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Abstract 
 

This paper presents a reverse converter for the moduli set {22n+1-1, 2n-1, 22n-1} using a Chinese Remainder 
Theorem (CRT) algorithm and reverse method of data conversion. We compare our result with other 
converters found in literature that have the same Dynamic Range (DR) and our proposed algorithm has a 
better performance in terms of speed. 
Aims: The aim of this study is to design a reverse converter for the moduli set {22n+1-1, 2n-1, 22n-1}, 
determine the speed and compare it with other moduli set with the same DR in literature. 
Methodology: We applied Chinese Reminder Theorem algorithm for data conversion. 
 

 
Keywords: Reverse converter; moduli set; Chinese remainder theorem; dynamic range; data conversion.  
 

1 Introduction 
 
Residue Number System (RNS) is an unconventional number system with high potential for accelerating the 
speed of arithmetic operations. The implementation of addition and multiplication in parallel and fast 
architecture is possible in RNS due to its inherent carry-free properties [1,2]. In addition to these properties, 
it has also received a considerable attention in literature due to its modularity and fault tolerance [3]. The 
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RNS is considered as one of the efficient alternative number system capable to increase the speed in 
hardware implementation of Digital Signal Processing (DSP) [4-6]. 
 

Many moduli sets are in use in RNS with different Dynamic Range (DR).  The most popular 3n-bit DR 
moduli set known as traditional moduli set is {2n-1, 2n, 2n+1} [7]. Others are {2n-1, 2n-1, 2n+1}, {2n-1-1, 2n-1, 
2n} [8]. The dynamic range of 3n-bits produced by this moduli set will not be able to be used by any 
application with higher DR. 4n-bit DR 4 moduli set such as {2n-1, 2n, 2n+1, 2n+1+1}, {2n-1, 2n, 2n+1, 2n+1-1}, 
{2n-1, 2n, 2n+1, 2n-1-1} [9] were suggested. In order to raise parallelism in RNS arithmetic, 5n-bit moduli set 
were suggested {2n, 22n-1, 22n+ 1}, {2n-1, 2n, 2n+1, 22n+1} etc. were also proposed [10].   
 

RNS is gaining popularity among RNS researchers, but not widely used because of the following problems 
(i) sign detection, (ii) magnitude comparison, (iii) overflow detection (iv) Conversion from residue number  
to binary number etc. 
 

The objective of this paper is to address the conversion issue by designing a RNS converter with high speed 
and compare it with similar converters on the state of the art with the same dynamic range. 
 

RNS has three main parts; binary to residue conversion (forward conversion), arithmetic operations and 
residue to binary conversion (reverse conversion) [7]. Obviously, RNS to Binary conversion is either based 
on Chinese Remainder Theorem (CRT) or Mixed Radix Conversion (MRC) [11-15]. In this paper we 
discuss a reverse conversion using Chinese Remainder Theorem method. The rest of this paper is organized 
as follows: In section 2, we give a background to RNS, in section 3, we discuss the proposed converter, in 
section 4 we present the hardware realization, in section 5 we discuss the performance evaluation and finally 
we give the conclusion of the paper in section 6.  
 

2 Background  
 
Residue Number System (RNS) is the representations of a large integer number with a set of smaller integer 
numbers in order to make computation fast and efficient. RNS history may be traced back to 1599 years; it 
begins with a Chinese Scholar, Sun Tzu [16] with Chinese riddle as follows: What is the number such that 
when divided by 7, 5 and 3 will have the remainders of 2, 3 and 2 respectively? The procedure of obtaining 
the solution to the riddle is known as Chinese Remainder Theorem (CRT).  
 

2.1 RNS representation 
 
Residue Number System is defined by a set of relatively prime integers called the moduli. The moduli set is 
represented as {m1, m2, m3… mn} where mk is the kth modulus. Each integer can be represented as a set of 
smaller integers called the residue [17]. The residue numbers are represented by {r1, r2, r3, … rn} where  rk  is 
the  kth residue. The residue rk   is defined as the least positive remainder when X is divided by the modulus 
mi. The RNS of X with respect to the moduli mi is denoted by |X|mi = ri 
 
Dynamic range in RNS is the product of all the moduli sets denoted by M = πn

i=1mi  i.e. M = m1m2m3… mn 
[18]. An RNS with a dynamic range M will have a unique representation between 0 and M-1 [19] 

 

2.2 Data conversion methods 
 
Data conversion is an important topic in RNS. Data need to be converted from binary to RNS before any 
operation can be performed on them. However, the success of hardware realization depends on both data 
conversion and choice of moduli. Data conversion is divided into two categories: (i) Forward conversion and 
(ii) Reverse conversion.   
 
