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Abstract

A continuous one step Trigonometrically-fitted Third derivative method whose coefficients
depend on the frequency and step size is derived using trigonometric basis function. The method
obtained is use to solve standard problems with oscillating solutions. We also discuss the stability
properties of the new method . Numerical result obtained via the implementation of the methods
shows that the new method performs better than the one step Trigonometrically-fitted second
derivative method proposed by Ngwane and Jator [1].
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1 Introduction

Mathematical modelling of real-life problems usually result into functional equations, e.g Ordinary
Differential Equation(ODE), Partial Differntial Equation, Integral and Integro Differential equation,
Stochastic Differential Equation and others. ODEs which normally arises in biological models,
circuit theory models, circuit theory models, fluid and chemical kinetics models may or may not
have exact solutions, thus a need for a numerical solution.

In this paper, we consider the of first order differential equation

y′ = f(x, y), y(a) = y0, x ∈ [a, b], (1.1)

with periodic or oscillating solutions where f : ℜ× ℜm → ℜm, y, y0 ∈ ℜm

Several numerical methods (Brugnano and Trigiante [2], Jator, Akinfenwa and Yao [3], Odejide and
Adeniran [4]) have been proposed for numerical solution of equation (1). Multiderivative method
for solving systems of ODE was proposed by Obrenchkoff [5] and special cases of the Obrenchkoff
were later proposed by Enright [6], Cash [7], Jia-Xiang, Jiao-Xun [8] and of recent Ehigie et al. [9].
And of these methods, the justification for including higher term in such method was clearly stated
by Enright [6] which will include method with higher order, to obtain stability at infinity and to
obtain a method with reasonable stability properties on the neighborhood of the origin. This class
of Enright’s schemes is a special class of the Obrenchkoff [5] methods which are found to be of order
p = k + 2 for a k step method.

Ngwane and Jator [1] developed a continuous Trigonometrically-fitted Second Derivative Method
whose coefficients depend on the frequency and stepsize, the method is constructed using trigonometric
basis functions. Numerical experiments demonstrate the efficiency of the method for the numerical
solution of ordinary differential equations with oscillatory solutions.

In this paper, we are motivated by the work of Ngwane and Jator [1] to develop a continuous third
derivative multistep method.

2 Development of the Method

In this section, main objective is to develop a continuous trigonometrically fitted third derivative
method which produce a discrete method as by-product. The method has the form

yn+1 = yn + h[β0(u)fn + β1(u)fn+1)] + h2α1(u)gn+1 + h3γ1(u)en+1 (2.1)

where u = kh, βj(u), αj(u), γj(u), j = 0, 1, are coefficients that depend on the stepsize and
frequency. yn+j is the numerical approximation to the analytical solution y(xn+j), where

fn+j = f(xn+j , yn+j),

gn+j =
df(x, y(x))

dx
|xn+j
yn+j ,

en+j =
d2f(x, y(x))

dx2
|xn+j
yn+j

In obtaining (2.2), we proceed by seeking approximation to exact solution y(x) of the form

U(x) = a0 + a1x+ a2x
2 + a3 cos(kx) + a4 sin(kx) (2.2)

where a0, a1, a2, a3, a4 are coefficients that must be uniquely determined. we then impose that the
interpolating function(2.3) coincide with analytical solution at point xn to obtain the equation

U(x) = yn (2.3)
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we also determine that the function (2.3) satisfies the differential equation (2.1) at the point xn+j ,
j = 0, 1 to obtain the following set of equations

U ′(xn+j) = fn+j , j = 0, 1, U ′′(xn+j) = gn+j , j = 1, U ′′′(xn+j) = en+j , j = 1. (2.4)

Equation (2.4) and (2.5) lead to a system of five linear equations which are solved to obtained the
values of aj , j = 0(1)4. The value of aj ’s are then substituted into (2.6) to obtain our continuous
trigonomtrically fitted third derivative of the form

U(x) = yn + h[β0(k, x)fn + β1(k, x)fn+1] + h2α1(k, x)gn+1 + h3γ1(k, x)en+1 (2.5)

k is the frequency, β0(k, x), β1(k, x), α1(k, x), γ1(k, x) are continuous coefficients. The continuous
coefficients in Equation (2.6) is used to generate the method of the form in Equation (2.2)

β0 =
− cos(u) + 1− u2

2

u(sin(u)− u)

β1 =
cos(u) + u sin(u)− 1− u2

2

u(sin(u)− u)

α1 =
− cos(u)− u sin(u)

2
− 1

u(sin(u)− u)
(2.6)

γ1 =
−2 + 2u sin(u) + 2 cos(u)− u2 cos(u)

2
− u2

2

u3(sin(u)− u)

3 Error Analysis and Stability

3.1 Local truncation error

As u → 0, the coefficient given by equation (3.1) are subject to heavy cancellations, thus Taylor
series must be used (Simos [10]).

