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ABSTRACT
The i4sea research project provides effective and efficient big data integration, processing, and 
analysis technologies to deliver both real-time and historical operational snapshots of fishing 
vessels activity in national sea areas. This paper presents the architecture of the i4sea big data 
platform for sea area monitoring and analysis of fishing vessels activity and demonstrates the 
operation of some use-case pilot scenarios.
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1. Introduction

Sea area monitoring is a critical tool to protect maritime 
resources, track and surveil sea vessels activity, and opti
mize supply chains for marine economy. Marine traffic 
data play a key role in sea area monitoring. 
Examples include VMS (Vessel Monitoring Systems) 
and AIS (Automatic Identification System) data. Both 
are widely used in Monitoring Control and Surveillance 
(MCS) programs at national and international levels. 
VMS are digital systems used in commercial fishing to 
allow regulatory organizations to track and monitor the 
activities of fishing vessels. The aim is to improve the 
management and sustainability of the marine environ
ment by ensuring proper fishing practices and preventing 
illegal fishing. Other sources of valuable data are, meteor
ological (e.g. precipitation and wind speed), environmen
tal (e.g. sea temperature and chlorophyll levels) and 
geographical (e.g. coastline and bathymetry) data.

There exist several commercial software1 that provide 
monitoring functionality for fishing vessels activity, by 
utilizing VMS data. However, VMS data have a low 
sampling rate (approximately 1 message every 15 min
utes) and often transmit inaccurate and incomplete iden
tification and activity data. For this reason, we claim that 
combining VMS data with other sources of vessel traffic 
data, e.g. AIS (2 seconds to 3 minutes per message), will 
improve their accuracy and their quality (Veracity). 
Moreover, effectively supporting maritime surveillance 
requires, in addition to traffic data, the combined use of 
geographical, meteorological, and environmental data 
that (a) will improve the accuracy of identification opera
tions, and (b) better support the export of mobility 
behavior patterns (Variety). Furthermore, simply mon
itoring the fishing vessels activity is not enough for 

a system that targets to protect maritime resources and 
optimize supply chains for marine economy. For this 
reason, such a system should also be able to support 
analysis of such data, such as pattern detection and 
predictive analytics, both in an offline and online man
ner. Finally, the creation of an effective “operational 
image” (real time and historical) of surveillance of mar
ine areas requires enormous amounts of both static and 
streaming data (Volume and Veracity). Motivated by the 
above, our goal is to build an innovative Big Data system 
that will be able to efficiently collect, manage, and ana
lyze, both in an offline and online fashion, large volumes 
of incoming marine surveillance data along with other 
contextual data, such as meteorological and environmen
tal. Furthermore, we aim to further extend and integrate 
already developed data processing techniques and to 
develop innovative Big Data Analytics solutions.

Several real-life application scenarios could benefit 
from such a system. For example, detecting and/or pre
dicting, in real time, illegal activities, such as illegal fish
ing, illegal transshipment, and trespassing in forbidden 
zones. The detection can be achieved by utilizing the 
incoming stream of traffic data along with other contex
tual information, such as fishing zones or forbidden 
zones (e.g. Natura 2000 zones). The prediction can be 
achieved by employing historical information in order to 
build a predictive model and utilize this predictor in 
order to predict the future movement of fishing vessels. 
Another interesting scenario is the estimation and/or the 
prediction of fishing pressure. Moreover, a common 
functionality of such systems is the polling procedure, 
where a user/controller sends a POLL request (position/ 
status signal request) in order to identify fishing vessels 
that are about to present some kind of deviating beha
vior. What would be of great interest, is if the system 
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could indicate a subset of vessels for which there is a high 
probability of delinquent behavior in the near future. 
Finally, we could avoid firing false alarms for illegal fish
ing activity, by taking into account real-time wind data 
and related traffic data, in order to better estimate vessel 
activity and verify routes.

While state-of-the-art technologies to collect, store, 
and analyze marine traffic data are mature enough to 
provide efficient and effective solutions, providing an 
integrated solution to the problem of monitoring and 
analyzing fishing vessels activity both in an online and 
offline manner is a challenging task. More specifically, 
different components have to be seamlessly integrated 
under an appropriate system architecture and several 
offline and online analytic techniques, tailored to fish
ing vessels activity, have to be devised and implemen
ted. Apart from the commercial software that we 
already mentioned, there are several research projects 
that deal with similar challenges (AMINESS Project; 
BlueBRIDGE Project; DatAcron Project; FERARI 
Project; INFORE Project) in the maritime domain. 
However, these efforts do not focus specifically in 
monitoring and analyzing fishing vessels activity.

In this paper, we propose the i4sea Big Data plat
form (i4sea project) which aims at sea area monitoring 
and analysis tailored to fishing vessels activity. The 
vision is to provide effective and efficient big data 
integration, processing and analysis technologies to 
deliver both real-time and historical operational snap
shots of fishing vessels activity in national sea areas. 
The key objectives are as follows:

● Propose an architecture that enables different 
modules and technologies to interact seamlessly, 
in a plug-and-play manner, and facilitates access 
to batch processing and stream processing meth
ods in a hybrid manner.

● Enhance the value of vessel traffic data through 
the integration with open geographic, environ
mental, and meteorological data.

● Effective support for behavioral analysis and 
extraction of navigation patterns from historical 
vessel activity data, in conjunction with geo
graphic, environmental, and meteorological 
parameters.

● Support of activity detection and prediction tech
niques through the real-time, online analysis of 
the incoming streams of data.

The platform will be tested in real use-case scenarios 
provided by COSMOS S.A., which operates the Sea 
Observer VMS IT infrastructure for the Hellenic Fish- 
Breeding Center (EHINAP2) to monitor fishing activ
ity in Greece.

This paper presents the architecture of the i4sea big 
data platform for sea area monitoring and analysis of 
fishing vessels activity and demonstrates the operation 

of some use-case pilot scenarios. To the best of our 
knowledge, this is the first system that deals with the 
problem of sea area monitoring and analysis of fishing 
vessels activity in the era of Big Data.

2. Related work

2.1. Research projects

The INFORE Project addresses the challenges posed by 
huge datasets and real-time, interactive extreme-scale 
analytics and forecasting, among others, for maritime 
surveillance applications. DatAcron (DatAcron Project) 
addresses requirements from the air-traffic management 
and maritime domains by developing advanced tools for 
detecting and visualizing threats, abnormal activity, 
increasing the safety and efficiency of operations related 
to vessels and airplanes. BlueBRIDGE (BlueBRIDGE 
Project) develops smart solutions to support decision- 
makers involved in the fisheries and aquaculture ecosys
tem by facilitating the knowledge production chain (data 
collection, aggregation, analysis, and the production of 
indicators for authorities and investors). FERARI 
(FERARI Project) focuses on big data architecture for 
complex event detection and monitoring large data 
streams. Finally, AMINESS (AMINESS Project) pro
motes shipping safety in the Aegean Sea through a web 
portal offering different levels of access to relevant stake
holders such as shipowners, policymakers, the scientific 
community, and the general public. However, all of the 
above efforts do not focus specifically in fishing vessels 
activity. The i4sea project (Big Data in Monitoring and 
Analyzing Sea Area Traffic: innovative ICT and analysis 
models) (i4sea project; Tampakis 2020) will design and 
develop an innovative big data platform for sea area 
monitoring and analysis tailored to fishing vessels activ
ity. The vision of the project is to provide effective and 
efficient big data integration, processing and analysis 
technologies to deliver both real-time and historical 
operational snapshots of fishing vessels activity in 
national sea areas.

2.2. Analytics

2.2.1. Trajectory joins
An important operation, which is the cornerstone of 
several knowledge discovery techniques from mobility 
data is the so-called trajectory join problem. There are 
a lot of efforts that try to deal with the problem of 
trajectory join in a centralized way (Bakalov et al. 2005, 
15; Chen and Patel 2009). However, all of the above 
approaches are centralized and applying them to 
a parallel and distributed environment is non-trivial. 
Toward this direction, there is a bunch of research efforts 
that try to tackle this problem in a distributed setting 
(Fang et al. 2016; Shang et al. 2017, 2018; Xie, Li, and 
Phillips 2017; Zeinalipour-Yazti, Lin, and Gunopulos 
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2006). However, the definitions of these works are rather 
limited since they return pairs of trajectory ids that satisfy 
the join predicate but not the actual portion of these 
trajectories. To deal with this, the authors in Tampakis 
et al. (2020) introduce an efficient and highly scalable 
approach to deal with the distributed subtrajectory join 
problem, by means of MapReduce. More specifically, 
they try to identify all pairs of subtrajectories that move 
“close enough” in time and space w.r.t. a spatial threshold 
εsp and a temporal tolerance εt and is comprised of 
a Repartitioning phase and a Query phase.

