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Abstract

We establish the inequality

ϕ( 1
2n
a + 2n−1

2n
b) ≤ 1

2n
ϕ(a) + 2n−1

2n
ϕ(b) − [

∑n
i=1(2i−n)ϕ(| b−a

2i
|)], where ϕ is superquadratic and

prove a more general inequality where 1
2n

and 2n−1
2n

are replaced by α
2n

and β
2n

respectively, with

α+ β = 2n, n ∈ N, the latter is extended to the case where α+ β 6= 2n, n ∈ N.

Keywords: Convex function; Midconvex function; Superquadratic function; Jensen’s inequality and
Refined Jensen’s inequality.
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1 Introduction

The discrete version of Jensen’s inequality for functions is given in [1,p 1] as

φ(
1

Pn

n∑
i=1

pixi) ≤
1

Pn

n∑
i=1

piφ(xi), (1.1)
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where φ is a convex function defined on an interval I in R, (x1, ..., xn) ∈ In(n ≥ 2) and (p1, ..., pn)
is any non-negative n-tuple satisfying Pn =

∑n
i=1 pi > 0.

Definition 1.1. [2] A function ϕ : [0,∞)→ R is superquadratic provided that for all x ≥ 0 there
exists a constant Px ∈ R such that

ϕ(y) ≥ ϕ(x) + (y − x)Px + ϕ(|y − x|) (1.2)

for all y ≥ 0.

By replacing the convex function with superquadratic function in (1.1) [1, Lemma A], we obtain;

ϕ
( 1

Pn

n∑
i=1

pixi
)
≤ 1

Pn

n∑
i=1

piϕ(xi)−
1

Pn

n∑
i=1

piϕ
(∣∣xi − 1

Pn

n∑
j=1

pjxj
∣∣), (1.3)

for xi, pi ≥ 0, i = 1, ..., n and Pn =
∑n
i=1 pi > 0.

The equivalent continuous version of (1.3) is given in [2] as

ϕ(

∫
fdµ) ≤

∫
[ϕ(f(s))− ϕ(|f(s)− ∫ fdµ|)]dµ(s), (1.4)

for all probability measures µ and all non-negative, µ-integrable functions f .
The inequality (1.4) is referred to as the refined continuous Jensen’s inequality.
In [2, Theorem 2.3], the inequality (1.4) was proved to be equivalent to definition (1.1) and
in [3, Theorem 9] the equivalence between (1.3) and definition (1.1) was also established.
We refer the reader to [2,4,5,6] for general properties and some applications of superquadratic
functions .

Definition 1.2. [4] A function ϕ : X → R is said to be superquadratic,
if ∀x, y ∈ X

ϕ(x+ y) + ϕ(x− y) ≥ 2[ϕ(x) + ϕ(y)], (1.5)

where X is a real vector space.

With the change of variable, x− y = a and x+ y = b, (1.5) becomes

ϕ(
a+ b

2
) ≤ 1

2
ϕ(a) +

1

2
ϕ(b)− ϕ(

b− a
2

). (1.6)

From inequality (1.3) when we set n = 2 and p1 = p2 = 1, we obtain

ϕ(
x1 + x2

2
) ≤ 1

2
ϕ(x1) +

1

2
ϕ(x2)− ϕ(|x1 − x2

2
|). (1.7)

From (1.7) one can clearly see that all functions satisfying definition (1.1) also satisfies definition
(1.2) but the converse is not always true even if we restrict the domain of ϕ in definition (1.2) to
R+. For examples see [4].
We refer the reader to [7] for some general properties of superquadratic functions according to
definition (1.2).

Definition 1.3. [8. p 211] Let L be a normed vector space and U ⊆ L be a convex set. A function
f : U → R is said to be midconvex if ∀x, y ∈ U

f(
x+ y

2
) ≤ 1

2
[f(x) + f(y)]. (1.8)

An equivalent definition is given for midconvexity using n points, this definition depends on the
notion of rational convex combination of points. We give this equivalent definition for midconvexity
as a theorem.
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Theorem 1.1. [8, p 212]. f is midconvex on the convex set U ⊆ L if and only if for any rational
convex combination of points in U

f(

n∑
i=1

αixi) ≤
n∑
i=1

αif(xi), (1.9)

where αi ≥ 0 for i = 1, ..., n, α′is are rational and
∑n
i=1 αi = 1.

convex functions are continuous on the interior of its domain, while midconvex functions are not
necessarilly continuous and it is clear that convexity of a function implies midconvexity.

