   17.23   15.89   17.34   17.15    0.00   0   00000 
56     15.18   16.39   16.44   15.12   16.54   16.36    0.00   0   00000 
57     14.44   15.63   15.68   14.38   15.78   15.60    0.00   0   00000 
58     13.73   14.91   14.96   13.68   15.06   14.88    0.00   0   00000 
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59     13.06   14.23   14.27   13.01   14.37   14.20    0.00   0   00000 
60     12.43   13.57   13.62   12.38   13.71   13.55    0.00   0   00000 
61     11.82   12.95   13.00   11.78   13.09   12.93    0.00   0   00000 
62     11.24   12.36   12.41   11.20   12.49   12.34    0.00   0   00000 
63     10.70   11.79   11.84   10.66   11.93   11.78    0.00   0   00000 
64     10.17   11.26   11.31   10.14   11.39   11.25    0.00   0   00000 
65      9.68   10.74   10.80    9.65   10.87   10.74    0.00   0   00000 
66      9.21   10.26   10.31    9.18   10.39   10.25    0.00   0   00000 
67      8.76    9.79    9.85    8.73    9.92    9.79    0.00   0   00000 
68      8.33    9.35    9.41    8.30    9.48    9.35    0.00   0   00000 
69      7.92    8.93    8.99    7.90    9.05    8.94    0.00   0   00000 
70      7.54    8.53    8.59    7.52    8.65    8.54    0.00   0   00000 
 
C ************************************************************************************ 
 
routinghead.mpw 
 
DAY  H1     H2     H3     H4     H5     H6     DHF1   DHF2  DHF3   DHF4   DHF5   DHF6   DHADJ 
1   1.515  1.516  1.536  1.513  1.517  0.000  1.066  1.066  0.964  1.077  1.059  0.000  0.9639 
2   1.512  1.512  1.523  1.512  1.513  0.000  1.200  1.196  0.964  1.220  1.180  0.000  0.9639 
3   1.635  1.635  1.647  1.634  1.636  0.000  1.304  1.298  0.952  1.331  1.274  0.000  0.0000 
4   1.814  1.814  1.828  1.814  1.815  0.000  1.389  1.378  0.903  1.422  1.346  0.000 -2.0000 
5   2.038  2.038  2.054  2.038  2.039  0.000  1.473  1.455  0.829  1.512  1.414  0.000 -2.0000 
6   2.292  2.293  2.311  2.292  2.293  0.000  1.585  1.559  0.756  1.630  1.507  0.000 -2.0000 
7   2.564  2.565  2.585  2.565  2.566  0.000  1.729  1.690  0.683  1.777  1.626  0.000 -2.0000 
8   2.845  2.846  2.866  2.845  2.846  0.000  1.904  1.848  0.611  1.953  1.771  0.000 -2.0000 
9   3.125  3.126  3.147  3.125  3.126  0.000  2.108  2.032  0.538  2.156  1.941  0.000 -2.0000 
10   3.397  3.398  3.419  3.398  3.398  0.000  2.338  2.240  0.467  2.383  2.133  0.000 -2.0000 
11   3.110  3.110  3.123  3.111  3.109  0.000  2.535  2.416  0.396  2.575  2.297  0.000 -2.0000 
12   2.835  2.833  2.841  2.835  2.832  0.000  2.650  2.522  0.328  2.688  2.397  0.000 -2.0000 
13   2.557  2.555  2.558  2.558  2.554  0.000  2.711  2.579  0.264  2.748  2.451  0.000 -2.0000 
14   2.288  2.285  2.284  2.288  2.283  0.000  2.725  2.594  0.203  2.761  2.467  0.000 -2.0000 
15   2.037  2.034  2.028  2.037  2.032  0.000  2.701  2.575  0.145  2.737  2.452  0.000 -2.0000 
16   1.817  1.814  1.805  1.818  1.811  0.000  2.649  2.530  0.090  2.685  2.411  0.000 -2.0000 
17   1.770  1.768  1.760  1.772  1.766  0.000  2.589  2.477  0.036  2.624  2.363  0.000 -2.0000 
18   1.718  1.716  1.708  1.719  1.713  0.000  2.531  2.426 -0.015  2.566  2.316  0.000 -2.0000 
19   1.667  1.665  1.657  1.669  1.663  0.000  2.471  2.373 -0.065  2.507  2.268  0.000 -2.0000 
20   1.618  1.616  1.608  1.620  1.614  0.000  2.411  2.319 -0.113  2.447  2.218  0.000 -2.0000 
21   1.572  1.570  1.561  1.573  1.567  0.000  2.399  2.313 -0.110  2.435  2.216  0.000  2.0000 
