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Abstract 
 

One of the key problems arises in binary logistic regression model is that explanatory variables being 
considered for the logistic regression model are highly correlated among themselves. Multicollinearity 
will cause unstable estimates and inaccurate variances that affects confidence intervals and hypothesis 
tests. Aim of this was to discuss some diagnostic measurements to detect multicollinearity namely 
tolerance, Variance Inflation Factor (VIF), condition index and variance proportions. The adapted 
diagnostics are illustrated with data based on a study of road accidents. Secondary data used from 2014 to 
2016 in this study were acquired from the Traffic Police headquarters, Colombo in Sri Lanka. The 
response variable is accident severity that consists of two levels particularly grievous and non-grievous. 
Multicolinearity is identified by correlation matrix, tolerance and VIF values and confirmed by condition 
index and variance proportions. The range of solutions available for logistic regression such as increasing 
sample size, dropping one of the correlated variables and combining variables into an index. It is safely 
concluded that without increasing sample size, to omit one of the correlated variables can reduce 
multicollinearity considerably. 
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1 Introduction 
 
Binary logistic regression is used to model the relationship between dichotomous dependent variable and 
multiple independent variables which are either continuous or categorical. There are some assumptions 
under binary logistic regression which are required to satisfy to give a valid result [1]. 
 

 Linearity: Explanatory variables should have a linear relationship with the logit of the response 
variable.  

 Independent errors: Errors should not be correlated.  
 Multicollinearity: Explanatory variables should not be highly correlated with each other.  
 There should be no outliers, high leverage values or highly influential points.  

 
One of the assumptions in logistic regression is explanatory variables should not be highly correlated with 
each other. The logistic regression model must satisfy the assumptions in order to valid the results. Unless 
model may have problems, such as unnecessarily inflated standard errors, spuriously low or high t-statistics, 
and parameter estimates with illogical signs and these problems may lead to invalid statistical inferences [2]. 
In experimental design, it may be possible to create situations where the explanatory variables are 
orthogonal to each other, but this is not true with observational data. Belsley [3] noted that: "... in 
nonexperimental sciences, ..., collinearity is a natural law in the data set resulting from the uncontrollable 
operations of the data-generating mechanism and is simply a painful and unavoidable fact of life." In many 
surveys, variables that are substantially correlated are collected for analysis. Shen & Gao [4] suggested a 
double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation to stabilize 
the estimates in cases of multicollinearity. Azar [5] proposed a new method to estimate the shrinkage 
parameters of Liu-type logistic estimator. Schaefer, Roi & Wolfe [6] proposed a ridge type estimator that has 
smaller total mean squared error than the maximum likelihood estimator under certain conditions. 
 
The aim of this study is to detect multicollinearity among the explanatory variables before making any 
statistical inference [7]. 
 

2 Materials and Methods 
 
Binary logistic regression model estimates the probability of occurrence of an event by fitting data to a 
logistic curve. The dependent variable is the population proportion or probability that the resulting outcome 
is equal to 1. Parameters obtained for the explanatory variables can be used to estimate odds ratios for each 
of the explanatory variables in the model. 
 
The specific form of the logistic regression model is:  
 

�(�)  =   
��������������⋯.����

����������������....����
                                                                                                       (1) 

 
where π is the probability of the outcome of interest or event, β0 is the intercept, β1, …, βp are regression 
coefficients, x1,x2,…,xp are independent variables. 
 
The transformation of the conditional mean π(x) logistic function is known as the logit transformation:  
 

�� �
�(�)

���(�)
� = �� + ���� + ����+. . . . +����                                                                                    (2) 

 
The importance of the logit transformation is that it is linear in its parameters and may range from 

     to . 
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2.1 Pearson correlation coefficient 
 
Usually we use Pearson’s correlation coefficient to measure the strength of the association between two 
variables. The general rule of thumb is that if correlation coefficient between two variables is greater than 
0.8 or 0.9, the multicollinearity is a serious problem. Formula of sample correlation coefficient is described 
as follows.   
 

   2 2 2 2

i i

i i

x y nxy
r

x nx y ny




 



 
                                                                                      (3) 

 
r is sample correlation coefficient, n is sample size, xi, yi are  the individual sample points indexed with i, �̅ 
is mean of x variable and �� is mean of y variable. 
 

2.2 Tolerance  
 
Furthermore, multicollinearity can mainly be detected with the help of tolerance and its reciprocal, called 
variance inflation factor (VIF). The tolerance is the percentage of the variance in a given predictor that 
cannot be explained by the other predictors.  
 