Theorem 1.2. [9,Theorem 1.1.4]. Let f : I → R be a continuous function. Then f is convex if
and only if f is midconvex, where I is a nondegenerate interval.

2 Main Results

In this paper, we prove a new refinement of the Jensen’s inequality by using definition (1.2) of
superquadraticity, where we allow ϕ to be midconvex but not convex and ϕ is from [0,∞) to [0,∞).

Proposition 2.1. For λ1 = 1
2n
, λ2 = 2n−1

2n
and for all n ∈ N

ϕ(λ1a+ λ2b) ≤ λ1ϕ(a) + λ2ϕ(b)− [

n∑
i=1

(λ12i)ϕ(| b− a
2i
|)] (2.1)

where ϕ satisfies definition (1.2).

Proof

We establish (2.1) using induction.
For n = 1, (2.1) is (1.6).
Fix k ∈ N, k > 1 and suppose (2.1) is true, that is

ϕ( a
2k

+ 2k−1
2k

b) ≤ 1
2k
ϕ(a) + 2k−1

2k
ϕ(b)− [

∑k
i=1( 1

2k−i
)ϕ(| b−a

2i
|)].

Now

ϕ
( a

2k+1
+

2k+1 − 1

2k+1
b
)

= ϕ
(1

2

( a
2k

+
2k+1 − 1

2k
b
))

= ϕ
(1

2

(a+ (2k − 1)b

2k
+ b
))

and so by inequality (1.6),

ϕ
(1

2

[a+ (2k − 1)b

2k
+ b
])
≤ 1

2
ϕ
(a+ (2k − 1)b

2k
)

+
1

2
ϕ(b)− ϕ

(1

2

∣∣a+ (2k − 1)b

2k
− b
∣∣)

=
1

2
ϕ
(a+ (2k − 1)b

2k
)

+
1

2
ϕ(b)− ϕ(

∣∣ b− a
2k+1

∣∣).
But ϕ( a

2k
+ 2k−1

2k
b) ≤ 1

2k
ϕ(a) + 2k−1

2k
ϕ(b)− [

∑k
i=1( 1

2k−i
)ϕ(| b−a

2i
|)], from the inductive hypothesis.

So ϕ
(

a
2k+1 + 2k+1−1

2k+1 b
)

≤ 1
2k+1ϕ(a) + 2k−1

2k+1 ϕ(b)− 1
2

[∑k
i=1

(
1

2k−i

)
ϕ
(∣∣ b−a

2i

∣∣)]+ 1
2
ϕ(b)− ϕ(| b−a

2k+1 |).

Thus

ϕ
( a

2k+1
+

2k+1 − 1

2k+1
b
)
≤ 1

2k+1
ϕ(a) +

2k+1 − 1

2k+1
ϕ(b)−

[ k+1∑
i=1

( 1

2k+1−i

)
ϕ
(∣∣ b− a

2i
∣∣)],
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which completes the proof.

Proposition 2.2.

ϕ
( α

2n
a+

β

2n
b
)

(2.2)

≤ α

2n
ϕ(a) +

β

2n
ϕ(b)−

[ 2∑
i=1

( 1

2n−i
)
ϕ
(∣∣ b− a

2i
∣∣)+

n∑
i=3

( 1

2n−i
)
ϕ
( ε(n+1−i)

2i
∣∣b− a∣∣)],

where α, β ∈ N such that α + β = 2n, n − 2, is the number of splits and ε(n+1−i) is the minimum
of {α, β} before the (n+ 1− i) split.

Definition 2.1. For λ1 = α
2n
, λ2 = β

2n
we define a split of ϕ( α

2n
a+ β

2n
) to be

ϕ(
1

2
[
αa+ (β − 2n−1)b

2n−1
+ b]).

To demonstrate the techniques in the proof of proposition (2.2), we first consider some examples
for given values of n, α and β.

Example 2.1. We consider the case where n = 3, α = 3 and β = 5, that is

ϕ
(3a

8
+

5b

8

)
= ϕ

(1

2

[3a

4
+

5b

4

])
= ϕ

(1

2

[(3a

4
+
b

4

)
+ b
])

≤ 1

2
ϕ
(3a+ b

4

)
+

1

2
ϕ(b)− ϕ

(3

8

∣∣b− a∣∣),
using the split and (1.6).