22   1.527  1.525  1.515  1.529  1.523  0.000  2.430  2.350 -0.058  2.466  2.257  0.000  2.0000 
23   1.484  1.482  1.470  1.485  1.479  0.000  2.453  2.378 -0.007  2.488  2.290  0.000  2.0000 
24   1.442  1.440  1.426  1.443  1.437  0.000  2.468  2.399  0.043  2.502  2.316  0.000  2.0000 
25   1.401  1.399  1.384  1.403  1.396  0.000  2.478  2.413  0.091  2.510  2.334  0.000  2.0000 
26   1.361  1.359  1.343  1.363  1.357  0.000  2.481  2.422  0.137  2.512  2.347  0.000  2.0000 
27   1.322  1.320  1.303  1.324  1.318  0.000  2.479  2.425  0.183  2.509  2.355  0.000  2.0000 
28   1.284  1.283  1.265  1.286  1.280  0.000  2.473  2.423  0.227  2.501  2.358  0.000  2.0000 
29   1.248  1.246  1.227  1.250  1.244  0.000  2.463  2.417  0.270  2.489  2.356  0.000  2.0000 
30   1.212  1.211  1.191  1.214  1.208  0.000  2.450  2.407  0.312  2.473  2.351  0.000  2.0000 
31   1.177  1.176  1.156  1.180  1.174  0.000  2.434  2.394  0.352  2.455  2.343  0.000  2.0000 
32   1.144  1.143  1.122  1.146  1.140  0.000  2.415  2.379  0.392  2.433  2.331  0.000  2.0000 
33   1.111  1.110  1.089  1.114  1.108  0.000  2.394  2.361  0.430  2.410  2.317  0.000  2.0000 
34   1.079  1.079  1.056  1.082  1.076  0.000  2.371  2.340  0.468  2.385  2.301  0.000  2.0000 
35   1.049  1.048  1.025  1.051  1.046  0.000  2.346  2.318  0.504  2.358  2.283  0.000  2.0000 
36   1.019  1.018  0.995  1.021  1.016  0.000  2.321  2.294  0.540  2.329  2.263  0.000  2.0000 
37   0.990  0.989  0.965  0.992  0.987  0.000  2.294  2.269  0.574  2.299  2.241  0.000  2.0000 
38   0.961  0.961  0.937  0.964  0.959  0.000  2.266  2.243  0.608  2.269  2.218  0.000  2.0000 
39   0.934  0.934  0.909  0.937  0.931  0.000  2.237  2.216  0.641  2.237  2.194  0.000  2.0000 
40   0.907  0.907  0.882  0.910  0.905  0.000  2.207  2.188  0.672  2.206  2.169  0.000  2.0000 
41   0.881  0.881  0.856  0.884  0.879  0.000  2.178  2.159  0.704  2.173  2.144  0.000  2.0000 
42   0.856  0.856  0.831  0.859  0.854  0.000  2.147  2.130  0.734  2.140  2.117  0.000  2.0000 
43   0.832  0.832  0.806  0.835  0.830  0.000  2.117  2.100  0.763  2.108  2.091  0.000  2.0000 
44   0.808  0.808  0.782  0.811  0.806  0.000  2.087  2.071  0.792  2.075  2.063  0.000  2.0000 
45   0.785  0.786  0.759  0.788  0.783  0.000  2.056  2.041  0.820  2.042  2.036  0.000  2.0000 
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46   0.763  0.763  0.737  0.766  0.761  0.000  2.026  2.011  0.847  2.009  2.008  0.000  2.0000 
47   0.741  0.742  0.715  0.744  0.740  0.000  1.995  1.980  0.874  1.976  1.980  0.000  2.0000 
48   0.720  0.721  0.694  0.723  0.719  0.000  1.965  1.950  0.900  1.943  1.952  0.000  2.0000 
49   0.700  0.700  0.673  0.703  0.699  0.000  1.935  1.921  0.925  1.911  1.924  0.000  2.0000 
50   0.680  0.681  0.654  0.683  0.679  0.000  1.905  1.891  0.950  1.879  1.897  0.000  2.0000 
51   0.661  0.662  0.634  0.664  0.660  0.000  1.876  1.861  0.974  1.848  1.869  0.000  2.0000 
52   0.642  0.643  0.615  0.645  0.641  0.000  1.847  1.832  0.998  1.817  1.841  0.000  2.0000 
53   0.624  0.625  0.597  0.627  0.623  0.000  1.818  1.803  1.020  1.786  1.814  0.000  2.0000 
54   0.607  0.607  0.580  0.610  0.606  0.000  1.790  1.775  1.043  1.755  1.787  0.000  2.0000 
55   0.590  0.590  0.563  0.593  0.589  0.000  1.762  1.747  1.065  1.726  1.760  0.000  2.0000 
