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ABSTRACT
The possibility of errors being propagated during the encoding process of cryptographic and
steganographic schemes is real due to the introduction of noise by ciphering the data from stage to
stage. This real possibility therefore requires that an efficient scheme is proposed such that if after
the decoding process the accurate information is not discovered, then it can be employed to detect
and correct any errors in the system. The Residue Number System (RNS) by its nature is fault
tolerant since an error in one digit position does not affect other digit positions; but the Redundant
Residue Number System (RRNS) had been used over the years to effectively detect and correct
errors. In this paper, we propose an efficient scheme that can detect and correct both single and
multiple errors after and/or during computation and/or transmission provided the redundant moduli
are sufficient enough. A theoretical analysis of the performance of the proposed scheme show
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it will be a better choice for detecting and correcting computational and transmission errors to
existing similar state-of-the-art schemes.

Keywords: Encoding; decoding; steganography; cryptography; residue number system (RNS);
redundant residue number system (RRNS).

1 INTRODUCTION

Residue Number System (RNS) belongs to
the family of unconventional number systems
where numbers specifically, positive integers are
represented as vector of remainders based on
a defined set of moduli. Mathematically, RNS
is defined by a set of relatively prime moduli
{m1,m2, ...,mn} such that the gcd (mi,mj) = 1
for i ̸= j, and gcd means greatest common
divisor of mi and mj ; and M =

∏n
i=1 mi, is the

Dynamic Range (DR), [1, 2, 3]. The residues
of a number X in conventional representation
such as binary or decimal can be obtained as
xi = |X|mi

, thus X can be represented in
RNS as X = (x1, x2, , xn), 0 ≤ xi ≤ mi,
this representation ought to be unique for any
integer X ∈ [0,M − 1], [4, 5]. The modular
arithmetic here is independent on the respective
moduli, therefore, this number system is capable
of supporting parallel arithmetic, as well as carry-
free and high speed arithmetic, [6, 7, 8]. This
number system also inherently possesses some

useful properties such as parallelism, modularity,
fault tolerance, and carry-free operations [9,
10]. It is very efficient in performing arithmetic
operations such as additions, subtractions
and multiplications that predominate in digital
signal processing, cryptographic and digital
communication systems.

Conversion of data to and fro the RNS is
classified into forward and reverse conversions.
The forward conversion involves converting a
binary or decimal number into its RNS equivalent
while converting the RNS number back into
binary or decimal is reverse conversion[10].
Relatively, reverse conversion is more complex.
A general structure of a typical RNS processor
[11, 12], is shown in Figure .

In Figure , data sets in the form of binary or
decimal are forward-converted using a forward
converter with a set of moduli sets as its
processing units into residues. The residues is
converted back into binary or decimal through
reverse conversion with a reverse converter.

Fig. 1. General structure of an RNS-based processor

Two techniques that have been generally used over the years to perform the reverse conversion
process are: Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC); these techniques
have recently been modified into other variants such as CRT-I, CRT-II, CRT-III, Core function and
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Modular Weighed Sum Method, [10, 13].
The CRT is computed as:

X =

∣∣∣∣∣
n∑

i=1

ℓi |kixi|mi

∣∣∣∣∣
M

(1.1)

where,

M =
N∏
i=1

mi; ℓi =
M

mi
; |ki × ℓ|mi

= 1

and the MRC as:

X =

n∑
i=2

ϑi

i−1∏
j=1

mj + ϑi (1.2)

where ϑi, i = 1, 2, · · · , n are the Mixed Radix Digits (MRDS) and computed as follows:

ϑ1 = x1

ϑ2 =
∣∣∣(x2 − ϑ1)

∣∣m−1
1

∣∣
m2

∣∣∣
m2

ϑ3 =
∣∣∣((x3 − ϑ1)

∣∣m−1
1

∣∣
m3

− ϑ2

) ∣∣m−1
2

∣∣
m3

∣∣∣
m3

...