2.2.2. Co-movement patterns
This line of research aims to identify several types of 
collective behavior patterns among moving objects. 
One of the first approaches for identifying such collec
tive mobility behavior is the so-called flock pattern 
(Laube, Imfeld, and Weibel 2005; Vieira, Bakalov, 
and Tsotras 2009), which identifies groups of at least 
m objects that move within a disk of radius r for at least 
k consecutive timepoints. Inspired by this, a less 
“strict” definition of flocks was proposed in Kalnis, 
Mamoulis, and Bakiras (2005) where the notion of 
a moving cluster was introduced. There are several 
related works that emerged from the above ideas, like 
the approaches of convoys (Jeung et al. 2008; Orakzai, 
Calders, and Pedersen 2019), swarms (Li et al. 2010), 
platoons (Li, Bailey, and Kulik 2015), traveling com
panion (Tang et al. 2012) and gathering pattern 
(Zheng et al. 2013). Recently, Tritsarolis, 
Theodoropoulos, and Theodoridis (2020) propose 
a novel co-movement pattern definition, called evol
ving clusters, that unifies the definitions of flocks and 
convoys and reduces them to Maximal Cliques (MC), 
and Connected Components (MCS), respectively. In 
addition, the authors propose an online algorithm, 
that discovers several evolving cluster types simulta
neously in real time using Apache Kafka, without 
assuming temporal alignment, in contrast to the semi
nal works (i.e. flocks and convoys).

2.2.3. Trajectory clustering
Another line of research tries to discover groups of 
either entire or portions of trajectories considering 
their routes. There are several approaches whose goal 
is to group whole trajectories, including T-OPTICS 
(Nanni and Pedreschi 2006; Pelekis et al. 2016), that 
incorporates a trajectory similarity function into the 
OPTICS algorithm. However, discovering clusters of 
complete trajectories can overlook significant patterns 
that might exist only for portions of their lifespan. To 
deal with this, another line of research has emerged, 
that of Subtrajectory Clustering (Pelekis et al. 2017a, 
Pelekis, et al., 2017b; Tampakis et al. 2018, 2019), 
where the goal is to partition a trajectory into subtra
jectories, whenever the density or the composition and 

its neighborhood changes “significantly,” then form 
groups of similar ones, while, at the same time, sepa
rate the ones that fit into no group, called outliers.

2.2.4. Hot-spot analysis
Hot-spot analysis aims at discovering statistically sig
nificant clusters. Spatial statistics were used in Moran 
(1950) and Ord and Getis (1995) while the spatio- 
temporal case has been studied in Hong et al. (2015) 
and Lukasczyk et al. (2015). Furthermore, efficient 
parallel hot-spot analysis algorithms on point spatio- 
temporal hot-spots are proposed in Makrai, 2016 and 
Nikitopoulos et al. (2016). Recently, in Nikitopoulos 
et al. (2018) statistics were used to discover hot-spots 
on trajectory data.

2.2.5. Future Location Prediction
The fact that the Future Location Prediction (FLP) pro
blem has been extensively studied brings up its impor
tance and applicability in a wide range of applications. 
Toward tackling the FLP problem, on line of work 
includes efforts that take advantage of historical move
ment patterns in order to predict the future location. Such 
an approach is presented in Trasarti et al. (2017), where 
the authors propose MyWay, a hybrid, pattern-based 
approach that utilizes individual patterns when available, 
and when not, collective ones, in order to provide more 
accurate predictions and increase the predictive ability of 
the system. In another effort, Petrou et al. (2019) utilize 
the work done by Tampakis et al. (2019) on distributed 
subtrajectory clustering in order to be able to extract 
individual subtrajectory patterns from big mobility data. 
These patterns are subsequently utilized in order to pre
dict the future location of the moving objects in parallel.

A different way of addressing the FLP problem 
includes machine learning approaches. Valsamis 
et al. (2017) model the trajectory of sea vessels and 
provide a service that predicts in near-real time the 
position of any given vessel by employing multilayer 
perceptrons (MLPs). Zorbas et al. (2015) introduce 
a machine-learning model which exploits geospatial 
time-series surveillance data generated by sea-vessels, 
to predict future trajectories based on real-time cri
teria. Several different machine-learning algorithms 
were tested in terms of regression accuracy, as mea
sured by means absolute error, and execution time. 
The perceptron was selected as it outperformed all 
other algorithms. Park et al. (2018) propose 
a prediction technique which can generate the future 
trajectory sequence of surrounding vehicles in real 
time by employing sequence-to-sequence LSTM enco
der-decoder architecture. (Anagnostopoulos, 
Anagnostopoulos, and Hadjiefthymiades 2011) treat 
the FLP problem as a classification problem through 
the adoption of machine learning techniques, such 
as C4.5.

134 P. TAMPAKIS ET AL.



3. Architecture

3.1. Overview

To deal with the big data available for i4sea’s use case 
scenarios and to support arbitrary processing and analy
sis functions, we follow a lambda architecture that facil
itates access to batch processing and stream processing 
methods in a hybrid manner. The aim of such an 
approach is to balance latency, throughput, and fault- 
tolerance. This is achieved by using batch processing for 
comprehensive views of historical data, while simulta
neously using stream processing to provide views of real- 
time data. The two views may be joined before 
presentation.

The overall architecture of the i4sea big data platform 
is illustrated in Figure 1. More specifically, the architec
ture is based on six modules, where both batch and 
streaming data are managed and exploited in order to 
achieve the goals of surveillance of marine areas and 
analysis of vessel traffic. The data entry point for the 
platform is the Data Manager, which collects, pre- 
processes, fuses, and enriches the incoming data. The 
output of the Data Manager is written to some persistent 
storage and is also fed to subsequent modules that per
form online analytics. The Storage Layer is responsible 
for storing the produced data. The Offline Analytics 
module is responsible for performing the required batch 
analytics. Data produced from this module is stored to 
the Storage Layer and can be subsequently utilized by 
several online analytics. The Online Analytics module 
receives input from the incoming streams produced by 
the Data Manager and the Storage Layer, where results of 
the Offline Analytics are stored. Finally, the Application 
Layer module consists of several applications that utilize 
the i4sea platform in order to model fleet dynamics, 
estimate fishing pressure, identify and predict vessel 
activities, etc. The Application Layer includes visualiza
tion methods responsible for visualizing data as required 
by the different application scenarios.

All these modules play a significant and necessary role 
toward the achievement of applications’ requirements. 
More specifically, an important goal of the i4sea platform 
is the integration and fusion of data sources, which aims 
at the integration of mobility data of vessels with sources 

of open geographical, environmental, and meteorological 
data and the fusion of traffic data from different data 
sources (VMS and AIS data) that correspond to the 
same entities (vessels). An additional goal is to design 
and implement methods for compression, extraction of 
synopses and detection of semantically enriched trajec
tories from multiple streams of real-time traffic data. Both 
of these application requirements are implemented inside 
the Data Manager Layer. Moreover, an important goal of 
the i4sea platform is the analysis of combined traffic data, 
which aims to develop methods and tools for data analy
sis from streams and historical vessel traffic data. 
Furthermore, another important goal is the prediction 
of fishing vessels traffic and activities, which aims at the 
design and development of algorithms for long-term 
prediction of (a) location, (b) itineraries, and (c) fishing 
vessels activities. These application requirements are rea
lized inside the Data Analytics Module (Offline and 
Online). Finally, another key application requirement is 
the Fleet dynamics modeling, which aims at the imple
mentation of fleet dynamics modeling methodologies 
and the Fishing Pressure Estimation. Both of these use 
case scenarios are implemented through the Application 
Layer.

In general, we utilized several “out of the box” Big Data 
solutions, which depend on commodity machines and do 
not require any special hardware. These solutions are 
seamlessly integrated and provide the opportunity both 
for offline and online analytics, through a simple lambda 
architecture. The backbone of the i4sea platform, which 
enables the different modules and technologies to interact 
seamlessly, is the coordination and communication sys
tem. To achieve this, we employed Kafka (Kreps, 
Narkhede, and Rao 2011), a state-of-the-art publish- 
subscribe messaging system that facilitates both the man
agement and processing of streaming data.

3.2. Data manager

One of the main objectives of this module is data 
collection. The available data sources include:

● streaming sources, such as mobility data (VMS 
and AIS),
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Figure 1. Overall architecture.
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● dynamic sources, updated daily or annually, such 
as weather data and environmental data (e.g. 
chlorophyll levels)

● static sources, such as geospatial data (e.g. bathy
metry, coastline, and protected areas).

The Data Manager is responsible for fusing incom
ing streams of traffic data from different data sources 
(VMS and AIS data) that correspond to the same 
entities (vessels). Furthermore, the Data Manager han
dles the integration of traffic data with other sources, 
such as weather or environmental data, thus resulting 
in multiple enriched streams that can be either stored 
or read by other modules and applications in 
a publish-subscribe fashion through Kafka Topics.