56   0.573  0.574  0.546  0.576  0.572  0.000  1.735  1.719  1.086  1.696  1.734  0.000  2.0000 
57   0.557  0.558  0.530  0.560  0.556  0.000  1.708  1.691  1.107  1.668  1.708  0.000  2.0000 
58   0.541  0.542  0.514  0.545  0.541  0.000  1.681  1.664  1.127  1.639  1.682  0.000  2.0000 
59   0.526  0.527  0.499  0.530  0.526  0.000  1.655  1.638  1.147  1.612  1.657  0.000  2.0000 
60   0.512  0.513  0.484  0.515  0.511  0.000  1.630  1.612  1.166  1.584  1.632  0.000  2.0000 
61   0.497  0.499  0.470  0.501  0.497  0.000  1.605  1.586  1.185  1.558  1.607  0.000  2.0000 
62   0.484  0.485  0.456  0.487  0.483  0.000  1.580  1.561  1.203  1.532  1.583  0.000  2.0000 
63   0.470  0.472  0.443  0.474  0.470  0.000  1.557  1.537  1.221  1.506  1.559  0.000  2.0000 
64   0.457  0.459  0.430  0.461  0.457  0.000  1.533  1.513  1.239  1.481  1.536  0.000  2.0000 
65   0.445  0.446  0.417  0.448  0.445  0.000  1.510  1.489  1.256  1.457  1.513  0.000  2.0000 
66   0.433  0.434  0.405  0.436  0.432  0.000  1.488  1.466  1.272  1.433  1.491  0.000  2.0000 
67   0.421  0.422  0.393  0.424  0.421  0.000  1.466  1.444  1.289  1.410  1.469  0.000  2.0000 
68   0.409  0.411  0.381  0.412  0.409  0.000  1.445  1.421  1.305  1.387  1.447  0.000  2.0000 
69   0.398  0.400  0.370  0.401  0.398  0.000  1.424  1.400  1.320  1.365  1.426  0.000  2.0000 
70   0.387  0.389  0.359  0.391  0.387  0.000  1.403  1.379  1.335  1.343  1.406  0.000  2.0000 
 
C ************************************************************************************************ 
DAY   AI       QS1       QS2      QS3       QS4        QS5      QS6      LC1     LC2    LC3     LC4     LC5     LC6 
1   80.000   0.858     0.867     0.000     0.930     0.817     0.000    0.1879  0.1900  0.0000  0.2102  0.1756  0.0000 
2   83.646   0.652     0.640     0.000     0.655     0.623     0.000    0.1958  0.1900  0.0000  0.2102  0.1756  0.0000 
3   94.474   0.689     0.683     0.000     0.680     0.677     0.000    0.1957  0.1900  0.0000  0.2102  0.1756  0.0000 
4  112.154   0.903     0.894     0.000     0.887     0.887     0.000    0.1972  0.1900  0.0000  0.2102  0.1756  0.0000 
5  136.149   1.231     1.212     0.000     1.209     1.201     0.000    0.1991  0.1900  0.0000  0.2102  0.1756  0.0000 
6  165.731   1.586     1.555     0.000     1.552     1.540     0.000    0.2013  0.1900  0.0000  0.2102  0.1756  0.0000 
7  200.000   1.935     1.894     0.000     1.885     1.879     0.000    0.2036  0.1900  0.0000  0.2102  0.1756  0.0000 
8  237.915   2.251     2.206     0.000     2.182     2.197     0.000    0.2057  0.1900  0.0000  0.2102  0.1756  0.0000 
9  278.324   2.507     2.471     0.000     2.423     2.476     0.000    0.2074  0.1900  0.0000  0.2102  0.1756  0.0000 
10  320.000   2.688     2.674     0.000     2.591     2.700     0.000    0.2089  0.1900  0.0000  0.2102  0.1756  0.0000 
11  278.324   1.500     1.635     0.000     1.396     1.768     0.000    0.2102  0.1900  0.0000  0.2102  0.1756  0.0000 
12  237.915   0.467     0.719     0.000     0.374     0.928     0.000    0.2088  0.1900  0.0000  0.2102  0.1756  0.0000 
13  200.000  -0.378    -0.053     0.000    -0.474     0.213     0.000    0.2073  0.1900  0.0000  0.2102  0.1756  0.0000 
14  165.731  -1.045    -0.682     0.000    -1.155    -0.376     0.000    0.2057  0.1900  0.0000  0.2102  0.1756  0.0000 
15  136.149  -1.539    -1.170     0.000    -1.673    -0.839     0.000    0.2035  0.1900  0.0000  0.2102  0.1756  0.0000 