By definition tolerance of any specific explanatory variable is 
 

Tolerance = 1-R2                                               (4) 
 
where R2 is the coefficient of determination for the regression of that explanatory variable on all remaining 
independent variables. Tolerance close to 1 indicates that there is little multicollinearity, whereas a value 
close to zero suggests that multicollinearity may be a threat. There is no formal cutoff value to use with 
tolerance for determining presence of multicollinearity [7]. Myers [8] suggests a tolerance value below 0.1 
indicates serious collinearity problem and Menard [9,10] suggests that a tolerance value less than 0.2 
indicates a potential collinearity problem. As a rule of thumb, a tolerance of 0.1 or less is a cause for 
concern. 
 

2.3 VIF 
 
The VIF is defined as the reciprocal of tolerance as 
 

TOLERANCE
VIF

1


                                 (5) 
 
VIF shows that how much the variance of the coefficient estimate is being inflated by multicollinearity.  
Like tolerance there is no formal cutoff value to use with VIF for determining the presence of 
multicollinearity. Values of VIF exceeding 10 are often regarded as indicating multicollinearity, but in 
weaker models, which is often the case in logistic regression; values above 2.5 may be a cause for concern 
[7]. 
 
From equation (2), VIF shows us how much the variance of the coefficient estimate is being inflated by 
multicollinearity. The square root of VIF tells us how much larger the standard error is, compared with what 
it would be if that variable were uncorrelated with the other explanatory variables in the equation. Like 
tolerance there is no formal cutoff value to use with VIF for determining the presence of multicollinearity. 
Values of VIF exceeding 10 are often regarded as indicating multicollinearity, but in weaker models, which 
is often the case in logistic regression; values above 2.5 may be a cause for concern. 
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2.4 Eigen values, condition index and variance proportions 
 
Moreover, eigen values for the scaled, uncentered cross-product matrix, condition indices and the variance 
proportions for each explanatory variable is used to identify multicollinearity. If any eigen value is larger 
than others, then of the regression parameters can be greatly affected by small changes in the explanatory 
variables or outcome. If the eigen values are fairly similar then the fitted model is likely to be unchanged by 
small changes in the measured variables [11]. 
 
The condition indices are computed as the square root of the ratio of the largest eigen value to the eigen 
value of interest. It is defined as  
 

max

k

K





                                  (6) 
 
where λmax and λk are the maximum and the kth eigen values respectively. When there is no collinearity at all, 
the eigen values, condition indices will equal unity. As collinearity increases, eigen values will be both 
greater and smaller than unity. If one or more of the eigenvalues are small (close to zero) and the 
corresponding condition number is large, then we have an indication of multicollinearity. There is no hard 
and fast rule about how much larger a condition index needs to be indicated collinearity problems. An 
informal rule of thumb is that if the condition index is 15, multicollinearity is a concern; if it is greater than 
30, multicollinearity is a very serious concern [7]. 
 
The variance of each regression coefficient can be broken down across the eigen values. The variance 
proportion explains the proportion of the variance of each regression coefficient that is attributed to each 
eigen value [7]. 
 

2.5 Methodology 
 
The correlation coefficients among the explanatory variables are used as first step to identify the presence of 
multicollinearity. Then collinearity is checked using tolerance and VIF values. Then it is confirmed by using 
condition index, eigen values and variance proportions. Finally remaining variables are checked again 
whether there are correlations between them. 
 

2.6 Data 
 
Motorcycle accident data were used to evaluate diagnostic measurements. Secondary data used from 2014 to 
2016 in this study which consists of 32926 accidents were acquired from the Traffic Police headquarters, 
Colombo in Sri Lanka. In this study, it is considered only the road accidents involved motorcyclists at fault. 
The response variable is severity of accidents which consists of two levels namely grievous and non-
grievous accidents. Explanatory variables were accident cause, time, road surface, weather condition, light 
condition, age of motorcyclist and location. Except age of motorcyclist variable, other variables are 
categorical. Dummy variables are created for those categorical variables. 
 

