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Abstract 
 

In this paper, we introduce the notions of compatible mappings of type(R), type (K) and type (E) in 
Mengers paces and prove some common fixed point theorems for these mappings. In fact, we call these 
maps as variants of compatible mappings. 
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1 Introduction 
 
The notion of probabilistic metric space as a generalization of metric space was introduced by Menger [1]. 
In Menger theory, the notion of probabilistic metric space corresponds to situations when we do not know 
exactly the distance between two points, but we know probabilities of possible values of this distance. In this 
note he explained how to replace the numerical distance between two points � and � by a function  ���, �, ��whose value ���, �, �� at the real number �  is interpreted as the probability that the distance 
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between �and � is less than �. In fact the study of such spaces received an impetus with the pioneering work 
of Schweizerand Sklar [2]. The theory of probabilistic metric space is of paramount importance in 
Probabilistic Functional Analysis especially due to its extensive applications in random differential as well 
as random integral equations( see references) [3,4,5,6,7,8,9,10,11,12] and [13]. 
 
Now, we give preliminaries and basic definitions in Menger space which are useful in this paper. 
 
Definition 1.1 [2]: A mapping �: ℝ� → ℝ� is called distribution function if it is non decreasing and left 
continuous with inf�����: � ∈ ℝ�� = 0 and sup�����: � ∈ ℝ�� = 1 . We will denote the set of all 
distribution functions by ℒ. 
 
Let ℒ be the set of all distribution functions whereas ℋ be the set of specific distribution function (Also 
known as Heaviside function) defined by  
 ℋ��� =  �0, ��� ≤ 01, ��� > 0." 
 
Definition 1.2 [1]: A probabilistic metric space is a pair �#, ��, where # is a nonempty set and �: # × # →ℒ  is a mapping satisfying the following: 
 
For all �, �, % ∈ # and  �, & ≥ 0, 
 ��(����, �, �� = 1 if and only if � = �; ��*����, �, 0� = 0; ��+����, �, ��  = ���, �, ��; ��,����, �, �� = 1 and ���, %, &� = 1, then ���, %, � + &� = 1. 
 
Every metric space �#, .� can always be realized as a Probabilistiv metric space by ���, �, �� = ℋ�� −. ��, ���, for all �, � ∈ #, where ℋ be the set of specific distribution function  defined in the definition 1.1 
[2]. 
 
Probabilistic metric space offers a wider framework than that of the metric space and cover even wider 
statistical situations. 
 

Definition 1.3 [2]: A mapping  ∆ ∶ 20,13 × 20,13 → 20,13 is called a �-norm if for all 4, 5, 6 ∈ 20,13, 
 

(1) ∆�4, 1� = 4, ∆�0,0� = 0; 
(2) ∆�4, 5� = ∆�5, 4�; 
(3) ∆�6, .� ≥ ∆�4, 5� for 6 ≥ 4, . ≥ 5; 
(4) ∆�∆�4, 5�, 6� = ∆74, ∆�5, 6�8. 

 
Example 1.4: The following are the four basic �-norms: 
 

(i) The minimum �-norm: ∆9�4, 5� = min�4, 5�. �ii� The product �-norm: ∆;�4, 5� = 45. 
(iii)  The Lukasiewicz �-norm: ∆<�4, 5� = =4> �4 + 5 − 1,0�. 
(iv) The weakest �-norm, the drastic product: 

 ∆?�4, 5� = �min�4, 5� �� max�4, 5� = 1,0,           B�ℎD%E�&D. " 
 
We have the following ordering in the above stated norms: 
 ∆?< ∆<< ∆;< ∆9 . 
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Definition 1.5 [1]: A Menger space is a triplet �#, �, ∆�, where �#, �� is a probabilistic metric space and ∆ 
is a �-norm with the following condition:  
 
For all  �, �, % ∈ # and �, & ≥ 0, 
 ��G����, %, � + &� ≥ ∆����, �, ��, ���, %, &��. 
 
Example 1.6: Let # =  ℝ, ∆ �4, 5� = =�H �4, 5�, for all 4, 5�H 20, 13 and  
 ���, �, �� =  �ℋ���,    ��� ≠ �1,      ��� = �  ;   "where ℋ��� =  �0, ��� ≤ 01, ��� > 0." 
 
Then �#, �, ∆� is a Menger space. 
 
Definition 1.7: A sequence ��J� in Menger space �#, �, ∆� is said to be:   
 

(i) Convergent at a point � ∈ # if for every K >  0 and  λ>  0, there exists a positive integer LM,N such 
that ���J, �, K� >  1 −λ for all H ≥ LM,N. 