From inequality (2.1)

ϕ
(3a

4
+
b

4

)
≤ 3

4
ϕ(a) +

1

4
ϕ(b)−

[1

2
ϕ
(∣∣ b− a

2

∣∣)+ ϕ
(∣∣ b− a

4

∣∣)].
So

ϕ
(3a

8
+

5b

8

)
≤ 3

8
ϕ(a) +

1

8
ϕ(b) +

1

2
ϕ(b)− 1

2

[1

2
ϕ
(∣∣ b− a

2

∣∣)+ ϕ
(∣∣ b− a

4

∣∣)]− ϕ(3

8

∣∣b− a∣∣)
ϕ
(3a

8
+

5b

8

)
≤ 3

8
ϕ(a) +

5

8
ϕ(b)−

[1

4
ϕ
(∣∣ b− a

2

∣∣)+
1

2
ϕ
(∣∣ b− a

4

∣∣)+ ϕ
(3

8

∣∣b− a∣∣)]
Example 2.2. We consider the case where n = 4, α = 5 and β = 11, that is

ϕ
(5a

16
+

11b

16

)
= ϕ

(1

2

[5a

8
+

11b

8

])
= ϕ

(1

2

[(5a+ 3b

8
+ b
])

≤ 1

2
ϕ
(5a+ 3b

8

)
+

1

2
ϕ(b)− ϕ

( 5

16

∣∣b− a∣∣),
using the split and (1.6).

Now from example (2.1),

ϕ
(5a+ 3b

8

)
≤ 5

8
ϕ(a) +

3

8
ϕ(b)−

[1

4
ϕ
(∣∣ b− a

2

∣∣)+
1

2
ϕ
(∣∣ b− a

4

∣∣)+ ϕ
(3

8

∣∣b− a∣∣)].

4
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So

ϕ
(5a

16
+

11b

16

)
≤ 5

16
ϕ(a) +

3

16
ϕ(b)−

[1

8
ϕ
(∣∣ b− a

2

∣∣)+
1

4
ϕ
(∣∣ b− a

4

∣∣)]
− 1

2
ϕ
(3

8

∣∣b− a∣∣)+
1

2
ϕ(b)− ϕ

( 5

16

∣∣b− a∣∣)
This simplifies to

ϕ
(
5a
16

+ 11b
16

)
≤ 5

16
ϕ(a) +

11

16
ϕ(b)−

[1

8
ϕ
(∣∣ b− a

2

∣∣)+
1

4
ϕ
(∣∣ b− a

4

∣∣)]− [1

2
ϕ
(3

8

∣∣b− a∣∣)+ ϕ
( 5

16

∣∣b− a∣∣)].
Proof of proposition (2.2)

If α and β are both even, say 2δ = α and 2σ = β where δ, σ ∈ Z+, then δ + σ = 2n−1 and so we
only need to prove the result for α, β both odd.
Let α = 2δ + 1 and β = 2σ + 1, where δ, σ ∈ Z+ ∪ {0}, so
2(δ + σ + 1) = 2n and therefore σ = 2n−1 − δ − 1.
Without loss of generality let σ ≥ δ.
We consider the two special cases, n = 1 and n = 2.
Case 1 where n = 1, we have δ = σ = 0 and α = β = 1, (n−2) is -1. But we cannot have a negative
number of splits, so we ignore the last expression in (2.2) and summing i from 1 to 1 since n = 1,
(2.2) reduces to

ϕ
(1

2
a+

1

2
b
)
≤ 1

2
ϕ(a) +

1

2
ϕ(b)− ϕ

(∣∣ b− a
2

∣∣)],
which is precisely inequality (1.6).

Case 2 where n = 2, the number of splits is zero and we have only two odd numbers 1 and 3,
thus we have the expression ϕ

(
a+3b

4

)
to expand.

This is (2.1) a specal case of (2.2) for λ1 = 1
4

and λ2 = 3
4
, giving

ϕ
(a+ 3b

4

)
≤ 1

4
ϕ(a) +

3

4
ϕ(b)−

[1

2
ϕ
(1

2

∣∣b− a∣∣)+ ϕ
(1

4

∣∣b− a∣∣)]

=
1

4
ϕ(a) +

3

4
ϕ(b)−

[ 2∑
i=1

( 1

22−i

)
ϕ
(∣∣ b− a

2i
∣∣)],

hence inequality (2.2) is true for the special cases where n = 1 and n = 2.

We consider n = 2 as our base point since the number of splits is zero
For any pair of odd numbers α, β such that α + β = 2n, ∀n ∈ N, n ≥ 2, the pair α, β is split
recursively until the pair (1, 3) is obtained, which is the base point.