3 Results and Discussion 
 
Correlation matrix of highly correlated explanatory variables were presented in Table 1. It illustrates that the 
correlation coefficients between variables light and time as well as road surface and weather are highly 
correlated with each other and indicated them as bold. These high correlation coefficients signify the 
presence of severe multicollinearity between the explanatory variables light condition and time of accident 
as well as road surface and weather condition. 
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Table 1. Pearson correlation matrix between 2 explanatory variables 
 

Variables Time Weather condition Light condition 
Day Night  Clear Rainy Night, no street 

lighting 
Light 
Condition 

Daylight 0.971 
(0.000) 

-0.971 
(0.000) 

0.095 
(0.124) 

-0.095 
(0.124) 

-0.837 
(0.000) 

Night, no street lighting -0.862 
(0.000) 

0.862 
(0.000) 

-0.092 
(0.247) 

0.092 
(0.247) 

1.000 
(0.000) 

Road 
Surface 

Dry 0.088 
(0.164) 

-0.088 
(0.164) 

0.966 
(0.000) 

-0.966 
(0.000) 

-0.085 
(0.321) 

Wet -0.088 
(0.164) 

0.088 
(0.164) 

-0.966 
(0.000) 

0.966 
(0.000) 

0.085 
(0.326) 

Cell value: correlation coefficient 
p value 

 
Examining the correlation matrix may be helpful but not sufficient. It is quite possible to have data in which 
no pair of variables has a high correlation, but several variables together may be highly interdependent. 
Much better diagnostics are produced by tolerance and VIF values. Table 2 indicates the collinearity 
statistics.  
 

Table 2. Collinearity statistics 
 

Variables  Categories Collinearity statistics 
Tolerance VIF 

Gender Male .994 1.030 
Female .992 1.022 

Validity of license With license .945 1.023 
Without license .985 1.016 

Time Day time .045 19.456 
Night .050 20.181 

Weekday/Weekend Weekday .997 1.003 
Weekend .993 1.102 

Location  Bend/Junction .994 1.006 
Road .997 1.004 

Accident cause Speeding .971 1.030 
Aggressive driving .965 1.023 
Others .959 1.043 

Road surface Dry .059 15.457 
Wet .067 14.927 

Weather condition Clear .061 15.451 
Rainy .067 14.944 

Light condition Daylight .052 19.314 
Night, no street lighting .057 18.654 
Others .186 5.364 

Age Age .984 1.017 
 
Results of Table 2 observe that the high tolerances for the variables vehicle type, gender, validity of license, 
accident cause, alcohol test, weekday/weekend, location and age of driver but very low tolerances for the 
variables time and light condition. Similarly, the variance inflation factor corresponding to the explanatory 
variables vehicle type, gender, validity of license, accident cause, alcohol test, weekday/weekend, location 
and age of driver are very close to 1, but for variables time and light condition, the VIF are larger than 2.5. 
Using these collinearity statistics, it can be concluded that the data almost certainly indicates a serious 
collinearity problem. 
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The collinearity diagnostics are also checked to confirm the multicollinearity and displayed in Table 3. It can 
be seen that a large deviation in the final two factors, with the eigen value resulting very close to zero and 
the condition index resulting quite large in comparison. Furthermore, it is observed that the largest condition 
index is 28.641, which is beyond the range of our rules of thumb and indicate a cause for serious concern. 
According to the Table 3, variance in the regression coefficients of time and light condition is associated 
with eigen value corresponding to the dimension 11 and variance in the regression coefficients of surface 
and weather is associated with eigen value corresponding to the dimension 10 which clearly indicate 
dependency between the variables. Hence the result of this analysis clearly indicates that there is collinearity 
between light condition and time of accident as well as road surface and weather condition. This dependency 
results in the model becoming biased. 
 

Table 3. Collinearity diagnostics 
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1 4.550 1.000 .00 .01 .01 .01 .00 .01 .00 .00 .00 .00 .00 
2 1.841 1.572 .00 .00 .00 .00 .00 .00 .00 .02 .00 .02 .00 
3 1.090 2.043 .00 .01 .00 .01 .14 .03 .00 .00 .00 .00 .01 
4 1.005 2.128 .00 .00 .00 .00 .37 .78 .00 .00 .00 .00 .00 
5 .988 2.146 .00 .00 .00 .01 .10 .02 .00 .00 .92 .00 .00 
6 .877 2.278 .00 .00 .00 .01 .38 .09 .00 .00 .00 .00 .01 
7 .753 2.459 .00 .03 .03 .74 .00 .06 .00 .00 .00 .00 .00 
8 .688 2.572 .00 .00 .54 .02 .00 .28 .00 .00 .00 .00 .00 
9 .612 2.727 .00 .40 .26 .04 .00 .17 .00 .00 .00 .00 .00 
10 .033 11.828 .00 .50 .14 .15 .00 .05 .00 .97 .04 .96 .00 
11 .006 28.641 .98 .04 .01 .00 .00 .01 .96 .00 .00 .00 .94 

 