ϑn =

∣∣∣∣(· · ·((x3 − ϑ1)
∣∣m−1

1

∣∣
mn

− ϑ2

) ∣∣m−1
2

∣∣
mn

− · · · − ϑn−1

) ∣∣∣m−1
n−1

∣∣∣
mn

∣∣∣∣
mn

(1.3)

Now in the residue representation of a number,
an error in one digit position cannot affect or
corrupt the other digit positions. This means
that if an error occurs in one of the digit
positions, arithmetic computation may continue
by excluding the faulty digit position if only the
remaining channels are enough to provide a
sufficient dynamic range. It is also possible to
include extra (redundant) moduli in the system
to provide larger and sufficient dynamic ranges
to cater for such errors, [1, 14, 15]. Therefore,
the use of redundant moduli can facilitate error
detection and correction. A Redundant Residue
Number System (RRNS) is deemed to be
a selected RNS representation with additional
redundant moduli. This is usually considered in
the design of RNS systems in order to achieve
self-checking, and error detection and correction,
[16].

Assume as an example, we have m1,m2, ,mN as
the information moduli, such that the information
dynamic range is

[
0,
∏N

i=1 mi

)
, then we can add

R redundant moduli as mN+1,mN+2, ,mn with
a dynamic range MR =

∏n−N
j=1 mN+j . Thus,

any operand X has a legitimate range within
[0,M) and an illegitimate range within the interval
[M,MMR) but is called for purposes of error
detection and correction, [17]. In this paper, we

employ the properties of redundancy in RNS by
adding two extra moduli to the chosen moduli
set {2n−1 − 1, 2n,−1, 2n} for the detection and
correction of single errors; the approach laid
out in this paper is capable of detecting and
correcting any number of errors with a certain
number of required redundant moduli. Thus, a
forward conversion process is performed first, to
represent a given vector of data in its residue
equivalent form, from which the error detection
and correction can be achieved. That data will
then be appreciated if it is brought back into
conventional representation through a reverse
conversion process, which is undertaken using
the CRT. The rest of the paper is organised as
follows: In Section 2, review of related works
is done, the methodology with some numerical
illustration of the proposed scheme is presented
in Section 3, with its performance evaluated in
Section 4. The paper is finally concluded in
Section 5.

2 LITERATURE REVIEW

Over the years, the notion of fault tolerance has
been elaborately researched on and achieved
through the use of RNS, but the discovery of the
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redundant moduli in addition to an RNS makes it
possible for the detection and correction of errors
during transmission. These concepts have been
employed extensively in data security; during
transmission of a secured data either hidden
(steganography) or encrypted (cryptography),
where there certainly will be the possibility of
errors that can be detected and corrected using
RRNS.

The work by [16] discussed the arithmetic
of RRNS based codes and reviewed their
properties. The paper then proposed a number
of application areas for the RRNS codes by
demonstrating how it can be employed in areas
such communication systems. The proposition
in this regard concerned the simplification of
the associated systems by unifying an entire
encoding and decoding processes across such
systems. It is worthy of note that security is a
major concern during communication, therefore,
even as this work was not applied to security
aspect, the RRNS can be used to detect
and correct errors when a secured data is
communicated or transmitted through a channel.
Also, the work failed to show an architecture of
the conversion processes to and from RNS.

Earlier, a work by [18] highlighted the need
for error detection and correction using RRNS.
They opined that, in spite of rapid advances in
the design and realization of digital filters, very
little attention was paid to the problems of error
detection and correction in digital filters. In light
of this, the work described a procedure on how to
employ the properties of RRNS for that purpose.
However, what was presented placed emphasis
on overflow detection, and errors in digital
filters. This concept could have been extended
to cover secure data along a transmission line
if time and resources were unlimited. An
analysis of the theoretical framework presented
in the work show it can only detect single
errors with a complex architecture, which has
implication for cost. The work by [19], which
was on Wireless Sensor Networks (WSNs) but
anticipated the possibility of errors that could
hinder the ability to monitor and interact with base
systems. They emphasised on the fact that the
realisation of a fault tolerant operation is very
critical to the success of WSNs since the integrity
of data could have tremendous effects on