(ii)  Cauchy sequence in # if for every K >  0 and λ>  0, there exists a positive integer LM,N   such 
that ���J, �O, K� >  1 −λ for all H, = ≥ LM,N. 

(iii)  Complete if every Cauchy sequence in # is convergent in #. 
             
In 1996, Jungck [14] introduce the notion of weakly commuting mappings.  
 
Definition 1.8 [14]: Two  self-mapping  �(  and  P( of  a Menger  space �#, �, ∆� are  said  to  be  weakly 
commuting if  ���(P(�, P(�(�, �� ≥ ���(�, P(�, �� for  each  � ∈ # and  for  each  � > 0. 
             

In 1982, Sessa [15] weakened the concept of commutativity to weakly commuting mappings. Afterwards, 
Jungck [16] enlarged the concept of weakly commuting mappings to compatible mappings.  
 

In 1991, Mishra [17] introduced the notion of compatible mappings in the setting of probabilistic metric 
space. 
 
Definition 1.9 [17]: Let �#, �, ∆�be a Menger space such that the � −norm ∆ is continuous and �(, P( be 
mappings from # into itself. Then �( and P( are said to be compatible if Q�=J→R���(P(�J, P(�(�J, ��  =  1, 
whenever ��J� is a sequence in # such that Q�=J→R�(�J  = Q�=J→RP(�J  =  S(, for some S( ∈ #. 
 
Definition 1.10: Two self-mappings �( and P( on Menger space�#, �, ∆�are said to be non-compatible if 
either  
 Q�=J→R ���(P(�J, P(�(�J , �� is non-existent orQ�=J→R ���(P(�J, P(�(�J , �� ≠ 1,  
 
Whenever ��J�  is  a  sequence  in  # such  that  Q�=J→R ��J= Q�=J→R P�J =  S(, for  some  S( ∈ #. 
 
Further, Singh and Jain [18] proved some fixed point theorems for weakly compatible maps in the setting of 
Menger space.  
 
Definition 1.11 [18]: Two  maps  �(  and  P(  are  said  to  be  weakly  compatible if  they  commute  at their  
coincidence  points. 
 
In 1999, Pant [19] introduced a new continuity condition in Menger space, known as reciprocal continuity as 
follows: 
 
Definition 1.12 [19]: Let  �(  and  P(be self- mapping of a  Menger  space�#, �, ∆�. Then �(  and  P( are  
said  to be  reciprocally continuous  if  Q�=J→R �(P(�J =�(%, Q�=J→R P(�(�J = P(%, whenever  ��J�  is a 
sequence in # such that  Q�=T→R �(�J= Q�=J→R P(�J = %for some % ∈ #. 
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Remark 1.13 [19]: If �( and P(are both continuous, then they are obviously reciprocally continuous, but the 
converse is not true. Moreover, common fixed point theorems for compatible pair of self-mappings 
satisfying contractive conditions, continuity of one of the mappings implies their reciprocal continuity, but 
not conversely. 
 
In 2004, Rohan et al. [20] introduced the concept of compatible mappings of type (R) in a metric space as 
follows: 
 
Definition 1.14 [20]: Let �(  and  P( be mappings from metric space �#, .� into itself. Then �(  and  P( are 
said to be compatible of type (R) if 
 limJ→R .��(P(�J, P(�(�J� = 0  and limJ→R .��(�(�J, P(P(�J� = 0,  
 
whenever ��J� is a sequence in #such that  limJ→R �(�J = limJ→R P(�J = S(, for some S( in #. 
 
In 2007, Singh and Singh et al. [21] introduced the concept of compatible mappings of type (E) in a metric 
space as follows: 
 
Definition 1.15 [21]: Two self-mappings�(andP(of a metric space �#, .� are said to be compatible of type 
(E)iflimJ→R �(�(�J = limJ→R �(P(�J = P(S(andlimJ→R P(P(�J = limJ→R P(�(�J = �(S(, whenever ��J� 
is a sequence in #such that  limJ→R �(�J = S( for some � in #. 
 
In 2014, Jha et al. [22] introduced the concept of compatible mappings of type (K) in a metric space as 
follows: 
 
Definition 1.16 [22]: Let �( andP( be mappings from metric space �#, .� into itself. Then �( andP( are said 
to be compatible of type (K) if 
 limJ→R .��(�(�J, P(S(� = 0 and limJ→R .�P(P(�J, �(S(� = 0, 
 
whenever ��J� is a sequence in #such that  limJ→R �(�J = limJ→R P(�J = S(, for some S( in #. 
 

2 Properties of Variants of Compatible Mappings 
 
Now we present the notions of variants of compatible mappings in the context of a Menger space. 
 