Therefore we use the principle of mathematical induction to establish the result for the split for
n ≥ 3.
For n = 3, there is only one split.
n = 3, 2n = 8 and we have the 4 odd numbers {1, 3, 5, 7}, we consider those pairs whose sum is 8,
that is (1, 7) and (3, 5).
It is noted that the pair (3, 5) is the case of example (2.1) above. Therefore we consider the pair

5
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(1, 7) to obtain

ϕ
(a+ 7b

8

)
= ϕ

(1

2

(a+ 7b

4

))
= ϕ

(1

2

([a+ 3b

4
+ b
]))

≤ 1

2
ϕ
(a+ 3b

4

)
ϕ(a) +

1

2
ϕ(b)− ϕ

(1

8

∣∣b− a∣∣),
using the split and (1.6).

using the base point ϕ
(
a+3b

4

)
, we have

ϕ
(1

4
a+

3

4
b
)
≤ 1

4
ϕ(a) +

3

4
ϕ(b)−

[1

2
ϕ
(1

2

∣∣b− a∣∣) + ϕ
(1

4

∣∣b− a∣∣)].
Hence

ϕ
(a+ 7b

8

)
≤ 1

2

[1

4
ϕ(a) +

3

4
ϕ(b)−

[1

2
ϕ
(1

2

∣∣b− a∣∣)+ ϕ
(1

4

∣∣b− a∣∣)]]+
1

2
ϕ(b)− ϕ

(1

8

∣∣b− a∣∣),
which simplifies to

ϕ
(a+ 7b

8

)
≤ 1

8
ϕ(a) +

7

8
ϕ(b)−

[1

4
ϕ
(1

2

∣∣b− a∣∣) +
1

2
ϕ
(1

4

∣∣b− a∣∣)+ ϕ
(1

8

∣∣b− a∣∣)].

=
1

8
ϕ(a) +

7

8
ϕ(b)−

[ 2∑
i=1

(
1

23−i )ϕ(| b− a
2i
|) +

3∑
i=3

(
1

23−i )ϕ(
ε(4−i)(α, β)

2i
|b−a|)

]
.

Fix k ∈ N, k > 3 and suppose (2.2) is true, that is
ϕ
(
α
2k
a+ β

2k
b
)

≤ α
2k
ϕ(a) + β

2k
ϕ(b)−

∑2
i=1

(
1

2k−i

)
ϕ
(∣∣ b−a

2i

∣∣)−∑k
i=3

(
1

2k−i

)
ϕ
( ε(k+1−i)(α,β)

2i

∣∣b− a∣∣)].
For k + 1 ∈ N, we have k − 1 splits. Setting α = (2δ + 1) and β = (2σ + 1),

ϕ
[ (2δ + 1)

2k+1
a+

(2σ + 1)

2k+1
b
]

= ϕ
(1

2

[ (2δ + 1)

2k
a+

(2σ + 1)

2k
b
])

= ϕ
(1

2

[ (2δ + 1)a+ (2k − 2δ − 1)b

2k
+ b
])
,

≤ 1

2
ϕ
( (2δ + 1)a+ (2k − 2δ − 1)b

2k
)

+
1

2
ϕ(b)− ϕ

( (2δ + 1)

2k+1

∣∣b− a∣∣),
so
ϕ
[ (2δ+1)

2k+1 a+ (2σ+1)

2k+1 b
]

≤ 1
2
ϕ
( (2δ+1)a+(2k−2δ−1)b

2k

)
+ 1

2
ϕ(b)− ϕ

( (2δ+1)

2k+1

∣∣b− a∣∣), using (1.6).

But from the inductive hypothesis, the first term of the immediate inequality becomes:

ϕ
( (2δ+1)a+(2k−2δ−1)b

2k

)
≤ (2δ+1)

2k
ϕ(a) + (2k−2δ−1)

2k
ϕ(b)−

∑2
i=1

(
1

2k−i

)
ϕ
(∣∣ b−a

2i

∣∣)−∑k
i=3

(
1

2k−i

)
ϕ
( ε(k+1−i)(α,β)

2i

∣∣b− a∣∣).
Therefore

6
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ϕ
( (2δ+1)

2k+1 a+ (2k+1−2δ−1)

2k+1 b
)

≤ (2δ+1)

2k+1 ϕ(a) + (2k+1−2δ−1)