3.3. Storage layer

The Storage Layer is designed to accumulate immense 
volumes of historical data as the incoming streams of 
data arrive, and store data produced from other modules 
that might be useful in the future. Toward this direction, 
the platform utilizes the Hadoop Distributed File System 
(HDFS) (Shvachko et al. 2010), which is able to store in 
a scalable, durable and fault tolerant way enormous 
volumes of data. Furthermore, this module should be 
able to facilitate efficient retrieval of data, as required by 
several tasks of the Offline and Online Analytics module. 
To tackle this specification, we utilized Elasticsearch 
(Gormley and Tong 2015) that allows for the efficient 
retrieval of data in near real-time.

3.4. Offline analytics

This module is responsible for analyzing large volumes of 
historical data and extracting useful knowledge out of 
them, which can be subsequently utilized either by the 
Online Analytics module or by the end-applications. In 
order to achieve this, the different offline analytic pro
cesses access the data either directly from the Storage 
Layer. To support big data batch processing, we 
employed state-of-the-art batch processing solutions: 
Hadoop (Shvachko et al. 2010) and Spark (Zaharia 
et al. 2016). Examples of such offline analytic processes 
are presented in (Tampakis et al. 2020), where methods 
to identify all pairs of moving objects that moved “close” 
enough in space and time for at least some duration are 
presented, and in (Tampakis et al. 2019) which identifies 
clusters of vessel sub-trajectories.

3.5. Online analytics

The goal of this module is to be able to perform analytics 
over the incoming streams. The input data is the data 
streams produced by the Data Manager, and the offline 
analytic processes, through Kafka Topics and HDFS, 
respectively. This module should be able to perform 

streaming or micro-batch processing over high velocity 
incoming streams. To achieve this, we utilize Spark 
Streaming (Armbrust et al. 2018) and Kafka (Kreps, 
Narkhede, and Rao 2011) (more specifically the 
KafkaConsumer interface). More specifically, Spark 
Streaming is used for micro-batch analytic tasks and 
Kafka is utilized for tasks that require operational latency 
(response time in the order of milliseconds). Examples of 
such online processes are as follows: future location pre
diction, vessel activity prediction, etc.

3.6. Application Layer

The Application Layer module consists of the set of 
applications that conform to the specifications set by 
business cases. The input of this module comes from 
all the offline and online analytics along with contex
tual data stored in the Storage Layer. According to 
each business case requirement, the different compo
nents are combined together appropriately in order to 
produce the desired result.

The Application Layer also includes components that 
can help developers build applications on top of the 
platform. One such component is a deployment of the 
web-based notebook, Apache Zeppelin. It has great sup
port for Spark in particular, including language back
ends for Java, Scala, Python, and R. Apache Zeppelin 
also provides tools for big data visualization, as well as 
the results of batch analysis performed by applications, 
with support for charts and maps for geospatial data. 
The architecture modules are available to Apache 
Zeppelin in the form of software libraries that expose 
reusable methods and APIs that can be combined for 
specific use cases. Users of the platform can create note
books in Apache Zeppelin, while having access to the 
functionalities provided by the data manager, storage 
layer, and analytics modules of the platform.

4. Data preparation

4.1. Data fusion

One of the main of objectives of i4sea platform is to 
combine heterogenous data (e.g. mobility traces and 
weather), as well as homogenous data, in order to pro
duce value for the end-user. Combining homogenous 
data is actually the “fusion” of incoming streams of data 
from different sources, that represent the same entities. In 
our case, we have two alternative sources of mobility data, 
namely VMS and AIS data. VMS data are produced by 
the vessel monitoring system, which is a satellite-based 
monitoring system which at regular intervals provides 
data to the fisheries authorities on the location, course 
and speed of vessels. An example of such a vessel is 
illustrated in Figure 2(a). This data can be subsequently 
joined with static data sources and get enriched with 
valuable information, such as the type of the fishing vessel 
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and the kind of gear that it carries. On the downside, 
VMS data have an increased reporting period, approxi
mately 1 message every 15 minutes, due to the increased 
message cost, originating from the fact that VMS is 
a satellite-based system. This fact can introduce a lot of 
uncertainty in the i4sea system, since it will be unaware of 
the movement of a fishing vessel in between the received 
messages. On the other hand, AIS data is a low-cost 
automatic tracking system that uses transponders on 
vessels and base stations through the VHS frequency. 
Due to this fact, AIS data have a significantly lower 
reporting period (2 seconds to 3 minutes per message), 
as depicted in Figure 2(b), than VMS data and could be 
used to “enhance” VMS traces with extra mobility infor
mation, in the cases where a fishing vessel is equipped 
with both VMS and AIS systems, as illustrated in Figure 2 
(c). However, a significant problem during this procedure 
is that there is no matching id in order to perform this 
join between AIS and VMS.

For this reason, we tried to exploit the spatiotemporal 
information provided by the two sources. In order to 
achieve this, we built upon the Distributed 
Subtrajectory Join solution proposed in (Tampakis et al. 
2020), which given two sets of trajectories (or a single set 
and its mirror in the case of self-join), identifies all pairs of 
maximal “portions” of trajectories (or else, subtrajec
tories) that move close in time and space w.r.t. a spatial 
threshold εsp and a temporal tolerance εt , for at least some 
time duration δt. Furthermore, we utilized the trajectory 
similarity function introduced in (Tampakis et al. 2019), 
which is a variation of the LCSS similarity between tra
jectories, that incorporates the distance proportionality, 
in order to implement a scalable and efficient solution to 
the Distributed Most Similar Trajectory Join query 
(DMSTJ).3 

Definition 4.1. Given two sets of trajectories R and S, " 

trajectory r 2 R, we want to discover the most similar 
trajectory s0 2 S for which it holds that Simðr; s0Þ> α and 
" trajectory s 2 S the goal is to discover the most similar 
trajectory r0 2 R for which it holds that Simðs; r0Þ> α, 
where α is a similarity threshold.

In more detail, as depicted in Figure 3, the AIS/VMS 
fusion procedure consists of an offline and an online 
module. In the offline module, the DMSTJ query runs 
periodically over the accumulated data and updates the 
AIS/VMS Match List. During the online module, 
the system utilizes this list in order to fuse appropriately 
the incoming VMS and AIS streams.

4.2. Noise Elimination and Synopses Generation

An important step when dealing with streams of mobility 
data is to cope with data stream imperfections, such as the 
inherent noise in vessel positions due to sea drift, discre
pancies in GPS signals, etc. Another crucial issue, which 
derives from the fact that the vast majority of the reported 
positions of moving object are “predictable,” i.e. do not 
deviate significantly from their “recent” movement, is to 
discard this kind of signals and keep only the “critical” 
ones, where the mobility behavior of moving objects 
changes “significantly.” Figure 4 illustrates two such 
examples, where we have the raw trajectory depicted in 
blue and their corresponding synopses depicted in red.

Motivated by these, we utilized the work presented 
in Patroumpas et al. (2017) and more specifically the 
Validity Check component, the Noise Elimination 
component and the Synopses Generation component. 
These components were integrated into the i4sea plat
form by utilizing the Kafka Consumer interface. In 
more detail, as illustrated in Figure 5, the input is the 
fused stream of data and the output consists of two 
streams, one stream with the noise-free signals and 
another one with the Synopses generated by the 
Synopses Generation component.

During the Validity Check we discard invalid mes
sages, i.e. duplicate or contradicting positions and 
positions with invalid coordinates. Subsequently, the 
valid positions enter the Noise Elimination phase, 
where the goal is to identify and remove noisy posi
tions. In more detail, we identify abnormal speeds and 
turns and positions which incur an abrupt change both 
in speed and heading of velocity. Finally, the noise-free 
stream is forwarded to the Synopses Generation phase, 

(a) (b) (c)

Figure 2. The (a) VMS trace, (b) AIS trace and (c) Fused trace of a specific fishing vessel.
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during which we discover the so-called “critical 
points,” which are points that indicate “instantaneous” 
(Pause, Change in Speed, Turn) and “long lasting” 
(Communication Gap, Long-term Stop, Slow Motion, 
Smooth Turn) events.

4.3. Mobility data enrichment

Mobility data is produced by vessel monitoring and 
identification systems or generated by algorithmic pro
cesses along the processing pipeline. The former case 
includes VMS and AIS data, while the latter case includes 
the products of data fusion and predictive analytics. 
Mobility Data in its basic form consists of records with 
a minimal set of fields, namely the vessel identifier, trace 

timestamp, and trace location in the form of geographical 
latitude and longitude, and optionally the speed, heading, 
and course of the vessel at the time. Basic Mobility Data 
lacks context that could be useful for better assessing the 
vessel’s state. Such context is the seabed depth at the 
location of the vessel, or the forecast for weather condi
tions at the vessel’s time and location. Mobility Data 
Enrichment is the process of augmenting basic mobility 
data with such additional contextual data, producing 
enriched mobility data suitable for further analysis. 
Both online and offline analyses benefit from working 
on enriched data, since costly processing operations, 
mainly spatio-temporal joins to geographical data, have 
already been applied. Filtering of mobility data based on 
these additional fields is much faster using enriched data, 
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Figure 3. Overall architecture.