Definition 2.1: Let V and W are two self-mapping on Menger space �#, �, ∆ �.Then V and W are said to be: 
 
1. Compatible of type (R) if Q�=J→∞��VWXJ, WVXJ, �(�  =  1, and limJ→∞��VV>J, WW>J, �(� =  1,whenever a sequence �XJ� in # satisfying  Q�=J→∞VXJ  = Q�=J→∞WXJ  = Y(, whereY( ∈ #, ∀�( > 0. 
 
2. Compatible of type (K) iflimJ→∞��VVXJ, WY(, �(�  =  1 and limJ→∞��WWXJ, VY(, �(� =  1, whenever a sequence�XJ�in # satisfying   Q�=J→∞VXJ  = Q�=J→∞WXJ  =  Y(, where  Y(in #. 
 
3. Compatible of type (E) iflimJ→∞ VVXJ = limJ→∞ VWXJ = WY(  and  Q�=J→∞ WWXJ = Q�=J→∞ WVXJ = VY(, whenever a sequence �XJ�  is in # satisfying Q�=J→∞ VXJ =Q�=J→∞ WXJ = Y(, whereY( in #. 
 
Proposition 2.1: Let V  and W  are two compatible mappings of type �[�  self maps of a Menger 
space�#, �, ∆�. If VY( =  WY(, for some Y( ∈ #, then VWY( = VVY( = WWY( = WVY(. 
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Proof: Suppose that �XJ� is a sequence in # defined by XJ = Y(, H = 1,2, … for some Y( ∈ # and VY( =WY(.Thenwe have VXJ, WXJ → VY( as H → ∞. Since Vand W are compatible of type (R), we have  
 ��VWY(, WVY(, �(� = Q�=J→∞��VWXJ, WVXJ, �(� =  1. 
 
Hence we have VWY( = VVY(. Therefore, since VY( =  WY(, we have VWY( = VVY( = WWY( = WVY(. 
 
Proposition 2.2: Let V  and W  are two compatible mappings of type �[�  self maps of Menger space �#, �, ∆�. Consider that limJ→∞ VXJ = limJ→∞ WXJ = Y(, whereY( in #. Then  
 

(a) limJ→∞ WVXJ = VY( if V is continuous at Y(. 
(b) limJ→∞ VWXJ = WY( if W is continuous at Y(. 
(c) VWY( = WVY(  and VY( = WY(  if Vand Ware  continuous at Y(. 

 
Proof: (a) Suppose that V is continuous at Y(. Since limJ→∞ VXJ = limJ→∞ WXJ = Y( whereY( in #,  we 
have VVXJ, VWXJ → VY( as H → ∞.Then by given condition 
 Q�=J→∞��WVXJ , VY(, �(� = Q�=J→∞��WVXJ , VWXJ, �(� =  1. 
 
Therefore, limJ→∞ WVXJ = VY(. 
 

(b) Suppose that W  is continuous at Y(. Since Q�=J→∞ VXJ = Q�=J→∞ WXJ = Y( , where in #,  we have WVXJ, WWXJ → WY(as H → ∞.Then by given condition 
 limT→∞��VWXJ, WY(, �(� = limT→∞��VWXJ, WVXJ, �(� =  1. 
 
Therefore, limJ→∞ VWXJ = WY(. 

 
(c) Easily follow by Proposition 4.1, VWY( = VVY( = WWY( = WVY(. 
 
Proposition 2.3: Let V and W are two compatible mappings of type (E) on a Mengerspace �#, �, ∆� into 
itself.  
 
If one of V and W be continuous and  Q�=J→R VXJ = Y(, where Y( ∈ #. Then the following hold 
 

(a) VY( =  WY(, limJ→R VVXJ = limJ→R VWXJ = limJ→R WVXJ = limJ→R WWXJ. 

(b) If we can find̂ ( ∈ # such that V (̂ =  W (̂ = Y(,we have VW (̂ = WV (̂. 
 
Lemma 2.1 [18]: Let �#, �, ∆�be aMenger space.If there exists a _ in �0,1� such that 
                 ���, �, _�� ≥ ���, �, ��for all�, � ∈ # and � > 0,  then  � =  �. 
 
Lemma 2.2 [18]: Let {�J� be a sequence in a Menger space�#, �, ∆�with continuous �  -norm ∆   and ∆��, �� ≥ �. If there exists a _ in �0,1� such that  
                  ���J, �J�(, _�� ≥ ���J`(, �J, ��, then {�J� is a Cauchy sequence in #. 
 

3 Main Results 
 
Now we prove our main theorems in Menger spaces. 
 