16  112.154  -1.867    -1.516     0.000    -2.031    -1.173     0.000    0.2013  0.1900  0.0000  0.2102  0.1756  0.0000 
17  106.684  -1.783    -1.474     0.000    -1.961    -1.147     0.000    0.1991  0.1900  0.0000  0.2102  0.1756  0.0000 
18  101.481  -1.759    -1.471     0.000    -1.941    -1.154     0.000    0.1987  0.1900  0.0000  0.2102  0.1756  0.0000 
19   96.532  -1.727    -1.459     0.000    -1.912    -1.152     0.000    0.1981  0.1900  0.0000  0.2102  0.1756  0.0000 
20   91.824  -1.691    -1.442     0.000    -1.878    -1.145     0.000    0.1975  0.1900  0.0000  0.2102  0.1756  0.0000 
21   87.346  -1.753    -1.520     0.000    -1.949    -1.225     0.000    0.1970  0.1900  0.0000  0.2102  0.1756  0.0000 
22   83.086  -1.901    -1.679     0.000    -2.111    -1.381     0.000    0.1964  0.1900  0.0000  0.2102  0.1756  0.0000 
23   79.034  -2.027    -1.818     0.000    -2.249    -1.519     0.000    0.1959  0.1900  0.0000  0.2102  0.1756  0.0000 
24   75.179  -2.133    -1.938     0.000    -2.367    -1.639     0.000    0.1954  0.1900  0.0000  0.2102  0.1756  0.0000 
25   71.512  -2.223    -2.042     0.000    -2.467    -1.744     0.000    0.1949  0.1900  0.0000  0.2102  0.1756  0.0000 
26   68.025  -2.298    -2.131     0.000    -2.551    -1.836     0.000    0.1943  0.1900  0.0000  0.2102  0.1756  0.0000 
27   64.707  -2.360    -2.206     0.000    -2.620    -1.914     0.000    0.1938  0.1900  0.0000  0.2102  0.1756  0.0000 
28   61.551  -2.409    -2.270     0.000    -2.676    -1.982     0.000    0.1933  0.1900  0.0000  0.2102  0.1756  0.0000 
29   58.549  -2.449    -2.323     0.000    -2.721    -2.040     0.000    0.1928  0.1900  0.0000  0.2102  0.1756  0.0000 
30   55.694  -2.479    -2.367     0.000    -2.756    -2.089     0.000    0.1923  0.1900  0.0000  0.2102  0.1756  0.0000 
31   52.978  -2.501    -2.402     0.000    -2.782    -2.130     0.000    0.1918  0.1900  0.0000  0.2102  0.1756  0.0000 
32   50.394  -2.516    -2.430     0.000    -2.801    -2.163     0.000    0.1913  0.1900  0.0000  0.2102  0.1756  0.0000 
33   47.936  -2.525    -2.451     0.000    -2.812    -2.190     0.000    0.1908  0.1900  0.0000  0.2102  0.1756  0.0000 
34   45.598  -2.528    -2.466     0.000    -2.817    -2.212     0.000    0.1903  0.1900  0.0000  0.2102  0.1756  0.0000 
35   43.375  -2.527    -2.476     0.000    -2.817    -2.228     0.000    0.1898  0.1900  0.0000  0.2102  0.1756  0.0000 
36   41.259  -2.521    -2.481     0.000    -2.813    -2.239     0.000    0.1893  0.1900  0.0000  0.2102  0.1756  0.0000 
37   39.247  -2.512    -2.482     0.000    -2.804    -2.246     0.000    0.1888  0.1900  0.0000  0.2102  0.1756  0.0000 
38   37.333  -2.499    -2.479     0.000    -2.791    -2.250     0.000    0.1883  0.1900  0.0000  0.2102  0.1756  0.0000 
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39   35.512  -2.484    -2.472     0.000    -2.776    -2.250     0.000    0.1879  0.1900  0.0000  0.2102  0.1756  0.0000 
40   33.780  -2.466    -2.463     0.000    -2.757    -2.247     0.000    0.1874  0.1900  0.0000  0.2102  0.1756  0.0000 
41   32.133  -2.447    -2.452     0.000    -2.737    -2.242     0.000    0.1869  0.1900  0.0000  0.2102  0.1756  0.0000 
42   30.566  -2.426    -2.438     0.000    -2.714    -2.234     0.000    0.1865  0.1900  0.0000  0.2102  0.1756  0.0000 
