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Abstract 

 
In this paper, the vibration of a composite system consisting of a rotating rigid hub and a flexible thin-walled 

beam is considered and studied. The equation of motion is derived in the previous work of Warminski and 

Latalski. The method of multiple scale technique has been applied to obtain frequency response equations 

near the simultaneous internal and primary resonance case in the absence of the acceleration of the hub. The 

vibration stability at this resonance case is investigated from the frequency response equations and studied 

using Liapunov’s methods. The effects of changes in selected structural parameters on the vibrating system 

behavior are investigated and studied numerically. Through the performed studies of the effects of changes in 
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selected system a shift of the steady state amplitudes and the multi-valued of the bent curves are observed and 

the steady state amplitudes of the beam and hub have decreasing in the instability regions for natural 

frequencies. Finally, a comparison with the papers of previously published work is reported. 

 

 

Keywords: Simultaneous primary resonance; frequency response curves; system stability; jump phenomenon. 

 

1 Introduction 
 

The dynamics of rotating beams are widely used in many applications such as flexible manipulators, thin and 

long wind turbine blades, helicopter rotor blades, rotating blades in turbo machinery, locomotive electrical 

generators and turbine engine blades. In most of these applications the base excitation take the form of a 

translational acceleration and affect the overall performance of the rotating structure. So, most of these structures 

may exhibit complicated dynamics and the increased lateral blade vibrations lead to the large responses and the 

dynamic instability phenomenon. Research work concerning vibration of the coupled bending-torsional problems 

has been carried out by [1-4]. 

 

Fundamental work regarding vibrations of such a structure were attributed to many authors. Lee and Sheu [5], 

discussed the vibration of two coupled differential equations for a rotating inclined beam. The vibration system 

was considered as the superposition of a static subsystem and a dynamic subsystem and the method of Frobenius 

was used to establish the exact series solutions of the system. The numerical results illustrated the influence of 

the physical parameters on the natural frequencies of the dynamic system. Wen and Kuo [6], investigated the 

natural frequency of the flawise bending vibration, coupled lagwise bending and axial vibration for the rotating 

beam. The rotating beam was subdivided into several equal segments and the governing equations of each 

segment were solved by a power series. Numerical examples were studied to demonstrate the accuracy and 

efficiency of the proposed method. Kamel and Amer [7] simulated the vibration of a cantilever beam under multi 

parametric excitation forces. They applied the multiple scales method to obtain the frequency response equations 

and to study the steady state solution of the sub-harmonic excitation system. Effects of the different parameters 

on the system behavior were also investigated. Kamel et al. [8] was studied also the nonlinear non-planar 

oscillations of a cantilever beam under multi external and multi parametric excitation forces. This system was 

analyzed using multiple scales method and the steady state response and its stability near the simultaneous sub-

harmonic solution was obtained and studied. The numerical solutions were focused on both the effects of 

different parameters on the frequency response curve and the behavior of the system at resonant conditions. 

 

Research work of the vibration analyses of rotating beams were reported in the work by [9-11]. They have been 

made to study the effect of a non-linear constraint on simply supported and rotating beams, respectively. In this 

context many researchers have investigated the dynamic characteristics of rotating blades and rotor structures 

[12–16]. Petrovet et al. [12] analyzed the multi-harmonic forced response large-scale finite element models of 

bladed disks taking into account the nonlinear forces acting at the contact interfaces of blade roots. Examples of 

application to the analysis of root damping and forced response levels were given and numeric al investigations 

of effects of contact conditions at root joints and excitation levels were explored for practical bladed disks. He et 

al. [13] studied the forced vibration response of a simplified turbine blade with a new kind of under-platform dry 

friction dampers. The vibrations of the two dampers, and the horizontal and transverse platform vibrations were 

coupled by friction at the contact interfaces. The Finite Element method and Modal Superposition were applied 

to solve the dynamic response and quasi-periodic vibration is found even under harmonic excitation. Qin et al. 