Theorem 3.1: Let a, V, ℬ and Ware four self maps on a complete Menger space �#, �, ∆� such that  
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       (3.1)   W�#� ⊂ a�#�,   V�#� ⊂ ℬ�#�;  
       (3.2)   ��Vd, We, f�(� ≥ =�H g ��ad, ℬe, �(�, ��ad, Vd, �(�,��ℬe, We, �(�, ��Vd, ℬe, h�(�,��ad, We, �2 − h��(� i 

 
hold for all d, e in #, where h ∈ �0,2�, �( > 0, 
 

(3.3)  one of the mapa, V, ℬ and W be continuous. 
 
Suppose the pairs (ℬ, W�and (a, V�are compatible of type �[�. 
 
ThenY( = ℬY( = WY( = aY( = VY(, where Y( is a unique in #. 
 
Proof: Since V�#�  ⊂ ℬ�#�. Now consider a point dj ∈ #, we have a pointd( ∈ # such that Vdj = ℬd( =ej, ford(, we can find a pointd* ∈ #satisfying Wd( = ad* = e(. Similarly we have a sequence {eJ� in # satisfying 
 e*J = Vd*J = ℬd*J�(; e*J�( = Wd*J�( = ad*J�*; 
 
Now we prove that {eJ� is Cauchy sequence in #. 
 
On setting d = d*J, e =  d*J�( , h = 1 − kwith k ∈ �0,1�in inequality (3.2), we have  
 

��Vd*J, Wd*J�(, f�(� ≥ =�H lm
n��ad*J, ℬd*J�(, �(�, ��ad*J, Vd*J, �(�,��ℬd*J�(, Wd*J�(, �(�,��Vd*J, ℬd*J�(, �1 − k��(���ad*J , Wd*J�(, �1 + k� �(� op

q
 

 

 ℳ�e*J, e*J�(, f�(� ≥ =�H lm
n��e*T`(, e*T, �(�, ��e*T`(, e*T, �(�,��e*T, e*T�(, �(�,��e*T, e*T, �1 − β��(�,��e*T`(, e*T�(, �1 + k� �(� op

q
 

 

��e*J, e*J�(, f�(� ≥ =�H g ��e*T`(, e*T, �(�,��e*T, e*T�(, �(�, 1,��e*T`(, e*T�(, �1 + β� �(�i 

 ≥ =�H ���e*T`(, e*T, �(�, ��e*T, e*T�(, �(�,��e*T`(, e*T�(, �1 + β� �(� t 
 ≥ =�H � ��e*T`(, e*T, �(�, ��e*T, e*T�(, �(�,��e*T`(, e*T, �(�, ��e*T, e*T�(, β�(�t 
 ≥ =�H ���e*J`(, e*J, �(�, ��e*J, e*J�(, �(�,��e*J, e*J�(, k�(� t 
 

Since∆ is continuous, letting k → 1 we obtain 
 ��e*J, e*J�(, f�(� ≥ =�H ���e*J`(, e*J, �(�,��e*J, e*J�(, �(� t 
 

                                                  = =�H� �� e*J`(, e*J, �(�, ��e*J, e*J�(, �()}, 
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Hence  ℳ�e*J , e*J�(, f�(� ≥ =�H��� e*J`(, e*J, �(�, ��e*J, e*J�(, �(�� 
 
Similarly 
 ��e*J�(, e*J�*, f�(� ≥ =�H��� e*J, e*J�(, �(�, ��e*J�(, e*J�*, �(� � 
 
So for all H, we have  
 ��eJ, eJ�(, f�(� ≥ =�H� �� eJ`(, eJ, �(�, ��eJ, eJ�(, �(�}. 
 
Consequently, we have 
 ��eJ, eJ�(, �(� ≥ =�H� �� eJ`(, eJ, �uf �, ��eJ, eJ�(, �uf �}.    
 
By repeated application of above inequality, we get 
 ��eJ, eJ�(, �(� ≥ =�H� �� eJ`(, eJ, �uf �, ��eJ, eJ�(, �ufv�}.    

 

Since  ��eJ, eJ�(, �ufv� → 1as = → ∞, it follows that  
 ��eJ, eJ�(, f�(� ≥ ��eJ`(, eJ, �(�, for all H ∈ ℕ. 
 
By Lemma 2.2, {eJ� be a Cauchy sequence in # and hence it converges toY( ∈ #, then the subsequence 
{ Vd*J�, {ℬd*J�(�,{Wd*J�(� and {ad*J�of {eJ� also converges to Y(. 
 
Suppose a  is continuous. Now by Proposition 2.2 and (a, V�are compatible of type�[�, aax*J   and Vax*J converges to aY(as H → ∞. 
 
We claim that Y( = aY(. 
 