3.1 Solutions to multicollinearity 
 
Once the collinearity between variables has been identified, the next step is to find solutions in order to 
remedy this problem. There are a few solutions to overcome this such that combining variables, increasing 
sample size, omitting highly correlated variables, ridge regression, and principal component analysis [12]. 
Since combining variables does not make sense and increasing sample size is not possible, here, we focus for 
the omitting highly correlated variables. Any of the collinear variables could be omitted. There is no 
statistical ground for omitting one variable over another. Thus, first, time is removed from the data and 
repeats the analysis. However, collinearity still exists among the levels of light variable. Then time is added 
and light condition is removed and repeats the analysis. Moreover, weather condition is removed to reduce 
the multicollinearity between road surface and weather condition. Results are presented in Table 4. 
 

According to Table 4, tolerances for all the predictors are very close to 1 and all the VIF values are smaller 
than 2.5. Therefore, it can be concluded that multicollinearity is not a concern when one of the correlated 
variables is omitted. 
 

Collinearity diagnostics for the remaining variables are also checked and indicated in the Table 5. According 
to the Table 5, all the condition indices are lower than 15 and it can be concluded that multicollinearity is not 
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a concern when one of the correlated variables is omitted. It can be seen that each explanatory variable has 
most of its variance loading onto a different dimension (validity of license  has 42% of variance on 
dimension 7, weekday/weekend has 77% of the variance on dimension 6, location has 78% of the variance 
on dimension 5, gender has 55% of the variance on dimension 3, accident cause has 65% of the variance on 
dimension 9, time has 65% of the variance on dimension 2, surface has 78% of the variance on dimension 4 
and age has 56% of the variance on dimension 8). There were no such variables that have significantly high 
proportion of variances on the same small eigen value. This also indicates that multicollinearity is not a 
concern. 
 

Table 4. Collinearity statistics for remained variables 
 

Variables  Categories Collinearity statistics 
Tolerance VIF 

Gender Male .993 1.007 
 Female .992 1.022 
Validity of license With license .978 1.010 
 Without license .981 1.020 
Time Day time .980 1.028 
 Night .975 1.026 
Weekday/Weekend Weekday .997 1.003 
 Weekend .998 1.002 
Location  Bend/Junction .997 1.003 
 Road .998 1.004 
Accident cause Speeding .639 1.565 
 Aggressive driving .633 1.580 
 Others .638 1.560 
Road surface Dry .993 1.004 
 Wet .992 1.008 
Age Age .984 1.017 

 
Table 5. Collinearity diagnostics for remaining variables 
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1 4.412 1.000 .00 .02 .01 .01 .00 .01 .02 .00 .01 
2 1.035 2.064 .00 .01 .00 .02 .21 .02 .65 .08 .00 
3 .981 2.121 .00 .00 .00 .00 .55 .01 .01 .08 .00 
4 .941 2.166 .00 .00 .01 .01 .18 .00 .00 .78 .00 
5 .754 2.420 .00 .04 .09 .78 .02 .00 .02 .02 .00 
6 .652 2.601 .00 .11 .77 .02 .00 .00 .09 .01 .00 
7 .572 2.777 .00 .42 .00 .00 .02 .00 .61 .02 .00 
8 .475 3.048 .01 .35 .09 .15 .02 .04 .20 .00 .56 
9 .133 5.766 .98 .00 .00 .00 .00 .65 .00 .00 .39 
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Therefore, it can be safely concluded that multicollinearity is no more a problem to fit the binary logistic 
regression model. Hence the intensive analysis and fitting of the binary logistic regression model after 
minimizing the collinearity problems may produce stable and unbiased model to predict the outcome 
variable [7]. 
 

4 Conclusion 
 
One of the problems in binary logistic regression model typically arise is that explanatory variables of the 
logistic regression model are highly correlated among themselves. The problem of multicollinearity arises 
when one explanatory variable is not a linear function of another explanatory variable. The presence of 
multicollinearity specifies the biased coefficient estimates and very large standard errors for the logistic 
regression coefficients. Therefore, researchers always try to remove the multicollinearity among explanatory 
variables. 
 
The range of solutions available for logistic regression, such as omitting highly correlated variables, ridge 
regression, combining variables into an index, and increasing the sample size. Since combining variables 
does not make sense and increasing sample size is very expensive solution to multicollinearity, even though 
it gives a viable solution, we focus for the omitting highly correlated variables. It can be seen that 
multicollinearity is not a problem after omitting highly correlated variables. Hence, reliable and valid 
predictive logistic regression model can be built based on the adequate inspection and measures of remedy 
taken against multicollinearity. 
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