Figure 4. Two raw trajectories (in blue) and their corresponding synopses (in red).
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Figure 5. Overall architecture.
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since the fields are readily available and no costly joins are 
required. This is especially beneficial to online filtering, 
which is applicable to the real-time presentation of the 
fleet state.

Basic mobility data is primarily extended with vessel 
attributes, geographical properties, and weather condi
tions for each reported time and location of the vessel. 
The vessel attributes used are the vessel type and length, 
which are obtained by joining to the vessel registry. The 
geographical properties used are the seabed depth, 
extracted from the bathymetry data spatial raster, and 
the marine area at the vessel’s location, obtained by 
spatially joining to the polygonal geometries representing 
marine areas defined by EU fishing regulations. The 
weather conditions included are wind speed and direc
tion, wave height and direction, and rainfall intensity. 
The weather data is obtained by extracting the aforemen
tioned values from the forecast or reanalysis meteorolo
gical data spatio-temporal raster. Forecast weather data, 
which can be supplied by a meteorological service, is used 
for the online enrichment of fresh mobility data with 
probabilistic future weather data. Reanalysis weather 
data, which is obtained from the European Center for 
Medium-Range Weather Forecasts (ECMWF) service ( 
European Centre for Medium-Range Weather Forecasts 
Service), is used for the offline enrichment of historical 
mobility data with more accurate past weather data, 
yielding more refined historical mobility data. Enriched 
mobility data also include the activity indicator for fishing 
vessels. The activity indicator suggests whether a fishing 
vessel is most probably mooring, steaming, or fishing at 
the time. The activity indicator value is the result of a rule- 
based calculation that is provided by experts and takes 
into account the vessel type, the time of day and month of 
the trace timestamp, the vessel speed, and the distance of 
the vessel from the nearest port.

Mobility data enrichment is primarily implemented 
using Spark, wherein the availability of shared APIs for 
both offline and online processing has helped to reuse the 
enrichment methods developed for both analytics scenar
ios. For the determination of the marine area at the 
vessel’s location we employed the spatial join techniques 
provided by the (Apache Sedona Project). Those include 

spatial partitioning of both the mobility data and the 
marine area polygons so that spatial joins can be effi
ciently performed on each partition pair. For extracting 
values from raster datasets such as bathymetry and 
weather data, we used the (GeoTrellis Framework) to 
transform provided datasets to efficient layer structures 
stored in HDFS. The RasterFrames Library was used to 
handle these structures using Spark and join mobility 
data with time-dependent spatial rasters. Figure 6 illus
trates how the various data enrichment steps can be 
combined in a stream processing pipeline using Kafka 
and Spark Streaming.

5. Offline analytics

5.1. Distributed Subtrajectory Join

An important operation, which is the cornerstone of 
several knowledge discovery techniques from mobility 
data, is the so-called trajectory join problem, which 
aims to find all pairs of “similar” (i.e. nearby in space- 
time) trajectories in a dataset. An even more challen
ging problem is the subtrajectory join query, where the 
goal is not only to identify all pairs of similar trajec
tories but also their corresponding “similar portions.” 
However, the subtrajectory join is a processing- 
intensive operation and centralized algorithms cannot 
scale with the size of today’s mobility data, thus par
allel, and distributed algorithms are necessary in order 
to provide efficient processing of this query. As already 
mentioned, such a query is in fact the building block 
for several operations than aim to identify mobility 
patterns, such as co-movement patterns (Tritsarolis, 
Theodoropoulos, and Theodoridis 2020) and subtra
jectory clustering (Pelekis et al. Pelekis, et al., 2017b; 
Tampakis et al. 2019). More specifically, within the 
scope of the i4sea platform, it can be utilized in order 
to identify illegal transshipment activity by retrieving 
all the pairs of moving objects that move “close” to 
each other for at least some duration, optimize trans
portation planning by merging “similar” itineraries or 
identify pairs of trajectories from different data 
sources (such as AIS and VMS) that represent the 
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Figure 6. Mobility data enrichment streaming pipeline.
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same moving objects. Motivated by these, we incorpo
rate into the i4sea platform the Distributed 
Subtrajectory Join (DSJ) solution that was proposed 
in Tampakis et al. (2020).

In more detail, the problem that addresses is as fol
lows: given two sets of trajectories, identify all pairs of 
maximal “portions” of trajectories (or else, subtrajec
tories) that move close in time and space w.r.t. a spatial 
threshold εsp and a temporal tolerance εt , for at least some 
time duration δt. This can be depicted in Figure 7, given 
two trajectories r and s, the pair of their maximal match
ing “portions” is (fr4; r5; r6; r7; r8g; fs3; s4; s5; s6; s7g).

Formally, given a set R of trajectories moving in the 
xy-plane, a trajectory r 2 R is a sequence of time
stamped locations r1 . . . rNf g. Each ri ¼ ðxi; yi; tiÞ

represents the i-th sampled point, i 2 1; . . . N of tra
jectory r, where N denotes the length of r (i.e. the 
number of points it consists of). The pair ðxi; yiÞ and 
ti denote the 2D location in the xy-plane and the time 
coordinate of point ri respectively. A subtrajectory ri;j 

is a subsequence ri . . . rj
� �

of r which represents the 
movement of the object between ti and tj where i< j.

Given a pair ðr; sÞ of trajectories (the same holds for 
subtrajectories) with r 2 R and s 2 S, the common life
span wr;s is defined as the time interval 
½maxðr1:t; s1:tÞ;minðrN :t; sM:tÞ�, where r1 (s1) is the 
first sample of r (s, respectively) and rN (sM) is the last 
sample of r (s, respectively). The duration of the common 
lifespan wr;s is Δwr;s = minðrN :t; sM:tÞ – maxðr1:t; s1:tÞ

Further, let DistSðri; sjÞ denote the spatial distance 
between two points ri, sj, which is defined as the 
Euclidean distance in this paper, even though other dis
tance functions are also applicable. Also, let DistTðri; sjÞ

denote the temporal distance, defined as jri:t � sj:tj. 

Definition 5.1. (Matching subtrajectories) Given 
a spatial threshold εsp, a temporal tolerance εt and 
a time duration δt, a “match” between a pair of sub
trajectories ðr0; s0Þ occurs iff Δwr0;s0 � δt � 2εt , and 
"r0i 2 r0 there exists at least one s0j 2 s0 so that 
DistSðr0i; s0jÞ � εsp and DistTðr0i; s0jÞ � εt , and "s0j 
there exists at least one r0i so that DistSðs0j; r0iÞ � εsp 

and DistTðs0j; r0iÞ � εt .

Definition 5.2. (Maximally matching subtrajec
tories) Given a pair of “matching” subtrajectories 
ðr0; s0Þ which belong to trajectories r; s respectively, 
this pair is considered a “maximal match” if 0 ¼ 90=0 
superset r00 of r0 or s00 of s0 where the pair ðr00; s0Þ or 
ðr0; s00Þ or ðr00; s00Þ is “matching”.

At this point, we should clarify that two trajec
tories may have more than one “maximal matches” 
(i.e. pairs of subtrajectories). Having provided the 
above background definitions, we can define the 
subtrajectory join query between two sets of 
trajectories. 
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Figure 7. A pair of maximally “matching” subtrajectories ðr4;8; s3;7Þ.
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Definition 5.3. (Subtrajectory join) Given two sets of 
trajectories R and S, a spatial threshold εsp, a temporal 
tolerance εt and a time duration δt, the subtrajectory join 
query searches for all pairs ðr0; s0Þ, r0 2 r 2 R and 
s0 2 s 2 S, which are “maximally matching” 
subtrajectories.

To address this problem in a scalable manner, the 
MapReduce programming model was adopted. More 
specifically, the solution is comprised of a Repartitioning 
phase and a Query phase. The Repartitioning phase is 
a preprocessing step that takes place only once and the 
Query phase is where the actual processing takes place in 
a single MapReduce job. To boost the performance of the 
DSJ query processing even further, we introduce an 
indexing mechanism, which speeds up the computation 
of the . For more details about DSJ, please refer to 
(Tampakis et al. 2020).