Forward conversion: This is the conversion of binary number to RNS. In binary system, forward 
conversion can be represented as  
 

|xm| = |∑n-1
j=0bj2

j|m 
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For any n-bit non negative integer X in the range 0 < x ≥ 2n-1 , the hardware computation of forward 
conversion is based on Look up Table (LUT)  [20].  

 
2.3 Reverse conversion in residue number system 
 
Reverse conversion is the conversion of residue number system to a conventional number (binary numbers). 
Reverse conversion is one of the complex parts of RNS [21]. The success of reverse conversion depends on 
forward conversion [22]. Reverse conversion is based on two popular algorithms: Chinese Remainder 
Theorem (CRT) [23,24] and Mixed Radix Conversion (MRC) [25] algorithms. The use of CRT entails a 
large modular adder whereas MRC is a sequential process that requires a number of Look–Up Table (LUT) 
[26]. 
 
The Chinese Remainder Theorem is a very useful algorithm for reverse conversion; it assumes that a number 
will have a unique representation in RNS if we chose appropriate moduli for the RNS. The algorithm 
involves computation of inverse and is given by 
 

X= |Ʃn
i=1|xi Mi

-1|mi Mi |M 
      

2.4 Moduli choice  
 
The following points are to be carefully considered in the choice of RNS moduli 
 

♦ The moduli must be relatively primed.  
♦ The smaller the moduli, the faster the arithmetic operations.  
♦ To avoid overflow, the dynamic range should be large enough. 
♦ Efficiency of the RNS moduli should be considered and high efficiency is more desirable, example 

the RNS (15|13|11) require 12 bits it can represent 212 = 4096, whereas only 2145. numbers are 
presented the efficiency is 52%. 

♦ Select prime numbers in sequence until a desired dynamic range is obtained.  
♦ Moduli numbers can be restricted to power of 2. 

 

3 The Proposed Algorithm 
 
In this section, we proposed a reverse converter algorithm for the moduli set 22n+1-1. 2n-1, 22n-1 using Chinese 
Remainder Theorem (CRT). 
 
If we assume m1 = 22n+1-1, m2= 2n-1 and m3 = 22n-1  then, the following theorem hold to be true: 

 
Theorem 1: The moduli set {22n+1 – 1, 2n-1, 22n-1} are pairwise relatively prime numbers 

 
Proof:  Using Euclid’s theorem gcd (m1,m2) = gcd(m2, |m1|m2) = 1 
gcd (22n+1 – 1, 2n-1) = gcd(2n-1,| 22n+1 – 1|2

n-1) 
= gcd(2n-1, -1)  = 1 
Then,  gcd (22n+1 – 1, 22n-1) = gcd(22n-1,|22n+1 – 1|2

2n
-1) 

To evaluate |22n+1 – 1|2
2n

-1 
|22n+1 – 1|2

2n
-1 = |22n+1 |2

2n
-1  |– 1|2

2n
-1 

= |2 x  2
2n|2

2n
-1  - |– 1|2

2n
-1 

=  |2|2
2n

-1  x  2
2n|2

2n
-1  - 1 

= 2 x |2
2n-1  + 1 |2

2n
-1 -1   

= 2 – 1  
=1 

Implies gcd(22n-1, 1) = 1 
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Also  
gcd (22n – 1, 2n-1) = gcd(2n-1,|22n – 1|2

n-1) 
if  |22n – 1|2

n-1 =  -1 
then  gcd(2n-1,|22n – 1|2

n-1) =  gcd(2n-1, -1) =1 
 
By the above proof, it is confirmed that 22n+1 - 1, 2n-1, 22n-1 are relatively prime since the greatest common 
divisor (gcd) are 1. Therefore, our proposed moduli set can be used in RNS and we can proceed to determine 
its reverse converter.  

 
The confirmation of Theorem 1, is an assurance that our proposed moduli set can be used in RNS. We can 
therefore proceed to design its reverse converter. 

 
Lemma 1: The residue of a negative number in modulo (2k -1) is the one’s complement of t where 0 ≤ t < 2k 
-1.  