performance of such a data acquisition system.
Therefore, they proposed the use of RRNS
to achieve a fault-tolerant mechanism in base
systems because that notion in wireless sensor
networks is important due to the construction
and deployment characteristics of these low
powered sensing devices. It is also a fact that,
due to the low computation and communication
capabilities of the sensor nodes, the fault-tolerant
mechanism should have a low computation
overhead which was achieved through RNS when
they proposed a low complexity error detection
technique through the implementation of low data
redundancy and efficient energy consuming in
wireless sensor nodes. However, the scheme
could not correct more than one errors. Here
also, the security of the data that will be
transmitted using the sensor nodes was not a
concern but it is also very critical in the general
network setup.

Also, [20] investigated the use of error correction
codes (ECCs) to tolerate faults in hybrid
memories. The ECCs considered in the work
included Hamming, Reed Solomon (RS), and
RRNS codes. Concerning the RRNS codes, they
proposed a scheme for detection and correction
of single errors. The paper proffered that the
RRNS codes are example of block codes, where
the checkwords are not computed from the
dataword but from the input data. The concept
actually employed crossbar memories to improve
on its reliability. Experimental results were also
shown.

Another work by [21] elucidated that errors are
inevitable in data communication due to various
factors such noise, heat, and interference in the
communication channel/ circuits. They therefore
proposed a scheme to detect and correct errors
using RRNS. This was done using the moduli
set {2n+1 − 1, 2n + 1, 2n} and two redundant
moduli 2n+1 +1 and 22n +1 which works for only
even numbers. In the opinion of the researchers
backed by some demonstrated facts, the number
of iterations in the error correction scheme was
reduced that in turned reduced the complexities
associated with architectural designs, and also
reduced propagation delays. But a careful study
of the moduli set used will show that it is complex
due to the presence of 2n + 1, 2n+1 + 1 and
22n + 1 moduli; it also only works accurately
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with even numbers. Consequently, to achieve
desired results of simplicity in the architecture of
a scheme, a different moduli set can be chosen
to exclude the highlighted moduli. The algorithms
presented in these two works can not also be
expanded to correct more than one errors.

We note from other works by [15], which applied
RNS to the LZW data compression algorithm
using the moduli set {2n − 1, 2n, 2n − 1, 2n+1 −
122n − 3, 22n + 1}, first to develop a new LZW-
RNS compression and encryption scheme and
second, to detect and correct errors during the
decoding process since the last two moduli were
redundant and just added for that purpose. Thus,
the scheme was a four-channelled with two
extra channels for error detection and correction.
However, the choice of the above moduli set
meant that, for pairwise number representation
in RNS, the scheme could only work for even
numbers. The number of iterations to detect a
single error presented in this proposed scheme
were many and that can consume a lot of
time; [22] presented some results on multiple
error detection and correction based on the
RRNS; an enhanced multiple error detection and
correction scheme was also presented by [23]
using the RRNS for communication systems. The
paper reiterated the fact that in communication
systems corruption and hacking of data is
unavoidable. It acknowledge also, the fact
that RRNS is often used in parallel processing
environments and has the ability to increase the
robustness of information passing between the
processors. It therefore, proposed a multiple
error correction scheme that utilizes the CRT
together with an algorithm that simplifies the error
correcting process for integers. The scheme
was applied using the CDMA. This scheme was
concerned with general data passing through a
communication channel but the encoding and
decoding of cipher messages may result in some
errors even before it is communicated through
the channel. A clear cut forward conversion
procedure was not presented by these works,
but it is only after the forward conversion
processes that error detection and correction can
be performed.

In this paper , we propose an efficient
scheme that can detect and correct both single
and multiple errors during computation and
transmission of encoded data provided the
redundant moduli are sufficient for cryptographic
and steganographic schemes. The proposed
scheme will also clearly show both the forward
and reverse conversion processes as well as
a step by step procedure to detecting and
correcting possible errors in cryptographic and
steganographic schemes such as the scheme
by [24] with emphasis on recovering the exact
original data.