On putting d = ad*J and e = d*J�(, h = 1 in inequality (3.2), we have 
 

��Vad*J , Wd*J�(, f�(� ≥ =�H g��aad*J, ℬd*J�(, �(�, ��aad*J, Vad*J, �(�,��ℬd*J�(, Wd*J�(, �(�, ��Vad*J, ℬd*J�(, �(�,��aad*J , Wd*J�(, �(� i 

 
Letting H → ∞, we get 
 

��aY(, Y(, f�(� ≥ =�H g�� aY(, Y(, �(�, ��aY(, aY(, �(�,��Y(, Y(, �(�, ��aY(, Y(, �(�,��aY(, Y(, �(� i 

 ��aY(, Y(, f�(� ≥ ��aY(, Y(, �(�.  
 
Lemma 2.1gives, aY( = Y(. 
 
Next we claim that VY( = Y(. 
 
Putting d = Y( and e = d*J�(, h = 1 in inequality (3.2), we have 
 

��VY(, Wd*J�(, f�(� ≥ =�H g ��aY(, ℬd*J�(, �(�, ��aY(, VY(, �(�,��ℬd*J�(, Wd*J�(, �(�,��VY(, ℬd*J�(, �(�, ��aY(, Wd*J�(, �(�i 
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LettingH → ∞ , we obtain 
 

��VY(, Y(, f�(� ≥ =�H g��Y(, Y(, �(�, ��Y(, VY(, �(�,��Y(, Y(, �(�, ��VY(, Y(, �(�,��Y(, Y(, �(� i 

 
we have  ��VY(, Y(, f�(� ≥ �� VY(, Y(, �(�.  
 
Lemma 2.1 gives, VY( = Y(. 
 
Since V�#� ⊂ ℬ�#� and hence we can find a point ^( in # satisfyingY( =  VY( = ℬ^(.  
We claim that Y( = W (̂. 
 
On settingd = Y( and e = (̂, h = 1 in inequality (3.2), we obtain 
 

��Y(, W (̂, f�(� = ��VY(, W (̂, _�(� ≥ =�H g��aY(, ℬ (̂, �(�, ��aY(, VY(, �(�,��ℬ^(, W (̂, �(�, ��VY(, ℬ (̂, �(�, ��aY(, W (̂, �(�i 

 

i.e., ��Y(, W^(, f�(� ≥ =�H ���Y(, Y(, �(�, ��Y(, Y(, �(�, ��Y(, y (̂, �(�,��Y(, Y(, �(�, ��Y(, ^(, �(� t 
 
i.e., ��Y(, W^(, f�(� ≥ �� Y(, W (̂, �(�.  
 
By Lemma 2.1, we get  Y( = W^(. 
 
Since ℬ and W are compatible of type (R) and ℬ^( = W^( = Y(, by Proposition 2.1, ℬW (̂ = Wℬ^( and 
hence ℬY( = ℬW (̂ = Wℬ^( = WY(. Also, we obtain  

��Y(, ℬY(, f�(� = ��VY(, WY(, f�(� ≥ =�H g��aY(, ℬY(, �(�, ��aY(, VY(, �(�,��ℬY(, WY(, �(�, ��VY(, ℬY(, �(�, ��aY(, WY(, �(�i 

 
we get  ��Y(, ℬY(, f�(� ≥ �� Y(, ℬY(, �(�.  
 
By Lemma 2.1, we get  Y( = ℬY(. Hence Y( = ℬY( = WY( = aY( = VY(. 
 
Now supposeV is continuous given a and V are compatible of type (R), by Proposition 2.2, VVd*J   and Vd*J converges to VY(asH → ∞. 
 
We claim that Y( = VY(. 
 
Putting d = Vd*J and e = d*J�(, h = 1 in inequality (3.2) ,we have 
 

��VVd*J, Wd*J�(, f�(� ≥ =�H g ��aVd*J, ℬd*J�(, �(�, ��aVd*J , VVd*J, �(�,��ℬd*J�(, Wd*J�(, �(�, ��VVd*J, ℬd*J�(, �(�,��aVd*J, Wd*J�(, �(� i 

 
Letting H → ∞ we get 
 
we get ��VY(, Y(, f�(� ≥ ��VY(, Y(, �(�.  
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By Lemma 2.1, we VY( = Y(. 
 
Since V�z� ⊂ ℬ�z� and hence we can find a point {( ∈ z satisfyingY( =  VY( = ℬ{(. 
 
We claim that Y( = W{(. 
 