43   29.075  -2.403    -2.423     0.000    -2.690    -2.225     0.000    0.1860  0.1900  0.0000  0.2102  0.1756  0.0000 
44   27.657  -2.379    -2.405     0.000    -2.664    -2.213     0.000    0.1855  0.1900  0.0000  0.2102  0.1756  0.0000 
45   26.308  -2.354    -2.386     0.000    -2.637    -2.200     0.000    0.1851  0.1900  0.0000  0.2102  0.1756  0.0000 
46   25.025  -2.328    -2.367     0.000    -2.609    -2.186     0.000    0.1847  0.1900  0.0000  0.2102  0.1756  0.0000 
47   23.804  -2.302    -2.346     0.000    -2.581    -2.170     0.000    0.1842  0.1900  0.0000  0.2102  0.1756  0.0000 
48   22.643  -2.275    -2.324     0.000    -2.551    -2.154     0.000    0.1838  0.1900  0.0000  0.2102  0.1756  0.0000 
49   21.539  -2.248    -2.301     0.000    -2.521    -2.136     0.000    0.1834  0.1900  0.0000  0.2102  0.1756  0.0000 
50   20.489  -2.220    -2.278     0.000    -2.491    -2.118     0.000    0.1829  0.1900  0.0000  0.2102  0.1756  0.0000 
51   19.489  -2.193    -2.254     0.000    -2.461    -2.099     0.000    0.1825  0.1900  0.0000  0.2102  0.1756  0.0000 
52   18.539  -2.165    -2.230     0.000    -2.431    -2.080     0.000    0.1821  0.1900  0.0000  0.2102  0.1756  0.0000 
53   17.635  -2.138    -2.206     0.000    -2.400    -2.060     0.000    0.1817  0.1900  0.0000  0.2102  0.1756  0.0000 
54   16.775  -2.110    -2.182     0.000    -2.370    -2.040     0.000    0.1813  0.1900  0.0000  0.2102  0.1756  0.0000 
55   15.957  -2.083    -2.157     0.000    -2.339    -2.020     0.000    0.1809  0.1900  0.0000  0.2102  0.1756  0.0000 
56   15.178  -2.056    -2.133     0.000    -2.309    -2.000     0.000    0.1805  0.1900  0.0000  0.2102  0.1756  0.0000 
57   14.438  -2.029    -2.108     0.000    -2.280    -1.979     0.000    0.1801  0.1900  0.0000  0.2102  0.1756  0.0000 
58   13.734  -2.003    -2.084     0.000    -2.250    -1.959     0.000    0.1797  0.1900  0.0000  0.2102  0.1756  0.0000 
59   13.064  -1.977    -2.060     0.000    -2.221    -1.938     0.000    0.1794  0.1900  0.0000  0.2102  0.1756  0.0000 
60   12.427  -1.951    -2.036     0.000    -2.192    -1.917     0.000    0.1790  0.1900  0.0000  0.2102  0.1756  0.0000 
61   11.821  -1.925    -2.012     0.000    -2.164    -1.897     0.000    0.1786  0.1900  0.0000  0.2102  0.1756  0.0000 
62   11.244  -1.900    -1.988     0.000    -2.136    -1.877     0.000    0.1783  0.1900  0.0000  0.2102  0.1756  0.0000 
63   10.696  -1.876    -1.965     0.000    -2.108    -1.857     0.000    0.1779  0.1900  0.0000  0.2102  0.1756  0.0000 
64   10.174  -1.852    -1.942     0.000    -2.081    -1.837     0.000    0.1776  0.1900  0.0000  0.2102  0.1756  0.0000 
65    9.678  -1.828    -1.919     0.000    -2.054    -1.817     0.000    0.1772  0.1900  0.0000  0.2102  0.1756  0.0000 
66    9.206  -1.805    -1.897     0.000    -2.028    -1.797     0.000    0.1769  0.1900  0.0000  0.2102  0.1756  0.0000 
67    8.757  -1.782    -1.875     0.000    -2.003    -1.778     0.000    0.1765  0.1900  0.0000  0.2102  0.1756  0.0000 
68    8.330  -1.760    -1.853     0.000    -1.978    -1.759     0.000    0.1762  0.1900  0.0000  0.2102  0.1756  0.0000 
69    7.924  -1.739    -1.832     0.000    -1.953    -1.740     0.000    0.1759  0.1900  0.0000  0.2102  0.1756  0.0000 
70    7.537  -1.717    -1.811     0.000    -1.929    -1.722     0.000    0.1756  0.1900  0.0000  0.2102  0.1756  0.0000 
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