[14] studied the fundamental understanding about the influence of the bolt loosening at the rotating joint 

interface on the rotor dynamics, which are helpful for the bolt loosening detection of rotating components in 

heavy-duty rotating machinery. Also, Qin et al. [15] studied the vibration analysis of a rotating cylindrical shell 

coupled with an annular plate. The equations of motion for the rotating shell-plate combination were derived by 

taking Chebyshev polynomials as the admissible functions and the Rayleigh–Ritz method. They also, evaluated 

the effects of the geometric parameters and the boundary and coupling conditions on the vibration behavior of 

the coupled structure. Li et al. [16] established a dynamic model of a rotor-blade system considering the effect of 

nonlinear supports at both ends. The nonlinear vibration and stability of the system were studied by multiple 

scales method. The results show that the original hardening type of nonlinearity may be enhanced or transformed 

into softening type due to the positive or negative nonlinear stiffness terms of the bearing and withe increase in 

rubbing force and support stiffness, the jump-down frequency, resonant peak and the frequency range in which 
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the system has unstable responses increase. Furthermore, Cao et al. [17] investigated a dynamical equation of 

motion for a rotational cantilever flexible blade in a centrifugal force field and applied Galerkin method to 

discretize the partial differential equations to a 3-DOF system so as to compute the dynamic responses of the 

aero-engine blade constrained by friction interfaces due to tip-rub. These equations have been solved numerically 

and several results related to damped vibration characteristics of the blade with regard to rotational speed and 

gap were numerically obtained. Also, Cao et al. [18] developed a new structural dynamic model to study the free 

vibration characteristics of pre-twisted rotating functionally graded sandwich blades. The effects of frequency 

parameters such as the twist angle, the thickness ratio, the aspect ratio, the layer thickness ratio, the scalar 

parameter of volume fraction, the stagger angle, and the rotation velocity on the vibration characteristics were 

investigated. Furthermore, frequency locus veering and mode shape exchanging phenomena were found both in 

both static and dynamic states. 

 

Different types of composite beam structures were generally used in different applications and in most of these 

applications the base excitation take the form of a translational acceleration and affect the overall performance of 

the rotating structure. Das et al. [19] investigated the free, out-of-plane vibration of a rotating beam with a non-

linear spring–mass system. The solution of the resulting non-linear partial differential equations and the 

boundary conditions have been obtained applying the method of multiple time-scales. Subsequent non-linear 

study indicated that there was a pronounced effect of the spring and its mass and the influence of the spring–

mass location on frequencies of the rotating beam was investigated. Xue and Tang [20] developed a general 

methodology for the vibration control of a nonlinear rotating beam. An integral sliding mode approach was 

proposed for the vibration control of the system with nonlinear coupling effect between the hub rotation and the 

beam transverse vibration. This integral sliding mode control is continuous in nature, which can alleviate or 

avoid the chattering problem. A series of simulation studies demonstrated that the proposed control method can 

effectively suppress the beam vibration induced by the hub rotation and the external disturbance. The dynamic 

characteristics of a rotating beam played a significant role in the overall performance and design of various 

engineering systems. Pohit et al. [21-23] investigated the effect of non-linear elastomeric constraint on a rotating 

blade of the modeled the characteristics of an elastomeric material. A numerical perturbation technique has been 

applied to determine the frequency–amplitude relationship of a rotating beam under transverse vibration. The 

free flexural-longitudinal vibrations of rotating beams and derived a system of ordinary differential equations 

which were analyzed and studied using the nonlinear normal modes by Peshek et al. [10]. Avramov et al. [24,25] 

derived and analyzed the nonlinear flexural-flexural-torsional vibrations of asymmetric cross-sections rotating 

beams without and with the center of gravity and shear centre. Suitable expansion in terms of modes of coupled 

flexural-torsional vibrations have been used to simulate the beam vibrations and the free vibration was studied by 

using nonlinear normal mode. 

 

The equations of motion of composite Timoshenko beam experiencing variable angular velocity were derived 

and studied by several researchers. Dakel et al. [26] studied the dynamic behavior of a rotor in the presence of 

base excitations. They proposed the rotor model based on the Timoshenko beam finite element, taking into 

account the rotary inertia, gyroscopic inertia, and shear deformation of the shaft as well. Moreover, Quasi-

analytical and numerical solutions for symmetric and asymmetric rotor configurations were given by means of 

stability charts, Campbell diagrams, steady state responses as well as orbits of the rotor. Arvin et al. [27], 

investigated and studied the linear and nonlinear free vibrations of rotating compositeTimoshenko beams. The 

Galerkin discretization approach has been applied to the linearized updated equations of motion to determine the 

linear normal modes and the associated natural frequencies of the rotating composite Timoshenko beam.The 

Galerkin discretization approach was applied to the linearized updated equations of motion to determine the 

linear normal modes and the associated natural frequencies of the rotating composite Timoshenko beam. Also, 

Georgiades et al. [28], studied and derived equations of motion of a rotating composite Timoshenko beam 

utilizing the Hamilton principle. A consequence of terms related to non-constant rotating speed was presented 

and they showed that both the variable rotating speed and nonzero pitch angle have significant impact on systems 

dynamics. 