3 PROPOSED SCHEME

Given the moduli set {2n−1 − 1, 2n,−1, 2n},
where m1 = 2n−1−1, m2 = 2n−1 and m3 = 2n.
Let m4 = 22n−3 and m5 = 22n+1 be redundant
moduli to be used for detecting and correcting
errors during the decoding process. Thus, the
residue set corresponding to the information
part is [ri]

3
i=1 and that corresponding to the

parity/redundant is r4 and r5.

3.1 Forward Conversion

In order to represent an integer (in this case the
ASCII/Unicode or image pixel values) in the RNS
form from the decimal or binary representation,
there must be a forward conversion process using
the moduli set {2n−1−1, 2n,−1, 2n, 22n−3, 22n+
1}. This includes the redundant moduli so that
possible errors in the encoding process can be
detected and corrected during decoding. For
the chosen moduli set, any legitimate binary
number X, which is (3n − 1)-bits wide, [24]
can be partitioned into three sub-blocks for easy
implementation as

X3n−2 · · ·X2n︸ ︷︷ ︸
B3,(n−1)

|X2n−1 · · ·Xn︸ ︷︷ ︸
B2,n

|Xn−1 · · ·X0︸ ︷︷ ︸
B1,n

(3.1)
and computed using

X = B1 + 2nB2 + 22nB3 (3.2)
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such that,

x1 = |X|2n−1−1

=
∣∣∣|B1|2n−1−1 + |2nB2|2n−1−1 +

∣∣22nB3

∣∣
2n−1−1

∣∣∣
2n−1−1

=
∣∣B1 + 2B2 + 22B3

∣∣
2n−1−1

(3.3)

x2 = |X|2n−1

=
∣∣∣|B1|2n−1 + |2nB2|2n−1 +

∣∣22nB3

∣∣
2n−1

∣∣∣
2n−1

= |B1 +B2 +B3|2n−1

(3.4)

x3 = |X|2n = B1 (3.5)

and,

x4 = |X|22n−3

=
∣∣∣|B1|22n−3 + |2nB2|22n−3 +

∣∣22nB3

∣∣
2n−1

∣∣∣
22n−3

= |C1 + 3B3|22n−3

(3.6)

x5 = |X|22n+1

=
∣∣∣|B1|22n+1 + |2nB2|22n+1 +

∣∣22nB3

∣∣
2n−1

∣∣∣
22n+1

= |C1 −B3|22n+1

(3.7)

where,

C1 = B1 + 2nB2 = B1 1 B2

= C1,2n−1C1,2n−2 · · ·C1,1C1,0

(3.8)

Fig. 2. Block diagram of forward conversion process for the proposed scheme
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These mathematical processes/equations are
represented diagramatically using a schematic
diagram in Figure .

According to the proposed layout of the block
diagram in Figure , the binary number X is first
passed through a bits partition unit in order to
partition the bits based on block sizes as shown
in Equation (3.1). We note that the residue
x3 is equivalent to the first block as it is the n
least significant bits of the number as shown in
Equation (3.5). The computations of x1 and x2

are performed at the same time first by using
Adders 1 and 2 respectively, which respective
residues and carries are computed with Adders
3 and 4. At the same time, the result of the
concatenation is added with B3 using Adders 5
and 6 to get residue 5 and residue 6 respectively.
Adders 1 and 2 are Carry Save Adders (CSAs)
whilst Adders 3, 4, 5 and 6 are Carry Propagate
Adders (CPAs). The deployment of all the CPAs
at the same time helps in saving computation
time, thereby improving the delays associated
with the converter since this will be determined
by the modulus with the higher value.