Putting d = Vd*J and e = {(, h = 1 in inequality (3.2), we obtain 
 

��VVd*J, W{(, f�(� ≥ =�H g��aVd*J , ℬ{(, �(�, ��aVd*J , VVd*J, �(�,��ℬ{(, W{(, �(�, ��VVd*J, ℬ{(, �(�,��aVd*J, W{(, �(� i 

 
Letting H → ∞ we have  
 ��Y(, W{(, f�(� ≥ =�H���Y(, Y(, �(�, ��Y(, W{(, �(�� 
 
we get  ��Y(, W{(, f�(� ≥ �� Y(, W{(, �(�.  
 
By Lemma 2.1, we get  Y( = W{(. 
 
Since ℬ and W are compatible of type (R) and ℬ{( = W{( = Y(, by Proposition 2.2, ℬW{( = Wℬ{( and 
hence ℬY( = ℬW{( = Wℬ{( = WY(. 
 
We claim that Y( = WY(. 
 
Putting d = d*J and e = Y(, h = 1 in inequality (3.2), we have  
 

��Vd*J, WY(, f�(� ≥ =�H g��ad*J, ℬY(, �(�, ��ad*J, Vd*J , �(�,��ℬY(, WY(, �(�,, ��Vd*J , ℬY(, �(�, ��ad*J, WY(, �(� i 

 
Letting H → ∞, we have ��Y(, WY(, f�(� ≥ =�H���Y(, WY(, �(�, ��Y(, Y(, �(�� 
 
we have��Y(, WY(, f�(� ≥ ��Y(, WY(, �(�.  
 
By Lemma 2.1, we WY( = Y(. 
 
Since W�#�  ⊂ a�#� and hence we can find a point X( ∈ # satisfyingY( =  VY( = aX(. 
 
We show that Y( = VX(. 
 
Putting d = X( and e = Y(, h = 1 in inequality (3.2), we obtain 
 

��VX(, Y(, f�(� = ��VX(, WY(, _�(� ≥ =�H g��aX(, ℬY(, �(�, ��aX(, VX(, �(�,��ℬY(, WY(, �(�, ��VX(, ℬX(, �(�,��aX(, WY(, �(� i 

 = =�H���Y(, Y(, �(�, ��Y(, VX(, �(�� 
 
we obtain ��VX(, Y(, f�(� ≥ �� Y(, VX(, �(�.  
 
Lemma 2.1 gives, Y( = VX(. 
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Since V and a are compatible of type (R) and VX( = aX( = Y(, by Proposition 2.1, aVX( = VaX( and 
hence aY( = aVX( = VaX( = VY(. 
 
Hence Y( = ℬY( = WY( = aY( = VY(. 
 
Uniqueness Suppose ̂( ( (̂ ≠ Y(� be other point in # such that 
   ^( = ℬ (̂ = W (̂ = a^( = V (̂. 
 
Putting d = Y( and e = ^(, h = 1 in inequality (3.2), we obtain 
 

��VY(, W (̂, f�(� = ��Y(, ^(, f�(� ≥ =�H g��aY(, ℬ (̂, �(�, ��aY(, VY(, �(�,��ℬ (̂, W (̂, �(�, ��VY(, ℬ (̂, �(�,��aY(, W (̂, �(� i 

 = =�H���Y(, ^(, �(�, ��Y(, Y(, �(�� 
 
we get   ��Y(, ^(, f�(� ≥ ��Y(, (̂, �(�.  
 
By Lemma 2.1, we get  Y( = (̂. 
 
Hence Y( = ℬY( = WY( = aY( = VY( 4H.  Y( is unique in #. 
 
Next we prove theorems for compatible mappings of type (K) and type (E) as follows: 
 
Theorem 3.2: Let a, V, ℬ and Ware four self maps on a complete Menger space �#, �, ∆�satisfying (3.1), 
(3.2). Suppose that the pairs (a, V�  and �ℬ, W� are reciprocally continuous and compatible of type �|�.ThenY( = ℬY( = WY( = aY( = VY(, where Y( is a unique in #. 
 
Proof: Now from the proof of Theorem 3.1, we can easily proved that the subsequence {Vd*J�, {ℬd*J�(�, 
{ Wd*J�(� and {ad*J�of {eJ� also converges to Y(. 
 
Now the pairs �ℬ, W� and (a, V� are compatible of type (K), we obtain 
 aad*J → VY(, VVd*J → aY( and ℬℬd*J → WY(, WWd*J�( → ℬY( as  H → ∞. 
 
We claim that ℬY( = aY(. 
 