 

Recently, a lot of scientists have been focused on the investigation on the mechanical, thermal behavior of the 

functionally graded sandwich plates and functionally graded materials (FGM) which are extremely used in the 

engineering and industry. Luat et al. [29] presented a study of a refined simple shear deformation theory in 

combination with nonlocal elastic theory to investigate the bending, free vibration and buckling of novel bi-

functionally graded sandwich nanobeams. They derived and solved the equations of motion of  simply supported 

nanobeams by using the Hamilton principle and closed-form solution based on Navier’s method. Their outcomes 
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of this study can serve as benchmarks for the future works on the bending, free vibration and buckling response 

of the bi-FGSW beams, plates and shells. Thom et al. [30] introduced a novel numerical outcomes of vibration 

response analysis of cracked FGM plate based on phase-field theory and finite element method. The finite 

element formulations are derived based on first order shear deformation Mindlin plate theory. Their numerical 

outcomes demonstrated that the stiffeners have a powerful impact on the free vibration of the structure. These 

computed data can be stratified for engineers when analyzing and designing these kinds of structures in practice. 

Also, the nanoplates have been utilized widely in electronic device [31,32]. Wang and Fang [31] used the 

classical plate theory and an analytical solution to demostrate the free vibration of nanoplates under the 

consideration of both static and dynamic flexoelectricit. Duc et al. [32] based  the free vibration and static 

buckling of nanoplates by using a shear deformation theory with the finite element method and the phase-field 

theory. The efficiency of their study  was increased when taking into account the impact of flexoelectricity. Their 

calculation outcomes extremely help the design, fabrication and practical utilize of nanoscale structures.  

 

For multi-layer and three-layer composite beam plates play a very crucial role in the mechanical behavior of the 

beam. Nguyen et al. [33,34] presented a new study of equations of triple-layer composite plates with layers 

connected by shear connectors under moving load utilizing Mindlin’s theory and finite element modelling. They 

reached by numerical tests to minimize plate oscillation. Moreover [34], the authors discussed the free vibration 

response and static bending of cracked composite plates utilizing third-order shear deformation theory and phase-

field theory. They solved the equation of motions by using the finite element method. The phase-field theory is a 

new method for simulating fracture issues.   

 

In this paper, a two degree of freedom system consisting of the rotating beam and the hub system subjected to 

external force is considered and studied and the dynamics of a thin-walled cantilever beam with a rigid hub 

performing motions of rotation and in plane translation. Our work is an extension and at the same time, a 

specification of the previous work of Warminski et al. [35,36]. The forced vibrations are examined under 

periodic excitation and without translational motion . The multiple scale perturbation technique is 

applied to derive the steady state equation and amplitude-phase modulating equations. In the absence of the 

acceleration of the hub the stability of the steady state solution near the simultaneous primary resonance is 

investigated and studied by applying Liapunov’s methods. The effects of different system parameters on the 

frequency response curve are studied. The numerical solutions are performed to validate the accuracy of the 

approximate results and enabled us to obtain the jump phenomenon of the hub and the beam system and to study 

curve bending of the steady state solution.  

 

2 System Model and Mathematical Analysis 
 

The system of slender, straight and elastic composite thin-walled beam clamped at the rigid hub is shown in    

Fig. 1, is experiencing rotational motion as well as translational one. The nonlinear differential equations that 

describe the motion of the given system subjected to harmonic excitation force is given as [35,36]. 

  

 

                                                                                                                              
(1a) 

 
2

2 21 22 23 21( ) ( ) ( ) ( ) Z(t) (t) ( ) Z( ) Z(t)cost t t t Z t t                       

           22 sin cos( ) p (t)f t            (1b) 

 

Where Z,  are  the generalized coordinate of  the studied coupled flexural-torsional motion of thin-walled 

beam and the hub system, are the damping coefficients of the beam and the hub respectively, 1,   are 

the natural frequency of the beam and the hub. Coefficients of   and
 

are the non-

linear parameters of the beam and the hub system.
  

are characteristic parameters of the beam 

f 0 

2 2

1 1 12 13 14 11( ) ( ) Z( ) ( ) ( ( )) (t) ( ) Z( ) Z(t)cosZ t Z t t t t Z t t                   

12 sin 0   



1 2, 
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and the hub,  is the acceleration of the hub, p is a linear parameter of the hub (2
   p), and  are the 

external excitation force and frequency of the hub system and is small perturbation parameter. 