5.2. Distributed Clustering

Another important operation that aims at discovering 
knowledge from mobility data is trajectory clustering. 
The research so far has focused mainly in methods that 
try to identify specific collective behavior patterns among 
moving objects (e.g. Tritsarolis, Theodoropoulos, and 
Theodoridis (2020)). However, these approaches operate 
at specific predefined temporal “snapshots” of the data
set, and by that they ignore the route of each moving 
object between these sampled points. Another line of 
research tries to identify patterns that are valid for the 
entire lifespan of the moving objects (e.g. T-OPTICS 
(Nanni and Pedreschi 2006)). Nevertheless, discovering 
clusters of complete trajectories can overlook significant 
patterns that might exist only for some portions of their 
lifespan.

For this reason, we focus on Clustering analysis, 
where the goal is to segment trajectories to subtrajec
tories, according to some criteria, and then discover 
clusters of subtrajectories. In order to demonstrate the 
merits of subtrajectory clustering, let us consider the 
example of Figure 8, which illustrates six trajectories 
moving in the xy-plane, where each one of them has 
a different origin-destination pair. More specifically, 
these pairs are A! B, A! C, A! D, B! A, 

B! C and B! D. These six trajectories have the 
same starting time and similar speed. A typical trajec
tory clustering technique would fail to identify any 
clusters. However, the goal of a subtrajectory cluster
ing method is to identify four clusters (A! O (red), 
B! O (blue), O! C (purple), O! D (orange)) and 
two outliers (O! A and O! B (black)).

Within the i4sea platform, such an operation can be 
utilized in order to discover the underlying network of 
movement, which in the maritime domain this is 
apriori known, by grouping subtrajectories that move 
“close” to each other and use cluster representatives/ 
medoids as network edges. An additional valuable 
application scenario of subtrajectory clustering is pre
dictive analytics over mobility data, where the goal is the 
extraction of valuable knowledge from data and its 
utilization in order predict future behavioral patterns 
(i.e. movement) (Petrou et al. 2019, Petrou, et al., 2019). 
The general idea is first to identify popular mobility 
patterns, either global (for the whole dataset) or local 
(for each moving object separately), by employing some 
subtrajectory clustering technique that also provides the 
cluster representatives. Then, when some new position 
of a moving object is reported, the goal is to try to 
“match” the new portion of movement with the most 
similar historical patterns and employ this pattern in 
order to predict its future location.

To address this problem in the context of big data, we 
incorporate into the i4sea platform, the Distributed 
Subtrajectory Clustering (DSC) solution that was pro
posed in Tampakis et al. (2019). More specifically, DSC 
utilizes the MapReduce programming model by building 
upon the DSJ query (Tampakis et al. 2020), in order to 
tackle the problem in an efficient and scalable manner. In 
more detail, the problem of Subtrajectory Clustering is 
abstracted as a three-step procedure. The first step is the 
Subtrajectory Join, where for each trajectory r we identify 
the maximal portions of all the other trajectory that 
moved “close enough” in time and space with r (depicted 
in Figure 8). The next step is the Segmentation phase, 
where each trajectory gets segmented in subtrajectories 
whenever the density (or the composition) of its neigh
borhood changes “significantly.” Finally, we have the 
Clustering and Outlier Detection step, where the most 
“representative” subtrajectories get selected and the 
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Figure 8. Clustering example of six trajectories moving in an intersection.
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clusters get built “around” these “representatives.” For 
more details about the DSC solution, please refer to 
(Tampakis et al. 2019).

5.3. Hotspot Analysis

Hotspot Analysis is an important spatio-temporal opera
tion that aims to detect statistically significant areas with 
high values, termed hotspots, as well as areas with low 
values, termed coldspots. Hotspot Analysis can be applied 
to a spatio-temporal feature dataset with regard to 
a specific feature value. The Getis-Ord G�i statistic (Ord 
and Getis 1995), presented in Equation 1, is used for 
gauging the significance of each feature in the dataset. 
The G�i statistic takes into account the spatio-temporal 
neighborhood of each feature. For a feature to be identi
fied as a hotspot, the feature should generally have a high 
value and be among features with high values as well. 
Conversely, for a feature to be identified as a coldspot, the 
feature should generally have a low value and be among 
features with low values as well. The G�i statistic smooths 
out features that stand out in their respective neighbor
hoods. The G�i statistic is a z-score, interpreted as the 
number of standard deviations by which a raw score is 
above or below the raw score mean. In the i4sea platform, 
Hotspot Analysis operates on a set of spatio-temporal 
cells in the x, y, and t dimensions with respect to a cell 
value. The cells are the product of spatio-temporal seg
mentation. The range of each dimension and the cell size 
at each dimension are user-defined. The value of each cell 
is calculated before the G�i statistic calculation. Requiring 
a confidence interval of 90%, cells with a G�i statistic 
above 1.65 constitute the dataset hotspots, cells with a 
G�i statistic below −1.65 constitute the dataset coldspots, 
and the rest of the cells are considered neutral. In more 
detail, the Getis-Ord G�i statistic of feature i can be 
defined as: 

½thb�G�i ¼

Pn

j¼1
wi;jxj � �x

Pn

j¼1
wi;j

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

j¼1
w2

i;j�
Pn

j¼1
wi;j

� �2

n� 1

v
u
u
t

(1) 

where n is the number of all features, xj is the value of 
feature j, and wi;j is the weight of the neighborhood 
link between feature i and feature j. The value of wi;j is 
1 if feature j is in feature’s i neighborhood, otherwise it 
is 0. �x and s are the usual mean and standard deviation 
of all feature values, respectively. Hotspot Analysis 
employs the Apache Spark framework. Spatio- 
temporal data points are initially mapped to and 
grouped by the spatio-temporal cells within which 
the data points fall and the cell values are accordingly 
calculated. The process is illustrated in Figure 9. The 
cell dataset is divided into multiple partitions accord
ing to the user parameters. A partition has the shape of 
a rectangular cuboid and consists of multiple cells at 
all dimensions. Each partition is assigned to a worker. 
With respect to a partition’s exterior cells, a part of 
a cell’s neighborhood is, by initial partition construc
tion, assigned to neighboring partitions. Parallelism 
and performance are increased by making each cell 
along with its neighboring cells available to the same 
worker. The exact missing part of an exterior cell’s 
neighborhood depends on the neighborhood distance 
specified by the user and the position of the cell within 
the partition. In order to achieve data locality for these 
cells, parts of the exterior of the neighboring partitions 
must be transmitted to the worker processing the 
partition. The exact part of a partition’s exterior that 
needs to be transmitted to a neighboring partition 
depends on the relative positions of the two partitions 
and the neighborhood distance. An example of exter
ior cells from neighboring partitions that need to be 
transmitted to the worker processing a specific parti
tion is illustrated in Figure 10. In this example, 
a neighborhood distance of 1 is assumed. After the 
repartitioning stage, all cells within a partition are 
colocated with their respective neighboring cells. The 
G�i z-score is then calculated for each cell and the top- 
k, where k has been specified by the user, high score 
cells are returned to the Apache Spark application 
driver, concluding the analysis.

An interesting application scenario of Hotspot 
Analysis, within the scope of the i4sea platform, is 
the estimation of fishing pressure, i.e. the intensity of 

Figure 9. Data points are mapped to and grouped by cells, yielding a dataset of cells with a specific value.
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fishing activity, is Fishing Pressure Hotspot Analysis. 
Fishing Pressure Hotspot Analysis aims to discover in 
which marine areas fishing activity is more intense and 
during which time periods, as well as marine areas of 
neutral and low fishing activity intensity. The activity 
indicator for a fishing vessel, namely the field that 
denotes which activity the vessel probably engages into 
at a specific time and location, is part of the enriched 
mobility data. Fishing Pressure Hotspot Analysis oper
ates on the enriched mobility data for which fishing 
activity is indicated. Greek marine rules dictate fishing 
hours, which in turn make up fishing days, separately for 
each fishing vessel type. Trawlers and purse seiners, for 
instance, have different fishing hours. The marine rules 
are taken into consideration when temporally aggregat
ing vessel traces of different vessel types. Fishing vessels 
with traces suggesting fishing activity are grouped by the 
containing spatio-temporal cells, yielding the aggregated 
fishing pressure value for each cell. Each vessel with at 
least one trace within a specific cell is counted exactly 
once, regardless of the number of traces, for the calcula
tion of the cell value.

6. Online analytics

6.1. Co-Movement Pattern mining

Co-Movement Pattern mining (CMP) is yet another 
branch of Mobility Data Analytics, which focuses on 
discovering clusters of vessels that move together for 

at least some time duration. CMP can be employed in 
a wide plethora of applications, including traffic calcu
lation and point-of-interest discovery, in different 
domains such as maritime, urban, and aviation.