 
Lemma 2: The multiplication of a residue number t by 2s in modulo (2k -1)is carried out by k bit circular left 
shift where s is a natural number [27] 

 
Let our m1 = 22n+1 - 1, m2 = 2n-1, m3 = 22n-1, The CRT is given by 

 

X = |∑n
i=1|xi M i

-1|mi M i |M                                                                            (1) 

 

where Mi =π
n
i=1mi;  Mi= �

�� ;  |M1
-1 x M1| = 1                                                                   (2) 

 

M1= �
��;  M2= �

�� ; M3 = �
�	                                                                                (3) 

 
Theorem 2:  Given the moduli set 22n+1 - 1,   2n-1,   22n-1  where m1 = 22n+1 - 1, m2 = 2n-1, m3 = 22n-1, the 
following hold to be true: 
 

|M1
-1 |m1 = -2n+3                                                                                                           (4) 

 
|M2

-1 |m2 =  1                                                                                                                         (5) 
 

|M3
-1 |m3 = 2n+1                                                                                                           (6) 

 
Proof 
 
(i) Equation (4) is true only if we can demonstrate that   (2n-1)(22n-1)( -2n+3) =1 w.r.t  22n+1 – 1 

|(2n-1)(22n-1)( -2n+3)|2
2n+1 

– 1 = (22n-1)( -22n+2)|2
2n+1 

– 1 
= |(2-122n+1-1)|2

2n+1 
– 1 ( -2

122n+1)|2
2n+1 

– 1 
=  |((2-122n+1-1+1)-1)|2

2n+1 
– 1 (-2

122n+1-1 +1)|2
2n+1 

– 1 

= (2-1(1) -1)(-21)  
=(-2-1)(-21) 
=1. 

(ii) Equation (5) is also true only if we can demonstrate that   (22n+1-1)(22n-1)(1) =1 w.r.t  2n-1  
|(22n+1-1)(22n-1)|2

n-1 = (212n2n-1)( 2n2n-1)| 2
n-1 

= |(2121212n-12n-1)-1)( 21212n-12n-1-1)| 2
n-1 

=   (0-1)(0-1) 
= (-1)(-1)  
= 1 

 
(iii)  Equation (6) is also true only if we can demonstrate that   (22n+1-1)(2n-1)( 2n+1) =1 w.r.t  22n-1 

|(22n+1-1)(2n-1)( 2n+1)|2
2n

-1 = |(22n+1-1)(22n )|2
2n

-1 
= |(( 21(22n-1+1)-1) |2

2n
-1 )(2

2n -1+1)|2
2n

-1 
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=|(21(1)-1)( 1)  
=2 -1 
= 1 

From equation (1)  
X = |∑n

i=1|xi Mi
-1|mi M i |M = ∑n

i=1Mi
-1|mi   x  Xi  - M x K 

M = (22n+1 – 1)(2n-1)(22n-1) 
M1 = (2n-1)(22n-1) 
M2 = (22n+1 – 1)(22n-1) 
M3 = (22n+1 – 1)(2n-1) 
 
X =|(m2m3M1

-1X1)+ (m1m3M2
-1X2)+ (m1m2M3

-1X3)|M - M x K 
 
   =[(2n-1)(22n-1)(-2n+2)X1+ (22n+1-1)( 22n-1)(1)X2+(22n+1-1)(2n-1) (2n+1)X3] – M x K 
   =|(-24n+2+22n+2)X1+ (24n+1 - 22n+1 - 22n+1)X2 + (24n+1 - 22n )X3|M – M x K 
   =|(-24n+2+22n+2)X1+ (24n+1 - 22n+1 - 22n+1)X2 + (24n+1 - 22n )X3|M – (2n-1)(22n+1 – 1)(22n-1) x  K 
   =2n-1{(-23n+3+ 2n+3)X1+ (23n+2 -2n+2 – 2n+1 +21-n) X2 + 23n+2 -2n+1) X3} – (22n+1 – 1)(22n-1) x K 

 
By computing the floor values in modulo 2n-1 

 


 �
���� = [(-23n+3+ 2n+3)X1+ (23n+2 -2n+2 – 2n+1 +21-n) X2 + 23n+2 -2n+1) X3]M’                                        (7) 

 
where M’ = (22n+1 – 1)(22n-1) 
 

              
 �
����  = |(-2n+3)(22n-1) X1+ (22n-1) (2n+2- 21-n)X2)|M’+ (23n+2-2n+1) X3|M’      

      = |(-2n+3)X1|M’  + |2n+2 -21-n)X2|M’  +|(23n+2-2n+1)X3|M’                                                                   (8) 
 

For hardware convenience,  let compute the value of 
 �
���� using   

 

X =  
 �
���� x 2n-1 - Xi                                                                                                     (9) 

 
Form (11) let, 
 

P1 = |-2n+3X1|M’                                                                                                      (10) 
 

P2 = |(2n+2 -2n-1) X2|M’                                                                                                                         (11) 
 

 P3 = |(23n+2 -2n+1) X3|M’                                                                                                           (12) 
 


 �
����  = P1 + P2 + P3                                                                                            (13) 

 
For effective implementation of our hardware, we simplify equations (10), (11) and (12) further.  
 