 

 
 

Fig. 1. The model of rotating thin-walled beam and the hub 

 

By applying the multiple scales perturbation technique [37,38],we can obtain first-order approximate solutions to 

Eqs. (1a) and (1b) by seeking solutions in the following form:        

 
2

0 0 1 1 0 1( ; ) ( , ) ( , ) O( )Z t z T T z T T   
 
                                                                                   (2a) 

 
2

0 0 1 1 0 1( ; ) ( , ) ( , ) O( )t T T T T      
                                                                                    

(2b)  

 

where 
0T t  and 

1T t  are the fast and slow time scales respectively, the time derivatives are transformed 

into   

 

 

Substituting equations (2a), (2b) and (3) into equations (1a) and (1b), and equating the coefficients of the same 

power of  in both sides, we get the following system of differential equations: 

 

,                                                                                            (3) 

                                                                                                             (4a) 

 

                                                                                                                           (4b) 

 

       (5a) 

 

 

                                          0cos t pf                                                                                        (5b) 

 

                                                                                   (6a) 

 

                                                                     (6b) 

 

The general solutions of Eqs. (4a) and (4b) can be written in the form: 

 

 

 f 





0 1

d
D D

dt
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2
2

0 0 12
2

d
D D D

dt
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0 2 2
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Where ,  are denote unknown functions in , which can be determined from  eliminating the 

secular terms at the next approximation, and the bar stands for the complex conjugate of the preceding functions. 

Inserting equations (6a), (6b) into equations (5a) and (5b), the following are obtained: 
 

 

                                

                     
(7a) 

 

 

                                
 

                                                              
(7b)

 
 

The general solution of the first approximation of equations (7) are given by: 
 

 

                                                             (8a)
 

 

 

                                                                                                           (8b) 

 

where and   are constant functions in  (see Appendix-1). 

 

Before we proceed to the next step of the analysis, the reported resonance cases at this approximation order are 

obtained as: 
 

   (a) Internal resonance: .                             (b) Primary resonance: .  

   (c) Simultaneous or incident resonance: any combination of the above resonance cases. 
 

2.1 Numerical results 
 

The numerical solutions for the system of nonlinear differential equations (1), are obtained by applying Runge-

Kutta forth order method and using Maple 16, as shown in Fig. 2 at the following selected parameters values. 
 

,

, 

1 2 12 13 140.01807, 0.05, 2.9063, 0.3527, 0.4602         
 

 

From Fig. 2, we have the steady state response for the non-resonant system at some practical values of the 

equations parameters. The rotating beam Z is about  of the external excitation force f , and the amplitude of 

the rotating beam Z is decreasing with some chaos, while the amplitude of the hub system  for is about  

of the external excitation force. 
 

Some different resonance cases are confirmed numerically as shown in Fig. 3. From these figures we find the 

worst resonance case is the simultaneous internal and primary resonance ,where the steady state 

response of the rotating beam  is about  of the external excitation force and the amplitude of the 

hub system  is about  of the external excitation force . 
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Fig. 2. Response of the basic case of the rotating beam and hub system 
 

  
 

Fig. 3a. System behavior at internal resonance case 
 

 

  
 

Fig. 3b. System behavior at primary resonance case  
 

 
 

Fig. 3c. System behavior at simultaneous resonance case  
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2.2 Steady state solution and stability analysis 
 

The steady state amplitude of the considered system is investigated near the simultaneous resonance case 

 by introducing the two detuning parameters and to describe quantitatively the closeness 

of   and to  as follows 

 

,                                                                                                              (9) 

 

Substituting equation (9) into the small-divisor and secular terms of equations (7), we get the following 

solvability conditions: 

 

 

                                                                                                         (10a) 

 

            (10b) 

 

To analyze equations (10), we write and Bo(T1) in the polar form 

 

,     

                                                        

                      (11) 

 

Where
 1a  and 

2a  are the steady-state amplitudes of the motion of the rotating beam and the hub respectively, 

and  are the phases of the motion. Inserting equation (11) into equations (10) and separating the real and 

imaginary parts we obtain: 
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For steady-state solutions, we have , and equations (12) become in the form 
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(13a)  

 

                            (13b) 

 

                                                                                     (13c) 

 

                                                                     (13d)  

 