Putting d = Vd*J and e = Wd*J�(, h = 1 in inequality (3.2), we have 
 

��VVd*J , WWd*J�(, f�(� ≥ =�H g ��aVd*J, ℬWd*J�(, �(�, ��aVd*J, VVd*J, �(�,��ℬWd*J�(, WWd*J�(, �(�, ��VVd*J, ℬWd*J�(, �(�,��ℬVd*J, Wd*J�(, �(� i 

 
Putting H → ∞ and reciprocal continuity of the pairs�ℬ, W� and (a, V�,we obtain 
 ��aY(, ℬS, f�(� ≥ =�H���aY(, ℬY(, �(�, 1, � 
 
we get    ��aY(, ℬY(, f�(� ≥ ��aY(, ℬY(, �(�.  
 
By Lemma 2.1, we aY( = ℬY(. 
 
Next we claim that ℬY( = VY(. 
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Putting d = Y( and e = Wx*J�(, h = 1 in inequality (3.2), we get 
 

��VY(, WWd*J�(, f�(� ≥ =�H lm
n��aY(, ℬWd*J�(, �(�, ��aY(, VY(, �(�,��ℬWd*J�(, WWd*J�(, �(�,��VY(, ℬWd*J�(, �(�,��aY(, WWd*J�(, �(� op

q
 

 ��VY(, ℬY(, f�(� ≥ =�H���ℬY(, ℬY(, �(�, ��ℬY(, VY(, �(�� 
 
we get    ��VY(, ℬY(, f�(� ≥ ��VY(, ℬY(, �(�.  
 
By Lemma 2.1, we VY( = ℬY(. 
 
We claim that VY( = WY(. 
 
Putting x = Y( and E = Y(, h = 1 in inequality (3.2), we have 
 

��VY(, WY(, f�(� ≥ =�H g��aY(, ℬY(, �(�, ��aY(, VY(, �(�,��ℬY(, WY(, �(�, ��VY(, ℬY(, �(�,��aY(, WY(, �(� i 

 ��VY(, WY(, f�(� ≥ =�H ���VY(, WY(, �(�, ��ℬY(, ℬY(, �(���aY(, aY(, �(� t 
 
we get ��VY(, WY(, _�(� ≥ �� VY(, WY(, �(�.  
 
By Lemma 2.1, we get  VY( = WY(. 
 
We claim that Y( = yY(. 
 
Putting d = d*J and e = Y(, h = 1 in inequality (3.2), we have 
 

��Vd*J, WY(, f�(� ≥ =�H g��ad*J, ℬY(, �(�, ��ad*J, Vd*J , �(�,��ℬY(, WY(, �(�, ��Vd*J, ℬY(, �(�,��ℬd*J, WY(, �(� i 

 
TakingH → ∞, we obtain 
 ��Y(, WY(, f�(� ≥ =�H ���Y(, ℬY(, �(�, ��Y(, Y(, �(���Y(, WY(, �(� t 
 
we get  ��Y(, WY(, f�(� ≥ �� Y(, WY(, �(�.  
 
By Lemma 2.1, we get  Y( = WY(. 
 
ThenY( = ℬY( = WY( = aY( = VY(where Y( is a unique in #. 
 
Uniqueness Suppose e( (e( ≠ Y(� be other point in #. 
 
Putting d = Y( and e = e(, h = 1 in inequality (3.2), we obtain 
 

��VY(, We(, f�(� = ��Y(, e(, f�(� ≥ =�H g��aY(, ℬe(, �(�, ��aY(, VY(, �(�,��ℬe(, We(, �(�, ��VY(, ℬe(, �(�,��aY(, We(, �(� i 
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we get   ��Y(, e(, f�(� ≥ ��Y(, e(, �(�.  
 
By Lemma 2.1, we get  Y( = e(. 
 
Hence Y( = ℬY( = WY( = aY( = VY( 4H.  Y( is unique in #. 
 
Theorem 3.3: Let a, V, ℬ and Ware four self- maps of a complete Menger space�#, �, ∆� satisfying (3.1), 
(3.2).Suppose the pairs (a, V� and (ℬ, W� are compatible of type (E) and one of V and ais continuous and 
one of  W and ℬ is continuous. ThenY( = ℬY( = WY( = aY( = VY(, where Y( is a unique in #. 
 
Proof: From Theorem 3.1, we can easily prove the subsequence {Vd*J�, {ℬd*J�(�,{ Wd*J�(� and {ad*J�of 
{ eJ� also converges to Y(. 
 
Now, suppose that one of the mappings V and a is continuous, givenV and a are compatible of type �}�, by 
Proposition 2.3, aY( = VY(.  
 
Since V�#� ⊂ ℬ�#� and hence we can find a point ^( ∈ #satisfyingVY( = ℬ (̂. 
 
We claim that VY( = W (̂. 
 