β0 =
1

4
+

1

240
u2+

1

16800
u4+

1

2016000
u6− 31

13970880000
u8− 89

518918400000
u10− 2689

762810048000000
u12+· · ·

β1 =
3

4
− 1

240
u2− 1

16800
u4− 1

2016000
u6+

31

13970880000
u8+

89

518918400000
u10+

2689

762810048000000
u12+· · ·

α1 = −1

4
+

1

240
u2+

1

16800
u4+

1

2016000
u6− 31

13970880000
u8− 89

518918400000
u10− 2689

762810048000000
u12+· · ·

γ1 =
1

24
− 1

201600
u4− 1

9072000
u6− 13

9313920000
u8− 17

2724321600000
u10+

3533

18307441152000000
u12+· · ·

(3.1)
For practical computations when u is small, it is advisable to use the series expansion (3.1) . Thus
the Local Truncation Error for method (2.6) subject to equation (3.1) is obtained as

LTE = − h5

2880
(k2y(3)(xn) + y(5)(xn)) +O(h6) (3.2)

The method (2.6) specified by (3.1)is a fourth-order method.
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3.2 Stability

Proposition 1. The trigonometrically fitted third derivative method (2.6) is applied to a test
equation y′ = λy, y′′ = λ2y and y′′′ = λ3y, it yields

yn+1 = M(q;u)yn q = hλ, u = kh (3.3)

with

M(q;u) =
1− qβ1(u)− q2α1(u)− q3γ1(u)

1 + qβ0
(3.4)

Proof. We begin by applying (2.6) to the test equation y′ = λy, y′′ = λ2y and y′′′ = λ3 respectively,
by letting q = hλ, u = kh, we obtain a linear equation which is used to solve for yn+1 with (3.4) as
consequence.

Definition 1. A region of stability is a region in the q-u plane, in which the rational function
|M(q;u)| ≤ 1

Definition 2. The method (2.6) is zero stable provided the root of the first characteristics polynomial
have modulus less than or equal to unity and those of modulus unity are simple(Lambert [11], [12]).

Definition 3. Method (2.6) is consistent if it has order p > 1 (Fatunla [13]) The trigonometrically
fitted third derivative method is consistient as it has order p > 1 and zero stable, hence convergent
since Convergence =Zero stability + consistency

4 Implementation

In the spirit of Ngwane and Jator [1], method (2.6) is implemented to solve without predictors nor
starting values. For instance , if we let n = 0 in (2.6), then y1 is obtained on the sub interval
[x0, x1], as y0 is obtained from the IVP, in a similar way, if we let n = 1, y2 is obtained on the sub
interval [x1, x2], as y1 is known from the previous computation and so on until we reach the final
sun interval [xN−1, xN ]. All computation were carried out , with the aid of MAPLE 17 software.
For Linear problems, we solve (2.1) directly using the feature solve [], while for nonlinear problems,
we solve (2.1) using the feature fsolve [].

5 Numerical Examples

In this section, we give numerical examples to illustrate the accuracy of our new method

Example 5.1: We consider an inhomogeneous IVP by Simos [10]

y′′ = −100y + 99sin(x), y(0) = 1, y′(0) = 11, x ∈ [0, 1000]

with the exact solution given as

y(x) = cos(10x) + sin(10x) + sin(x).

