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ABSTRACT 
 

The U-Shaped channel is a high performance structure widely used in practice. Currently, the 
problem of the critical depth in such profile does not have a direct solution. Current methods of 
calculation are based on complex mathematical procedures or optimal fitting methods, often 
generating unacceptable errors in practice, knowing that the calculation of the critical depth 
requires a high accuracy. The complexity of the problem stems from the fact that the flow 
governing equations are complicated due to the shape of the profile. In this study, the form of the 
flow equation is simple through the intake of the properties of the triangle. Furthermore, even if the 
equation is implicit, its resolution is possible by applying the fixed-point method with an initial value 
judiciously chosen. The process converges after the seventh step of calculating only and leads to 
an almost exact solution. A calculation example is presented that highlights the simplicity of the 
calculation procedure. 
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1. INTRODUCTION 
 
Critical depth plays a major role in determining 
the subcritical or supercritical nature of the flow 
and in the classification of varied flow [1-3]. In 
this regard, several studies have been devoted to 
the calculation of critical depth in various 
geometric profiles of channels [4-13], offering 
solutions with varying degrees of accuracy. 
Several methods were used to calculate the 
critical depth such that numerical method, 
graphical method, explicit regression-based 
equations, fitting curves and Newton-Raphson 
iterative method. Regarding the U-channel, a 
relatively recent study has been devoted to the 
calculation of the critical depth using fitting 
curves [14]. The relative error caused by this 
method is about 0.7%, which can be an 
important relative error for a certain number of 
practical cases. The calculation of critical depth 
requires a much smaller relative error. The 
methods of calculating the critical depth in the    
U-Shaped channel are complex due to the 
geometrical shape of the channel. The U-Shaped 
channel may be considered as a triangular 
channel with a rounded bottom. Using the 
properties of a triangle, one obtains equations of 
simple form such that the critical water area and 
the critical top width that come into consideration 
in the criterion for critical flow. The form of the 
equation of critical flow is handy, contrary to that 
obtained in previous studies.  
 
This equation is implied towards the non-
dimensional critical depth. However, its form is 
so simple that one can apply standard methods 
of resolution, such as the fixed-point method. 
This is the method which is used in the present 
study, with a suitable initial value. The iterative 
process is not constraining since almost exact 
solution is obtained after the seventh step of 
calculation. A practical example is provided 
showing both the high accuracy and the 
simplicity of the calculation. 
 

2. CRITICAL FLOW EQUATION 
 
Fig. 1 shows the critical flow in a U-Shaped 
channel. The critical depth is yc and the critical 
top width is Tc, where the subscript "c" denotes 
the condition of the critical state of the flow. The 
channel is characterized by the side slope m 
horizontal to 1 vertical. The vertical linear 
dimension y is the depth of the flow in the 
hypothetical triangle obtained by extending the 
sides of the channel.  
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Fig. 1. Critical flow in a U-Shaped channel 
 
The critical top width Tc can be written as: 
 

2cT my                                                    (1) 

 
Where m = cotg.                                
 
The critical water area is expressed as: 
 

2 2
1/ )(cA mr y r                                (2) 

 
Where: 
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1
1

1 1 1
sin

1m m m
 
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The well known criterion for critical flow states 
that: 
 

2
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c

Q T

gA
                                                      (4) 

 

Inserting Eq. (1) and Eq. (2) into Eq. (4) leads to: 
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1
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                         (5) 

 
Eq. (5) can be rewritten as: 
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                        (6) 

 

Let us assume the relative conductivity 
*
Q  as:  

 

*

2 5

2Q
Q

gm r
                         (7) 

 



 
 
 
 

Achour and Nebbar; JSRR, 8(6): 1-6, 2015; Article no.JSRR.20056 
 
 

 
3 
 

Assume also the following aspect ratio: 
 

/y r                                                   (8) 

 
Thus, Eq. (6) is reduced to: 
 

2 3
*2 1( )
Q

 




                                         (9) 

 
Adopt the following change in variables: 
 

2
1z                                                   (10) 

 
Eq. (9) can be then simply written as: 
 

3
*2

1

Q
z

z 



                      (11) 

 
Or else: 
 

*2/3 1/6
1( )Qz z                         (12) 

 
Eq. (12) is implicit towards the variable z. To 
solve Eq. (12) we suggest a numerical method 
which consists in approaching successively the 
solution. The calculation process is iterative and 
operates on Eq. (12) after selecting a first value 

of z. Assume that the first value of z is o 1z  . 

As a result, the next values of z are obtained 
such that: 
 

*2/3 1/6
1 12( )Qz                                    (13) 

 
*2/3 1/6

2 1 1( )Qz z   …and so on           (14) 

 
The calculation process stops when zi and zi+1 
are sufficiently close. It is obvious that the speed 
of convergence of the described iterative process 
depends strongly on the value of zo initially 

selected. With o 1z  , intensive calculations 

showed that almost exact value of z is obtained, 
in the worst case, at the end of the seventh step 
of calculating only. The suggested procedure of 
calculation is not therefore constraining.  
 
We tested 1120 numerical examples which 
showed that the proposed iterative method 
converges. We did not test all cases that may 
arise in practice in studying the convergence of 
the recommended method. Like any iterative 

method, the advocated method may not 
converge. 
 