In the context of the i4sea platform, the potential 
applications of Co-Movement Pattern mining are 
among many, anchorage discovery, naval surveillance 
for (probably suspicious) activities, such as transship
ment and intentional AIS switch-off (Kontopoulos et al. 
2020), as well as object and behavior profiling. Motivated 
by this, we adopt the approach of (Tritsarolis, 
Theodoropoulos, and Theodoridis 2020), where a novel 
graph-based online co-movement pattern mining algo
rithm is proposed, called EvolvingClusters, which can be 
used to discover different collective movement behaviors 
(e.g. flocks (Vieira, Bakalov, and Tsotras 2009), convoys 
(Jeung, Shen, and Zhou 2008; Jeung et al. 2008; Orakzai, 
Calders, and Pedersen 2019)) in a unified way based on 
the activity of multiple concurrent objects through time 
and space.

In a nutshell, given a Data stream D ¼
fT1;T2; . . . ;Tng of Timeslices Ti consisting of objects’ 
timestamped locations (pj, Ti), EvolvingClusters works as 
follows:

● Each pj 2 Ti is used in order to form a connectivity 
graph with vertices the points’ respective vessel 
identifier, and edges their spatial proximity with 
respect to a distance metric (e.g. Haversine distance) 
and a reachability threshold θ

● Afterward, we extract the Maximal Connected 
Components (MCS � Convoys) and Maximal 
Cliques (MC � Flocks) with respect to 
a cardinality threshold c.

● Finally, each discovered pattern is compared to the 
previously discovered ones, and if it satisfies the 
temporal (t) and cardinality (c) restrictions, it is 
output to the resulted active patterns data stream.

The comparison between the members of two pat
terns Cti , Cti� 1 discovered at timeslices ti and ti� 1, 
respectively, is conducted taking the following cases 
into account4:

(1) The two patterns are identical (Cti ¼ Cti� 1 )
(2) The two patterns have no common objects 

(Cti \ Cti� 1 ¼ ;)
(3) The current pattern is a subset of the previous 

one (Cti � Cti� 1 )
(4) The current pattern is a superset of the previous 

one (Cti� 1 � Cti )
(5) The two patterns contain only some common 

objects (Cti \ Cti� 1 �;, Cti \ Cti� 1 � Cti ;Cti� 1 )

Figure 10. Data locality in Hotspot Analysis. A worker is proces
sing the partition with white cells. Gray cells denote exterior 
cells of neighboring partitions that are transmitted to the 
worker, so that the whole neighborhood of each white cell is 
made locally available to the worker.
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6.2. Predictive analytics

Predictive analytics over mobility data, is an important 
operation with a wide range of applications, such as 
collision detection, traffic estimation and service recom
mendation, in different domains, such as maritime, 
urban, and aviation. What is even more challenging is 
how to deal with this problem in the Big Data era, where 
new positions arrive at frequent rates and the accumu
lated ones scale to petabytes of data, and in application 
scenarios where latency and scalability matter.

There are several applications that could benefit 
from such an operation. For instance, in the maritime 
domain, detection and more importantly prevention 
of illegal fishing activity is of great impact in the 
preservation of marine life. More concretely, let us 
consider a scenario where a governmental agency 
tracks, in real time, the position of fishing vessels and 
its goal is not only to detect whether a fishing vessel 
has entered an area where fishing activities are for
bidden but also to predict and prevent such kind of 
behavior by notifying the authorities.

In the maritime domain, the Future Location 
Prediction (FLP) of fishing vessels is of great impor
tance, i.e. the prediction of the anticipated location(s) 
of a fishing vessel taking into account its own or the 
population’s motion history. 

Definition 6.1. (FLP) Given a desired look-ahead 
interval Δtpred, the recent k positions rN� kþ1; . . . ; rN 
of moving object r, where, rN is the latest reported 
position, predict the position of r at tnow þ Δtpred, 
where tnow is the current time.

6.2.1. LSTM-based FLP
Trajectories produced by vessels can be considered as 
time sequence data (Xue, Huynh, and Reynolds 2018) 
and thus are suited to be treated with techniques that are 
capable of handling sequential data and/or time series 
(Rossi et al. 2020). Several methods have been proposed 
to forecast time sequence data (Shi and Yeung 2018). 
However, over the past two decades, the research interest 
has been moved to Neural Networks (NNs) (Haykin 
1998).

Long Short-Term Memory (LSTM) (Hochreiter 
and Schmidhuber 1997) is capable of learning long- 
term dependencies and has emerged as an effective 
NN architecture for several difficult learning problems 
(including sequential or temporal data-based applica
tions) (Ji et al. 2020). Hence, in i4sea, we employ 
LSTMs to solve the future location prediction pro
blem, that is, given vessel traffic data (timestamp, 
latitude, and longitude) and a time interval Δtpred, to 
predict each vessel’s location after Δtpred time. Details 
for the LSTM NNs can be found in the original pub
lications (Graves and Schmidhuber 2005).

A schematic overview of the proposed LSTM-based 
network architecture is presented in Figure 11. More 
specifically, the NN architecture is composed of a data 
pre-process module, which transforms appropriately 
the AIS data to feed LSTM model, an input layer of 
four neurons (one for each input variable), an LSTM 
hidden layer, a fully connected hidden layer, an output 
layer of two neurons (one for each prediction coordi
nate) and a data pre-process module to transform 
appropriately the NN outputs to the predicted latitude 
and longitude coordinates. Details for the Backward 
Propagation Through Time algorithm and for the 
Adam approach, which were employed for the NN 
learning purposes, can be found in Werbos (1990) 
and Kingma and Ba (2015), respectively.

6.2.2. Activity prediction
The operation of activity prediction, in the context of the 
i4sea platform, is, given a lookahead interval Δtpred, to 
predict whether a fishing vessel will be fishing at 
tnow þ Δtpred. The way that this operation is actually 
implemented in the i4sea platform brings up the merits 
of the i4sea architecture, since different modules are 
combined into a pipeline. More specifically, as illustrated 
in Figure 12, the Trajectory Prediction (TP) and the 
Mobility Data Enrichment modules are utilized. In 
more detail, the TP module predicts the route of each 
moving object from ðtnow; tnow þ Δtpred�, and these pre
diction are given as input to the Mobility Data 
Enrichment module which applies the rule-based activity 
annotation. The output, will be a new stream that will 

Figure 11. Network architecture for the proposed LSTM model, with one LSTM cell and two fully connected layers. The dark blue 
boxes indicate layers in the network, while the light blue ones indicate the input-output information.
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contain the information about the activity that each fish
ing vessel will be performing at tnow þ Δtpred. In a similar 
direction the Future Location Prediction and the Co- 
Movement Pattern mining module where utilized in 
order to predict future patterns of movement, as pre
sented in (Tritsarolis et al. 2021).

7. Application Layer

7.1. Monitoring

Presenting and monitoring online analytics results is 
particularly challenging, especially in the case of geos
patial data such as trajectories, that span both space 
and time dimensions. The Application Layer defines 
building blocks for such applications that leverage 
Web Service principles in order to expose analysis 
results to the web, so that they can be visualized in 
web applications. This way, access to the platform 
cluster can be provided with minimal exposure of 
cluster nodes to the outside of the cluster private 
network.

Figure 13 illustrates the architecture of an appli
cation prototype targeted to online analytics results 
monitoring. The application aims to monitor the 
evolving state of the entire fishing fleet, with regard 
to the last known position of each vessel. Input 
mobility data messages of trajectories are sent to 
a Kafka topic. Input mobility data must conform 
to a general trajectory schema where at least the 
location, timestamp, and vessel identifier are pro
vided by the message source. The streams processing 
pipeline operates on input mobility data and pro
duces output mobility data, specifically enriched tra
jectories, trajectory synopses, enriched trajectory 
synopses, trajectory predictions, and enriched trajec
tory predictions. The output mobility data produced 
is forwarded to the respective Kafka topics. Input 
and output mobility data is periodically written by 
a Python application to a SQLite database, which 

constitutes the fleet state database. A Flask-based 
Web Service is deployed within the platform cluster 
network and acts as a gateway to the analytics 
results for the outside world. A Web Application 
running on a Web Browser polls the service for 
the most recent fleet state data. The service queries 
the SQLite database to retrieve fleet state data 
according to user-specified query criteria. The data 
retrieved is then transferred to the Web Browser 
using JSON representation and presented on a map 
using visualization methods provided by the Leaflet 
web map library. A map view of the online analytics 
results monitoring application prototype, which dis
plays fishing vessel activity, is presented in 
Figure 14.

8. Experimental evaluation

The experiments were conducted in a 9-node cluster, 
running Hortonworks Data Platform version 3.1.0.0, 
where each node has 16GB of memory and 8-core 
CPUs. The storage subsystem is implemented as part 
of the cluster using HDFS, providing a total of 3.3 TB 
distributed in 7 nodes. Spark execution engine is 
deployed across 7 nodes also, using Apache Hadoop 
YARN as the resource manager.