The method in Simos [10] is of order 4 and exponential fitted, hence comparable to our method.
we take k = 1

The numerical result for Example 5.1 were presented in Table 1. The problem was compared to
other existing methods. Our new method displayed better accuracy within the range of integration.
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Table 1. Comparism of error for Example 5.1

No. of steps Simos [10] N Ngwane and Jator [1] Ours
N max||yi − y(xi)|| max||yi − y(xi)|| max||yi − y(xi)||

4004 1.4× 10−01 1000 1.7× 10−03 9.9× 10−04

16004 1.1× 10−02 2000 2.4× 10−04 4.1× 10−05

32004 8.4× 10−04 8000 1.6× 10−06 7.0× 10−07

64004 5.5× 10−06 16000 1.0× 10−07 1.1× 10−09

Example 5.2: We also consider the moderately stiff problem

y′ = −y − 10z, y(0) = 1

z′ = −10y − z z(0) = 1

exact solution y(x) = e−x cos 10x, z(x) = e−x sin 10x

The numerical result for Experiment 5.2 were presented in Table 2 below. The problem was
compared to other existing method. Our new method displayed better accuracy within the range
of integration. we take k = 2

Table 2. Numerical result for Example 5.2

No. of steps Ehigie et al. [9] Ehigie et al. [9] Ours Ours
N max||yi − y(xi)|| max||zi − z(xi)|| max||yi − y(xi)|| max||zi − z(xi)||
125 8.33× 10−06 1.32× 10−6 1.635× 10−12 4.795× 10−12

250 1.13× 10−07 1.36× 10−08 2.0× 10−15 1.6× 10−14

500 6.30× 10−12 8.19× 10−12 0 0

Example 5.3: Linear Kramarz problem. (Nguyen et al. [14])

y′′(x) =

(
2498 4998
−2499 −4999

)
y(t), y(0) =

(
2
−1

)
, y′(0) =

(
0
0

)
0 ≤ t ≤ 100

Exact solution: y(x) = (2 cos(t),− sin(t))T

We use this example to show the efficiency of our new method. Nguyen et al. [14] used the
trigonometric implicit Runge-Kutta method and Ngwane and Jator [1] use the trigonometric second
derivative method to solve the above linear Kramarz problem. Clearly, ours performs better. we
take k = 3

Table 3. Comparism of error for Example 5.3

No. of steps Nguyen et al. [14] N Ngwane and Jator [1] Ours
N max ||yi − y(xi)|| max ||yi − y(xi)|| max ||yi − y(xi)||
73 3.3× 10−12 10 1.3× 10−15 5.9× 10−15

142 9.0× 10−12 43 8.4× 10−14 1.1× 10−15

170 3.7× 10−12 80 7.1× 10−15 0

Example 5.4: Consider the given two-body problem which was solved by Ozawa [15].

y′′
1 = −y1

r3
, y′′

2 =
y2
r3

, r =
√

y2
1 + y2

2
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y1(0) = 1− e, y′
1(0) = 0, y2(0) = 0, y′

2(0) =

√
1 + e

1− e
x ∈ [0, 5π]

wher, 0 ≤ e < 1 is an eccentricity. The exact solution of this equation problem is given as

exact : y1(x) = cos(m)− e, y2(x) =
√

1− e2 sin(m)

where m is the solution of the Kepler’s equation k = x+ e sin(m), we take k = 5.

Table 4 contains the results obtained using the proposed method. These results were compared
with the explicit singly diagonally implicit Runge-Kutta methods given in Ozawa [15]. In terms of
accuracy, Table 4 clearly shows that Ours performs better than those in Ngwane and Jator [1] and
Ozawa [15].

Table 4. Comparism of error for Example 5.4

No. of steps Ozawa [15] N Ngwane and Jator [1] Ours
N max||yi − y(xi)|| max||yi − y(xi)|| max||yi − y(xi)||
170 2.9× 10−01 150 1.2× 10−02 4.1× 10−04

225 7.8× 10−03 200 5.7× 10−03 1.0× 10−04

381 1.4× 10−03 300 3.1× 10−04 8.8× 10−06

680 1.7× 10−04 600 1.6× 10−06 7.0× 10−08

2144 1.9× 10−06 1600 4.9× 10−10 2.8× 10−12

6762 2.0× 10−08 3200 1.9× 10−12 5.5× 10−14

6 Conclusion

We have proposed a Trigonometrically fitted third derivative formula for solving oscillatory IVPs.
The method is A-stable and hence can conviniently handle stiff IVPs. This method has the
advantages of being self-starting, having good accuracy with order 4, and requires only three
functions evaluation at each integration step.
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