2k+1 ϕ(b)−
∑2
i=1

(
1

2k+1−i

)
ϕ
(∣∣ b−a

2i

∣∣)−∑k
i=3

(
1

2k+1−i

)
ϕ
( ε(k+1−i)(α,β)

2i

∣∣b− a∣∣)− ϕ( (2δ+1)

2k+1

∣∣b− a∣∣), which simplifies to

ϕ
( (2δ+1)

2k+1 a+ (2k+1−2δ−1)

2k+1 b
)

≤ (2δ+1)

2k+1 ϕ(a) + (2k+1−2δ−1)

2k+1 ϕ(b)−
∑2
i=1

(
1

2k+1−i

)
ϕ
(∣∣ b−a

2i

∣∣)−∑k+1
i=3

(
1

2k+1−i

)
ϕ
( ε(k+2−i)(α,β)

2i

∣∣b− a∣∣),
as required.

Remark 2.1. (2δ+1)

2k+1 is the required minimum before the first split.

Hence inequality (2.2) is true for all N.

Remark 2.2. An inequality similar to that of inequality (2.2) is obtained, when α+ β 6= 2n.

Proof
Let α, β and m ∈ N such that α+ β = m 6= 2n, where n ∈ N.
Choose s ∈ N such that 2s−1 < m < 2s then

ϕ
(αx1 + βx2

m

)
= ϕ

[ 1

2s
(
αx1 + βx2 + (2s −m)

(αx1 + βx2
m

))]
= ϕ

[1

2

(αx1 +B1x2
2s−1

)
+

1

2

(B2x2 + (2s −m)
(
αx1+βx2

m

)
2s−1

)]
≤ 1

2
ϕ
(αx1 +B1x2

2s−1

)
+

1

2

(B2x2 + (2s −m)
(
αx1+βx2

m

)
2s−1

)
− ϕ

(1

2
|A− E|

)
where B1, B2 ∈ N such that B1 +B2 = β,A =

(B2x2+(2s−m)
(
αx1+βx2

m

)
2s−1

)
and E =

(
αx1+B1x2

2s−1

)
.

But ϕ
(
αx1+B1x2

2s−1

)
simplifies to either inequality (2.1) or (2.2) depending on the values of α and B1,

as shown in Propositions (2.1) and (2.2).

However for the expression ϕ
(B2x2+(2s−m)

(
αx1+βx2

m

)
2s−1

)
we have,

ϕ
(B2x2+(2s−m)

(
αx1+βx2

m

)
2s−1

)
≤ B2

2s−1ϕ(x2) + (2s−m)

2s−1 ϕ
(
αx1+βx2

m

)
−D,

where D is the appropriate extra terms.
So
ϕ
(
αx1+βx2

m

)
≤ α

2s
ϕ(x1) + B1

2s
ϕ(x2) + B2

2s
ϕ(x2) + (2s−m)

2s
ϕ
(
αx1+βx2

m

)
−
∑s−1−r
i=1

(
1

2s−i

)
ϕ
(∣∣x2−x1

2i

∣∣)−∑s−1
i=s−r

(
1

2s−i

)
ϕ
( ε(s−i)

2i

∣∣x2 − x1∣∣)−D,
(m
2s

)ϕ
(
αx1+βx2

m

)
≤ α

2s
ϕ(x1) + β

2s
ϕ(x2)−

∑s−1−r
i=1

(
1

2s−i

)
ϕ
(∣∣x2−x1

2i

∣∣)−∑s−1
i=s−r

(
1

2s−i

)
ϕ
( ε(s−i)

2i

∣∣x2 − x1∣∣)−D.
Thus

7
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ϕ
(
αx1+βx2

m

)
≤ α

m
ϕ(x1) + β

m
ϕ(x2)− 2s

m

∑s−1−r
i=1

(
1

2s−i

)
ϕ
(∣∣x2−x1

2i

∣∣)−
2s

m

∑s−1
i=s−r

(
1

2s−i

)
ϕ
( ε(s−i)

2i

∣∣x2 − x1∣∣)− 2s

m
D.

3 Conclusions

A simple calculation points to the fact that the inequality (1.3) which was due to S. Abramovich’s
definition of superquadratic functions is sharper than the refinement obtained in inequality (2.2)
by Smadjor’s definition.

However the new inequality obtained is sharper than the original Jensen’s inquality but allows the
freedom of non-continuity of the superquadratic functions involved.

Competing Interests

The authors declare that no competing interests exist.

References
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