From equations (13), the frequency response equation for three different cases is investigated as follows: 

 

Case 1 (Practical case): a10, a20 

 

  (14) 

 

                        (15) 

 

Case 2 (Ideal case): a10, a20 

 

                                                                                           (16)  

 

Case 3 (trivial solution):a10, a20  

 

                                                                                                              (17)  

 

2.3 Stability analysis 
 

i) To study the stability of the steady state solution at the obtained fixed points of the linear system, let us 

consider Ao(T1) and Bo(T1) in the Cartesian form as 

 

     ,                                                                     (18) 

 

Where  are real values, where , .Then from equations (10), the linear form 

is obtained as: 
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                                                                   (19b) 

 

Substituting equation (18) into equations (19), and separating the real and imaginary parts yields to: 

 

                                                                                        (20a) 

 

                                                                                          (20b) 

 

                                                                                     (20c) 

 

                                                                             (20d) 

 

The stability of the linear solution is determined by the zeros of the characteristic equation: 

 

                                        

     )          21) 

 

This can be simplified to obtain the eigenvalue equation 

 

                                                                                                       (22) 

 

where  are constants given in Appendix-1. 

 

By applying  Routh-Hurwitz criterion [39,40], to investigate the stability of the steady-state solution, we find the 

necessary and sufficient conditions for all the roots of Eq. (22) satisfies the following relations 

 and possess negative real parts. 

 

ii) Now to study the stability of the steady-state solution at the obtained fixed points of the nonlinear system, let 

us consider 

 

,                                                             (23) 

 

Where and  are  the  solutions of  equations (13) and , and    are perturbations  

which  are  assumed  to be small compared  to  , and . Substituting equation (23) into equations 

(12) and expanding for small and  with keeping the linear  terms only, we get: 
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                                          (24a) 

 

       (24b)

  

 

             (24c) 

 

 

                                                               (24d) 

 

The stability of the steady state solution in this case depends on the eigenvalues of the following square 

determinant  
 

                                                                               (25) 

 

Where  denotes the eigenvalues of the above determinant and ij are constants that given in Appendix-1. 

According to Routh-Huriwitz criterion, the necessary and sufficient conditions for the steady-state solution to be 

stable is , and the roots of equation (25), possess negative 

real parts. 
 

3 Results and Discussion 
 

In this section, we will report and discuss numerical solutions of the frequency response equations and the effects 

of different parameters on the steady state solution, the results are shown graphically near the solution of the 

simultaneous resonance case. 
 

For the practical case 
1 2( 0, 0)a a  , the frequency response equations are given by equations (14) and (15) 

and solved numerically at the previous selected values. As shown in Fig. (4a), the curve of the steady state 

amplitude of the rotating beam against the detuning parameters is bent to the left denoting softening effect 

with multi-valued and jump phenomenon. Also the observed relation between the amplitude of  response and 

 detuning is nonlinear. It should be noted that the shift to the right is due to an apparent increase in the natural 

frequency with increasing nonlinearity [37]. Thus, the jump phenomenon is a nonlinear phenomenon, which 

takes place for soft as well as hard springs (for negative or positive values of any nonlinear parameter). As the 

frequency is decreased, the response amplitude jumps to a lower amplitude for a soft spring and to a higher 

amplitude for a hard spring. 
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Fig. 4. Effects of different parameters on the detuning parameter ( against ) 1a 1
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The effects of different parameters on the steady-state amplitude 
1a  are obtained as shown in Fig. (4b,…, 4h), 

and discussed. From Fig. 4b and 4e, the steady state amplitude 
1a

 
is a monotonic decreasing function of the 

parameters 1  and 
12 of the beam with increasing in the instability region for 

12 and all the curves bent to the 

left. For the hub damping coefficient  as shown in Fig. 4c, the steady state amplitude 
1a  is a monotonic 

decreasing and the curves are shifted to the left with decreasing in the instability region. From these figures it can 

be noticed that the parameters of 
1 12 2, ,    are inversely proportional of the amplitude of 

1a . Also as shown 

in Fig. 4d, the steady state amplitude 
1a

 
is a monotonic increasing function of  f  with increasing in the 

instability region and the curves are shifted to the left because the rotating of the hub by the external force. From 

Fig. 4g, the steady state amplitude 
1a

 
is a monotonic decreasing function of the parameter 

13 and the curves are 

shifted to the right. For the parameter 
22 as shown in Fig. 4f, the steady state amplitude 

1a  is a monotonic 

increasing and all the curves bent to the left.  For the natural frequency of the rotating beam 1 as shown in             

Fig. 4h, the steady state amplitude 
1a

 
is a monotonic decreasing function and all the curves bent to the left with 

decreasing in the instability region. For the parameters 
1 2 1, , ,f    and 

22  the frequency response curves are 

bent to the left and have a softening effect because the jumps take place in the opposite direction. The jumps are 

a consequence of the multivalued of the frequency response, which is in turn due to the domination of the 

negative values of the nonlinearity parameters of 
12 22,  . 