Once the final value of z is determined, the 
aspect ratio η is worked out from Eq. (10) as: 
  

1z                                     (15) 

 
The non-dimensional critical depth can be 
expressed as:  
 

0
/c y r                                     (16) 

 
Where: 
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Thus: 
 

2

1

1
1c

m

m
z 


                        (18) 

 

Considering Eq. (8), one can obtain the critical 
depth sought as: 
 

c cy r                                                    (19) 

 

3. PRACTICAL EXAMPLE  
 

Compute the critical depth yc in the U-Shaped 
channel shown in Fig. 1 for the following data: 
 

Q = 10 m3/s, m = 1 ( = 45°), r = 0.8m 
 
(For the sake of calculation, the counts will not 
be rounded off) 
 

1. According to Eq. (7), the relative conductivity 
*
Q is: 

 

2 5 2 5

* 2 2 10
7.8877934

9.81 1 0.8

Q
Q

gm r




 
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2. Compute 0 1z  using Eq. (3). Hence: 
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One can show that in the case of this example, 
the recommended iterative method converges on 
one hand and converges at the end of the 
seventh step of calculation on the other hand. To 
show the convergence of the method, it suffices 
to check that the first derivative of the function to 

the right of Eq. (12) is less than unity for 1z . We 

have: 
 

*2/3 1/6
1( ) ( )F z Q z  

 
 

Thus: 
 

*2/3

5/6
1

1
'( )

6 ( )

Q
F z

z 



 

Compute  for: 

 
*2/3 1/6 2/3 1/6

1 0 1( ) 7.8877934 (0.21460184 0.21460184) 3.44149854z Q z        

  
Then: 
 

*2/3 2/3

1 5/6 5/6
1 1

1 1 7.8877934
'( ) 0.2242009

6 ( ) 6 (3.44149854 0.21460184)

Q
F z

z 
   

 
 

 

As we can see, the first derivative is less than unity, which confirms that the method converges. 
 
We can even calculate the number of iterations needed to solve the problem. For this, consider an 

absolute error and an interval for z. Choose a relative error such that 
510  and an interval for z 

such that   ; 0.21460184 ; 6a b  . This is an extremely wide range that encompasses most 

practical cases. The value 0.21460184 corresponds to 0 1z  . The number of iterations n is 

expressed by the following relationship: 
 

 
 

ln

ln '( )

b a
n

F b

 
 

   

 

The calculation leads to: 
 

2/3

5/6

1 7.8877934
'( ) '(6) 0.14409249

6 (6 0.21460184)
F b F   


 

 

Thus: 
 

 

510
ln
6 0.21460184

6.84884305 7
ln 0.14409249

n

 
 

     

 

The iterative process converges after the seventh step of calculating. 
 

Inserting the obtained values of 
*
Q and 1 in Eq. (12) and adopting the described iterative process 

for 0 1z  , the final value of z is such that: 

 

6 7 5.260588152z z z  
 

 

3. According to Eq. (15), the aspect ratio  is as: 
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1 5.260588152 0.21460184 2.339912389z       

 

4. Consequently, the non-dimensional critical depth c is worked out from Eq. (18) as: 

 
2 2

1

1 1 1
1 2.339912389 1 1.925698827

1
c

m

m
z 

 
        

 
5. Finally, the required critical depth yc is given by Eq. (19) as: 
 

0.8 1.925698827 1.54c c my r     

 
6. This step aims to verify the criterion for critical flow governed by Eq. (4). The critical top width Tc is 
given by Eq. (1) as:  
 

2 2 ( / ) 2cT my mr y r mr   

 
Hence: 
 

2 1 0.8 2.339912389 3.7438598222c mT mr      

 
According to Eq. (2), the critical water area Ac is: 
 

1 1

2 2 2 2( / ) ( )cA mr y r mr         

 
Thus: 

2 22 2 2
1 1 0.8 (2.339912389 0.21460184) 3.366776417( )c mA mr         

 
Inserting the values of Q, Ac and Tc in Eq. (4) 
results in:  
 

2

3

2

3

10 3.743859822
1.000017829 1

9.81 3.366776417

c

c

Q T

gA


 


  

 
Thus, the criterion for critical flow is verified 
confirming the validity of the calculations. 
 
4. CONCLUSIONS 
 
The study has been devoted to the calculation of 
critical depth in a U-Shaped channel. The 
Hydraulic parameters of the flow, such as the 
critical top width and the critical water area, were 
deducted from the geometric properties of a 
triangle. Consequently, the criterion of critical 
flow has led to an implicit equation of simple form 
on which has been applied the fixed point 
method with an initial value judiciously chosen. 
The purpose of this resolution was to determine 
the aspect ratio of the hypothetical triangle. This 
parameter was closely related to the non-

dimensional critical depth by a simple explicit 
relationship. A calculation example was provided 
to explain the procedure for computing the critical 
depth. The advocated iterative process was not 
constraining since the solution was obtained after 
the seventh step of calculation only. The last step 
of calculation has successfully verified the 
criterion of critical flow, thereby confirming the 
validity of the calculations. 
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