3.1 Evaluation of P1, P2 and P3 
 
By applying lemma 2 in the modulo lemma 2 in modulo M’ =(22n+1-1)(22n-1)  
 

The bit representations of our residues x1,x2 and x3 are as follow: 
 
P1 = |-2n+3X1|M’  =  11..11 x1,2n,x1,2n-1,….x1,1x1,0   111 ..1111         
                                    n+3                    2n+1                   n-3                                        (14) 

 4n+1 
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       P2 = |(2n+2 – 2n-1)X2|M’   
P2 is divided into two parts as 
P21 =   |(2n+2 X2|M’        
       = 00…00 x1,n-2x1,n-3 ….x1,1x1,0 000…00                                                                                             (15) 
            n+2                n-1                       2n 

      
4n+1 

 

P22 = | � 2���X2|M’                
       = - 000…00 x1,n-2x1,n-3 ….x1,1x1,0 000…00              
               n-2                 n-2                  2n+3 

 
                                             4n+1 

        111…111 x1,n-2x1,n-3 ….x1,1x1,0 111…111              
                     n-2            n-2             2n+3                                

                                              4n+1 
 
P3 = |(23n+2 – 2n+1)X2|M’                
P3 is also divided into two namely P31 and P32 represented below  
P31 = |(23n+2 X2|M’  = 000…00 x3,2n-1x3,2n-2 ….x3,1x3,0 000…00 
                                  = (000…00 + 00…00 ) x3,2n-1x3,2n-2 ….x3,1x3,0   

  n+1             2n+1                2n 
 

                                  =  00…00 ) x3,2n-1x3,2n-2 ….x3,1x3,0   
             2n+1             2n 

4n+1 
P32 =|– 2n+1 X3|M’  l= - 000…00 x3,2n-1x3,2n-2 ….x3,1x3,0 000…00              
                                    = 111..11 x3,2n-1x3,2n-2 ….x3,1x3,0 111..11              
                                         
                                             n+1                      2n               n 

 
                                                                              4n+1 

4 Hardware Realization  
 
The hardware implementation of the proposed Reverse converter is based on equations (10), (11), (12) and 
(13). The variables P1, P2 and P3 are added by carry save adder (CSA) to produce C and S. The carry 
propagation is used to add C and S which finally produced the final result as seen in Fig. 1.  
 

 
 

Fig. 1. Architecture of the proposed converter 
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5 Performance Evaluation and Comparison 
 
The primary digital characteristics of any digital design are the speed, area and power. Latency is the time 
between the data input and the processing data output while, timing is the logical delay between elements. 
When a design doesn’t meet timing, it means that the delay of the critical path is larger than the target clock 
period [28]. Since our architecture is CRT based, therefore, it eliminates intermediate binary stage in the 
proposed architecture and our architecture facilitates the implementation of RNS based processor by 
reducing the latency and the complexity introduced by binary stage..  
 
In order to evaluate the performance of the proposed reverse converter, we compare it with similar best 
known reverse converters. The dynamic range of the proposed converter is 5n bits and is compared with 
other converters in literature with the same dynamic range. The comparison considered four converters; it 
compares our converter with each as can be seen in Table 1. The proposed converter has a better 
performance in term of speed than [19,13]. Also [12] has the same delay with our converter and lastly [3] is 
better than our proposed converter.    
 

Table 1. Table of comparison 
 

Converter Number of 
Moduli set 

Dynamic 
Range 

Delay Remark 

The proposed 
Converter 

3 5-n bit 8n+3 The proposed Converter 

[19] 3 5n-bit 10n+13 The proposed converter is better 
[13] 3 5-n bit 8n+4 The proposed converter is better 
[12] 4 5-n bit 8n+3 Same with the proposed 

converter 
[3] 3 5-n bit 8n+1 Better than the proposed 

converter 
 

6 Conclusion  
 
In this paper, a reverse converter for three moduli set {22n+1-1, 2n-1, 22n-1} with 5n-bit dynamic range based 
on CRT is presented. Comparison of our proposed reverse converter with some converters in literature that 
have the same dynamic range [19,13] showed that our proposed reverse converter gives a better performance 
in term of speed. However, it will be of future research interest to describe the scheme on VHDL and carry 
out the implementation on Field Programmable Gate Array (FPGA).  
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