 

  
 

  
 

Fig. 5. Effects of different parameters on the detuning parameter ( against ) 
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Also, the steady state amplitude  of the hub system against detuning parameter  is obtained as shown in 

Fig. 5a. From Fig. 5b and 5d, the steady state amplitude   is a monotonic decreasing function of the parameters 

and  with decreasing in the instability region for , which is mean the hub will be stable. For the 

excitation force the steady state amplitude   is a monotonic increasing function of the force with 

increasing in the instability region as shown in Fig. 5c, that means the hub is unstable for big values of the 

excitation force .   

  

Finally the parameters  and  for the quadratic terms in the equations of the beam and hub have no 

significant effect on the vibration of the composite system and on the steady state amplitudes of the system, that 

means the occurrence of saturation phenomena is obtained. 

 

4 Conclusions 
 

The vibrations of a second order, non-linear of the hub system and a flexible composite thin-walled beam are 

investigated. The dynamics of the rotating cantilever beam in the absence of the acceleration of the hub is 

considered. The system governing equations indicate a slight difference between  and .The amplitude-

phase modulating equations of both the beam and hub oscillations modes are obtained by applying the multiple 

scale perturbation method. The algebraic equations that describe the system steady state amplitudes are obtained 

as a function of the system parameters, and the detuning parameters and .The effects of system 

parameters on the steady state amplitudes of vibrating system are investigated using frequency response curves 

and reported. The conclusions that we got were as follows: 

 

1. The steady state response for the non-resonant system at some practical values of the equations 

parameters. The rotating beam  is about  of the external excitation force , and the amplitude is 

decreasing with some chaos. The amplitude of the hub system  for is about  of the external 

excitation force .  

2. The worst resonance case of the rotating beam and the hub system occurs at simultaneous primary and 

internal resonance case 1,     where the steady state response of the rotating beam is about 

0
02000

of the external excitation force and the amplitude of the hub system is about 
0

0120
 of the 

external excitation force  .   

3. The steady-state amplitude 1a
 is a monotonic decreasing function of the parameters 1 12 13, ,    and 1

of the beam with increasing in the instability region for 12
 and decreasing in the instability region for 

1  . 

4. The steady-state amplitude  is a monotonic decreasing function of the parameter  of the hub with 

decreasing in the instability region, and monotonic increasing function of the parameters 22
and the 

excitation force of the hub with increasing in the instability region for . 

5. For increasing values of the parameters , and , the frequency response curves are shifted to left 

for  and shifted to the right for and . 

6. The steady state amplitude  is a monotonic decreasing function of the parameters and  of the 

hub with decreasing in the instability region for . 
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7. The steady state amplitude  is a monotonic increasing function of the excitation force of the hub 

with increasing in the instability region for . 

 

8. In a comparison with previous work [35], practical analysis of system dynamics started for free vibrations 

of the non-moving and non-rotating structure. The author studied the natural frequency of the system with 

respect to the relative hub inertia. For the forced vibrations are examined under periodic excitation and 

without translational motion . Dynamics for the structure is typically linear and the resonance for 

the hub-beam combined system occurs at . The oscillations of the hub, from the resonance 

observed around the natural frequency, were very small (close to zero), and the frequency, which 

corresponds to the natural frequency of the separated cantilever beam, hub vibrations are suppressed but 

beam vibrations also remain small. In this paper, a first order approximation solution of the beam and hub 

is obtained. The solution is acquired by applying multiple scale method [37,38]. The system frequency 

response curves are studied around simultaneous of primary and internal resonance case. The steady state 

amplitudes of the rotating beam and hub are plotted at different values of system parameters. The effects 

of system parameters on the steady state amplitudes and the multi-jump phenomenon are reported 

numerically. 

 

Now, we are interested in studying the vibration of a composite system consisting of a rotating rigid hub and a 

flexible thin-walled beam subject the forced vibrations under periodic excitation and translational motion as a 

future work. 
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Appendix-1 
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