On setting d = Y( and e = ^(, h = 1 in inequality (3.2), we obtain 
 

��VY(, W (̂, f�(� ≥ =�H g��aY(, ℬ^(, �(�, ��aY(, VY(, �(�,��ℬ (̂, W^(, �(�, ��VY(, ℬ^(, �(�,��aY(, W^(, �(� i 

 

= =�H g��aY(, VY(, �(�, ��VY(, VY(, �(�, ��VY(, ℬ (̂, �(�,��VY(, W (̂, �(� i 

 
we get ��VY(, W^(, f�(� ≥ ��VY(, W^(, �(�.  
 
By Lemma 2.1, we get  VY( = W^(. Thus we have aY( = VY( = W (̂ = ℬ^(. 
 
We claim that VY( = Y(. 
 
Putting d = Y( and e = d*J�(, h = 1 in inequality (3.2) we have 
 

��VY(, Wd*J�(, f�(� ≥ =�H g ��aY(, ℬd*J�(, �(�, ��aY(, VY(, �(�,��ℬd*J�(, Wd*J�(, �(�, ��VY(, ℬd*J�(, �(�,��aY(, Wd*J�(, �(� i 

 = =�H���Y(, Y(, �(�, �� VY(, Y(, �(�� 
 
we get��VY(, Y(, f�(� ≥ �� VY(, Y(, �(�.  
 
Lemma 2.1gives,Y( = VY(. Hence Y( = ℬY( = WY( = aY( = VY(. 
 
Assume that W and ℬ are compatible of type �}� and one of the mappings W and ℬ is continuous. Then we 
get ℬ^( = W (̂ = Y(. 
 
By Proposition 2.3, we have ℬℬ (̂ = ℬW (̂ = Wℬ^( = WW (̂. 
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Hence  ℬY( = WY(.  
We claim that Y( = WY(. 
 
Putting d = d*J and e = Y(, h = 1 in inequality (3.2), we have 
 

��Vd*J, WY(, f�(� ≥ =�H g��ad*J, ℬY(, �(�, ��ad*J, Vd*J , �(�,��ℬY(, WY(, �(�, ��Vd*J, ℬY(, �(�,��ad*J , WY(, �(� i 

 

Letting H → ∞ we obtain 
 ��VY(, Y(, f�(� ≥ =�H���Y(, Y(, �(�, ��VY(, Y(, �(�� 
 
we get    ��VY(, Y(, f�(� ≥ ��VY(, Y(, �(�.  
 
By Lemma 2.1, we VY( = Y(. 
 

Since V�#� ⊂ ℬ�#� and hence exists a point {( ∈ # such that Y( =  VY( = ℬ{(. 
 
We claim that Y( = W{(. 
 
Putting d = Vd*J and e = {(, h = 1 in inequality (3.2),we have  
 

��VVd*J, W{(, f�(� ≥ =�H g��aVd*J , ℬ{(, �(�, ��aVd*J , Vd*J, �(�,��ℬ{(, W{(, �(�,��VVd*J, ℬ{(, �(�, ��aVd*J, W{(, �(� i 

 
TakingH → ∞, we obtain 
 ��Y(, W{(, f�(� ≥ =�H���Y(, W{(, �(�, ��Y(, Y(, �(�� 
 
we get  ��Y(, W{(, f�(� ≥ �� Y(, W{(, �(�.  
 
By Lemma 2.1, we get  Y( = W{(.Sinceℬ and W  are compatible of type (R) and ℬ{( = W{( = Y(, by 
Proposition 2.3, ℬW{( = Wℬ{( and hence ℬY( = ℬW{( = Wℬ{( = WY(. 
 
We claim that Y( = WY(. 
 
Putting d = d*J and e = Y(, h = 1 in inequality (3.2), we have 
 

��Vd*J, WY(, f�(� ≥ =�H g��ad*J, ℬY(, �(�, ��ad*J, Vd*J , �(�,��ℬY(, WY(, �(� , ��Vd*J, ℬY(, �(�, ��ad*J, WY(, �(�i 

 
Letting H → ∞ we have  
 ��Y(, WY(, f�(� ≥ =�H���Y(, WY(, �(�, ��Y(, Y(, �(�� 
 
we get  ��Y(, WY(, f�(� ≥ ��Y(, WY(, �(�.  
 
By Lemma 2.1, we WY( = Y(. 
 
Then Y( = ℬY( = WY( = aY( = VY(, where Y( is a unique in #. 



 
 
 

Singh et al.; JAMCS, 25(6): 1-15, 2017; Article no.JAMCS.37973 
 
 
 

14 
 
 

4 Conclusion 
 
In this paper, we gave new fixed point theorems for variants of compatible mapping in menger space. We 
hope that out study contributes to the development of these results by other researchers. 
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