For our experimental study, we utilize 2 years (2017 
and 2018) of AIS and VMS data of fishing vessels 
moving in Greek waters. The vessel movement data 
include anonymized VMS data provided by the 
Administration of Fishery Control, Ministry of 
Maritime and Insular Policy of Greece. They include 
about 50 million position reports from more than 1000 
fishing vessels and take up about 2GB of storage space 
in compressed form (gzip). We also used a more exten
sive dataset of terrestrial AIS data, sourced by the 
Administration of Maritime Safety, Minister of 
Maritime Affairs and Insular Policy of Greece. The 
AIS dataset includes about 3.7 billion position reports 
from more than 10,000 vessels, taking up more than 
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Figure 12. Activity prediction pipeline.
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Figure 13. Application prototype for online analytics results monitoring.
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60GB in storage space compressed (gzip). We also 
utilized meteorological re-analyis data available via the 
European Center for Medium-Range Weather 
Forecasts (ECMWF) data portal, covering the sea area 
of Greece and spanning the same two-year period. They 
include hourly values for 11 significant measures related 
to weather conditions at sea. Additional data used pri
marily for data enrichment also include a bathymetry 
spatial raster dataset from EMODnet, as well as poly
gonal geometries representing marine areas defined by 
EU fishing regulations, processed and contributed to 
the project by the Hellenic Center for Marine Research 
(HCMR), partner to the i4sea project.

Our experimental methodology is as follows. 
Initially, we evaluate the Data Fusion component in 
term of quality of results. Subsequently, we examine 
the efficiency and the effectiveness of the Synopses 
Generator, in terms of latency and compression rate. 
Next, we examine the efficiency of the Mobility Data 
Enrichment process in both noise-free raw data and 
the corresponding synopses. Successively, we evaluate 
the quality of the Distributed Subtrajectory Clustering 
component by comparing with two state-of-the-art 
subtrajectory clustering algorithms. Furthermore, we 
present a demonstration of the Hotspot Analysis and 
the Co-movement Pattern Mining components. 
Finally, we evaluate the efficiency and the effectiveness 
of the Future Location Prediction component.

8.1. Data preparation

8.1.1. Data Fusion
For the evaluation of the Data Fusion component, we 
utilized a subset of the VMS and AIS datasets correspond
ing to the same period, i.e. January 2018. The reason for 
choosing a subset of 1 month duration is that we needed 

to manually extract the ground truth for the experiment 
that follows, which made it impossible to use the entire 
dataset. Concerning the efficiency and scalability of the 
DMSTJ solution, please refer to (Tampakis et al. 2020). 
The VMS dataset contained 637 fishing vessels and the 
corresponding AIS dataset contained 1045 fishing vessels. 
At this point, we should mention that, by law, not all 
fishing vessels are obliged to carry a VMS device, only 
those that exceed a specific length. Furthermore, not all 
fishing vessels carry an AIS device, which means that the 
number of vessels that hold both an AIS and a VMS 
device might be relatively small in comparison with the 
total number of fishing vessels that hold either an AIS or 
a VMS device. Moreover, concerning the fishing vessels 
that carry an AIS device, only the ones that exceed 
a specific length are obliged by law to transmit their 
position at all times.

In practice, we ran DMSTJ, with the following 
parameter setting, εsp ¼ 10km, εt ¼ 10min, δt ¼
20min and α ¼ 0:2 and we managed to achieve 52 
“matches.” However, evaluating a solution where the 
ground truth is unknown is a difficult task. For this 
reason, we utilized two alternative methods in order to 
achieve this, visual inspection and manual ground 
truth based on the names and the other contextual 
information of the vessels. In terms of visual inspec
tion, the results are satisfying since it seems, as illu
strated in Figure 15, that the vast majority of the 
discovered matches correspond to the same fishing 
vessel. Concerning the manual ground truth, as illu
strated in Table 1, there were 210 fishing vessels that 
appeared in both datasets by examining the name and 
other contextual information. This leads to accuracy 
and precision at approximately 0.84, as depicted in 
Table 1. Moreover, by visually inspecting the cases 
that were falsely identified as “matches,” at least half 

Figure 14. Fishing vessel activity view of the online analytics results monitoring application prototype. A fishing vessel is depicted 
as either mooring, steaming, or fishing.
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of them seemed to belong to the same vessel. All in all, 
it seems that our solution manages to identify a large 
number of AIS/VMS “matches,” given the fact that the 
number of fishing vessels that hold both an AIS and 
a VMS device is relatively small and the fact that 
a large number of fishing vessels, that carry an AIS 
device, are obliged by law to transmit their position at 
all times.

8.1.2. Synopses Generation
Initially, we evaluate the effectiveness of the synopses 
generator as a tool to reduce the amount of data by 
keeping only the critical points. We ran the Synopses 
Generator in 2 years of AIS data (i.e. 2017–2018) and 
calculated the compression rate. As illustrated in 
Table 2, the initial noise-free number of positions in 
the dataset was approximately 100 million, while the 
number of critical points that were extracted was 
about 11 million, which results in a compression rate 
of 88.37%.

Subsequently, we evaluate the efficiency of the 
synopses generation procedure, by means of proces
sing time per position. As illustrated in Figure 16, the 
Synopses Generator conforms with the real-time nat
ure of the i4sea platform, since the media processing 
time of a position is 11 milliseconds.

8.1.3. Mobility data enrichment
For the experimental evaluation of online mobility 
data enrichment, we used two datasets of AIS data. 
The first AIS dataset consists of noise-free AIS data. 
The total number of traces in the dataset is 
depicted in Table 2. The second AIS dataset con
sists of AIS synopses data produced by the first 
dataset. The total number of traces is also depicted 
in Table 2. The experiments were run on Apache 
Spark Streaming with four different setups. More 
specifically, we experimented with the trigger inter
val option set to 1, 2, 4 and 8 minutes, which 
means that whenever a batch of data with durations 
1, 2, 4 and 8 minutes gets accumulated, the mobi
lity data enrichment process gets triggered for the 
specific batch. For each setup, we measured the 
median time needed by Apache Spark Streaming 
to process the input batches and produce the 
enriched mobility data. The results of the experi
ment are presented in Table 3.

Figure 15. Examples of discovered matches between VMS (red) and AIS (green).

Table 1. AIS/VMS fusion confusion matrix with accuracy and 
precision.

Discovered Accuracy Precision

Actual True False Total 0.833493 0.846154
Positive 44 166 210
Negative 8 827 835
Total 52 993 1045

Figure 16. Performance of the Synopses Generator in terms of 
latency.

Table 2. Compression rate of Synopses Generator.
Number of Positions Critical Points Compression Rate

101281869 11778948 88.37%
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As it is obvious, the processing time of the synopses 
is about an order of magnitude faster than processing 
the noise-free raw dataset. As anticipated this result is 
aligned with the compression rate, i.e the critical 
points is about 11% of the noise-free raw dataset and 
the processing time of the critical points is about 11% 
of the processing time of the noise-free raw dataset.

8.2. Offline analytics

8.2.1. Distributed Subtrajectory Clustering
We compare DSC with two state-of-the-art subtrajec
tory clustering algorithms, S2T-Clustering (Pelekis 
et al. Pelekis, et al., 2017b) and TraClus (Lee, Han, 
and Whang 2007). The metric that we employ in order 
to evaluate the quality of the outcome of the clustering 
procedure is the well-known RMSE metric, which is 
actually a measure of intra-cluster distance between 
the representatives and the cluster members. Hence, 
the larger the RMSE, the higher the intra-cluster dis
tance and consequently the lower the quality of the 
clustering.

In order to perform this experiment, we utilized 
a month of noise-free data from July 2018 which was 
further partitioned in 4 portions (25%, 50%, 75%, 
100%). This choice was necessary because the centra
lized implementations of S2T-Clustering and TraClus 
could not scale with the full size of the datasets. As 
illustrated in Figure 17, DSC outperforms, in terms of 
RMSE, both TraClus and S2T-Clustering.

8.2.2. Hotspot Analysis
A demonstration of Hotspot Analysis applied to AIS 
data is presented in Figure 18. The analysis parameters 
consist of trawler for the vessel type, fishing for the 
vessel activity, a bounding box of Greece for the spatial 
range, and January 2018 for the temporal range. The 
cell dimensions are 0.015 degrees at the longitude 
dimension, 0.015 degrees at the latitude dimension, 
and the whole temporal range at the temporal dimen
sion. The neighborhood distance is set to 2. This 
makes sense for the longitude and latitude dimen
sions. Since there is a single timespan at the temporal 
dimension, each cell has no neighboring cells at this 
dimension. The top-2000 cells are displayed. Hotspots 
are displayed as red rectangles, coldspots as deep blue 
rectangles, and neutral cells as light blue rectangles. 
Since hotspots are exhausted before the 2000-limit is 
reached, several neutral cells are displayed as well as all 
the hotspots. Only cells with at least one vessel fishing 
within the cell are displayed.

A popup at each rectangle’s location displays the 
rank, timespan start date, and G�i statistic of the under
lying cell. It also indicates whether the cell is a hotspot, 
is neutral, or is a coldspot.

A demonstration of Hotspot Analysis applied to AIS 
and VMS data is presented in Figure 19. The analysis 
parameters consist of 50 m for the minimum depth at the 
trace location, purse seiner for the vessel type, fishing for 
the vessel activity, a bounding box of Greece for the 
spatial range, and January to August 2018 for the tem
poral range. The cell dimensions are 0.015 degrees at the 
longitude dimension, 0.015 degrees at the latitude 
dimension, and 15 days at the temporal dimension. 
The neighborhood distance is set to 2. The top-3000 
cells are displayed. Since hotspots are exhausted before 
the 3000-limit is reached, several neutral cells are dis
played as well as all the hotspots.

A popup at each rectangle’s location displays the 
rank, timespan start date, and G�i statistic of the 
underlying cell or cells. It also indicates whether 

Table 3. Experimental evaluation of online mobility data 
enrichment in Apache Spark Streaming. Noise-free AIS traces 
vs AIS Synopses processed using trigger interval option set to 
1, 2, 4 and 8 minutes.

Median Latency (in msec)

Trigger Interval Noise-Free Raw Data Synopses

1 31.54 2.87
2 60.33 5.35
4 115.67 10.32
8 226.21 20.67
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Figure 17. Comparison between DSC, S2T-Clustering and TraClus in terms of the RMSE metric.
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each cell is a hotspot, is neutral, or is a coldspot. 
Each rectangle may correspond to a single cell or 
multiple cells, since there are multiple timespans at 
the temporal dimension, and is colored according 
to the highest ranking cell underneath. The cells 
within the popup are listed in descending ranking 
order.

A demonstration of Hotspot Analysis applied to 
AIS complete data in contrast to AIS synopses data is 
presented in Figure 20. The analysis parameters are 
identical in both cases and consist of trawler for the 
vessel type, fishing for the vessel activity, a bounding 
box of Greece for the spatial range, and January to 
March 2018 for the temporal range. The cell dimen
sions are 0.015 degrees at the longitude dimension, 
0.015 degrees at the latitude dimension, and 15 days at 
the temporal dimension. The neighborhood distance 
is set to 2. All cells with at least one vessel fishing 
within the cell are displayed.

8.3. Online analytics

8.3.1. Co-Movement Pattern mining
Focusing on the maritime domain, Figure 21 illus
trates the EvolvingClusters formed at 1 August 1 
2018 within 00:00–05:00. More specifically, we 
observe that most patterns are formed at nearby 
ports, with some of them being either anchorages 
or fishing ports. Focusing on the Saronic Gulf, 

where most traffic is located, we observe in addi
tion some potential fishing areas near the Islands 
Salamina and Aegina.

In conclusion, running EvolvingClusters within the 
entirety of the dataset’s temporal horizon may uncover 
several other patterns, indicating the presence of 
(probably suspicious) phenomena such as over- 
fishing (i.e. fishing pressure level) or transshipment 
and intentional AIS switch-off (Kontopoulos et al. 
2020). These findings may inspire domain experts 
into further investigating these occurrences and 
reach some meaningful deductions.

8.3.2. LSTM-based FLP
NNs require massive amounts of data for learning pur
poses. In the literature, the employed datasets for vessel 
FLP purposes using NN models, often, include records 
obtained from vessels during one-month period (Tu 
et al. 2018; Valsamis et al. 2017). Particularly, in Tu 
et al. (2018), the selected dataset contained 403,599 AIS 
records from 180 vessels of different types. In this paper, 
in order to employ sufficient data for vessel FLP pur
poses, the proposed NN model was experimentally 
evaluated over a sample dataset of 1,078,544 AIS 
records received from 507 fishing vessels, during the 
whole year of 2018, in the Aegean Sea rectangle 
bounded by latitude in [36.0846 . . . 39.4871] and long
itude in [24.4556 . . . 26.5869].

Figure 18. Fishing Pressure Hotspot Analysis of trawler AIS data. The data spans one month from 1 January 2018 to 
31 January 2018 and is temporally grouped by the whole temporal range. The figure displays (a) the overview and (b) a detail 
of the analysis result.

Figure 19. Fishing Pressure Hotspot Analysis of purse seiner AIS and VMS data at depths greater than 50 m. The data spans eight 
months from 1 January 2018 to 31 August 2018 and is temporally grouped by 15-day timespans. The figure displays (a) the 
overview and (b) a detail of the analysis result.
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For each vessel, original AIS sequences are being 
partitioned into a number of meaningful trajec
tories, then a method evaluation procedure, similar 
to (Alexandridis et al. 2017) was adopted, i.e. the 
available trajectories were allocated randomly into 
three sets: training, validation and testing, employ
ing 50%–25%–25% ratio, respectively. Obviously, 
the three sets include different trajectories of the 
available vessels, i.e. data of the training set cannot 
be found in the validation or testing sets. Also, in 
order to prevent even the slightest chance of data 
leak, special care was taken for trajectories of the 
same vessel occurring on the same day not to be 
allocated into different sets.

Moreover, the NN parameters were determined 
using the training set and then model selection was 
performed using the validation set. Finally, the selected 
NN model’s performance was tested on the testing set, 
which is independent of training and model selection 
and thus can assess generalization capabilities.

As far as the testing phase is concerned, by taking 
advantage of the i4sea architecture, the vessels’ next 
position prediction corresponds to an online distrib
uted procedure. More specifically, streaming informa
tion from different vessels is fed to the network at the 
same time, which a) makes predictions in parallel and 
b) sends the new information in a distributed stream
ing way to other tools in the i4sea platform.

Figure 21. Toward the exploitation of EvolvingClusters in Maritime Domain (left: MCS; right: MC). Discovering anchorages and 
(potential) fishing areas.

Figure 20. Fishing Pressure Hotspot Analysis of trawler AIS complete data in contrast to AIS synopses data. The data spans three 
months from 1 January 2018 to 31 March 2018 and is temporally grouped by 15-day timespans. The figure displays two details of 
the analysis result for the AIS complete data in (a) and (c) and the corresponding details of the analysis result for the AIS synopses 
data in (b) and (d). AIS synopses data, although much sparser than AIS complete data, seems to perform well enough in this case, 
successfully identifying the vast majority of hotspots.
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Experimental results were evaluated using the 
Mean Absolute Error (MAE) of the Euclidean distance 
between the original points and the predicted ones on 
the testing set. According to the results, the LSTM 
model predicts satisfactorily the fishing vessels’ next 
position. More specifically, for the prediction intervals 
2, 5, 10, 20, and 30 minutes, the respective MAE, in the 
testing set, are 50, 128, 337, 753, and 1714 meters. For 
visualization purposes Figure 22(a) shows a fishing 
vessel’s original locations along with the predicted 
ones, for each prediction interval.

Figure 22(b), also, depicts time-related efficiency of 
the LSTM-based FLP on the i4sea platform, by means 
of processing time per predicted position and non 
prediction, i.e. non processed data.

9. Conclusions – future work

To conclude, in this paper we present the i4sea Big 
Data platform, which aims at monitoring and analyz
ing the activity of fishing vessels by following a lambda 
architecture that facilitates access to both batch pro
cessing and stream processing methods with a hybrid 
approach and thus balancing between latency, 
throughput, and fault tolerance. Moreover, we pre
sented several characteristic use-case scenarios, such 
as Mobility Data Enrichment, AIS/VMS Fusion, 
Distributed Subtrajectory Join and Clustering, Hot- 
spot Analysis, Co-movement Pattern Discovery and 
Vessel Future Location Prediction, which are seam
lessly integrated into the i4sea platform by utilizing the 
publish-subscribe communication system (Kafka).

As for future work, we plan to integrate additional 
data sources, such as ERS (electronic reporting sys
tem), which are daily electronic logs of fishing vessels 
that refer to the quantities of catches and RTH, which 
are real-time data from radars and thermal cameras. 
Moreover, we plan to extend the functionality of the 
i4sea platform, so that it will be able to support addi
tional use case scenarios by creating new pipelines of 

the already existing functionality and by seamlessly 
integrating novel offline and online analytics. Finally, 
we would like to investigate whether the existing 
architecture of the i4sea platform can be used in 
other domains, such as sustainable fishing tourism.

Notes

1. Sea Observer (COSMOS), Fishery Solution: vTrack 
Vessel Monitoring (Visma Consulting A/S) and 
Trackwell VMS (Trackwell Ltd.)

2. http://cosmosconsulting.gr/wp-content/uploads/pdf/ 
SeaObserverVMS.pdf.

3. The source code can be found here: https://github. 
com/DataStories-UniPi/Distributed-Subtrajectory- 
Similarity-Matrix.

4. For more information regarding the above discussion 
the reader is referred to (Tritsarolis, Theodoropoulos, 
and Theodoridis 2020).
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