3.2 Reverse Conversion

If a cryptographic or steganogrphic scheme
is developed with the concept of RNS,
there usually exist a stage in the decoding/
decryption process that values in the
RNS representation must be converted
back into their binary equivalent forms in order
to actually decipher the meaning of the encoded
messages. It is at this stage that errors (if
there exist any) that may have occurred during
the encoding process ought to
be detected and corrected to get the
true meaning of any message. The CRT is
employed for the reverse conversion process; in
this manner if any integer X is chosen from the
range of [0,MN ), any N residues out of the
n residues, where n > N should be sufficient in
recovering the original number/integer X.

Given the moduli set {2n−1 − 1, 2n,−1, 2n, 22n −
3, 22n + 1}, where m2 = 2n − 1, m3 = 2n,
m4 = 22n − 3 and m5 = 22n + 1, then from
Equation (1.1) we have:

ℓ1 = 2n(22n − 3)(22n + 1)(2n − 1)

ℓ2 = 2n(22n − 3)(22n + 1)(2n−1 − 1)

ℓ3 = (2n−1 − 1)(22n − 3)(22n + 1)(2n − 1)

ℓ4 = 2n(2n − 1)(22n + 1)(2n−1 − 1)

ℓ5 = 2n(2n − 1)(22n − 3)(2n−1 − 1)


(3.9)

and,
k1 = 1

k2 = 2n−1

k3 = 1

k4 = 1

k5 = 22n − 2


(3.10)

Therefore, any number X in RNS representation can be converted back to its decimal/binary equivalent
form as in Equation (3.11).

X =
∣∣ℓ1x1 + 2n−1ℓ2x2 + ℓ3x3 + ℓ4x4 + (22n − 2)ℓ5x5

∣∣
M

(3.11)

Equation (3.11) can be further simplified and implemented as follows:

X = |A1 +A2 +A3 +A4 +A5|M (3.12)
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where,

A1 = ℓ1x1 = |ℓ1 (x1,n−2x1,n−3 · · ·x1,1x1,0)|M (3.13)

A2 = 2n−1ℓ2x2 = |ℓ2A21|M (3.14)

A3 = ℓ3x3 = |ℓ3(x3,n−1x3,n−2 · · ·x3,1x3,0)|M (3.15)

A4 = ℓ4x4 = |ℓ4(x4,2n−3x4,2n−4 · · ·x4,1x4,0)|M (3.16)

A5 =
(
22n − 2

)
ℓ5x5 =

∣∣ℓ5 (22nx5 − 2x5

)∣∣
M

= |ℓ5A51|M , (3.17)

and

A21 =

x2,n−1x2,n−2 · · ·x2,1x2,0

n−1︷ ︸︸ ︷
00 · · · 0

 (3.18)

A51 =

x5,2n · · ·x5,1x5,0

2n︷ ︸︸ ︷
00 · · · 0+x̄5,2n · · · x̄5,0

 (3.19)

Fig. 3. Schematic reverse converter for the proposed scheme
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Figure is the schematic diagram for the proposed
reverse converter; the operands operation
unit prepares and manipulate an appropriate
routing of the residue bits including flipping and
extending in some cases. It is worthy of note
that, as a result of the M modulo operation
and the number of moduli involved, using only
adders imply employing a whole lot of them.
Therefore, we decided to suggest/use a modulo
multiplier to reduce this overhead cost. CPA
1 is a computation of Equation (3.19), which
is further used for a multiplication in Equation
(3.17). Equations (3.13) - (3.16) are results
of a multiplication operation using the modulo
multiplier. The parameter so obtained from this
operation should then be added in a cascading
manner using CSAs 1 3 by ploughing back
the respective saves (s) and carries (c) into the
following adder. The save (s3) and carry (c3)
from the final CSA (CSA 3) is now computed
using CPA 2 in order to obtain X. It should be
noted that this includes the redundant moduli,
thus the converter computes for all the residues
in the vector (information and redundant).

3.3 Error Handling
The following lemmas, [22, 23] are useful in
relation to RRNS for error detection/correction:

Lemma 3.1. A code Ω based on an RRNS has
the minimum nonzero Hamming weight wtmin ≥
r + 1 and minimum distance dmin ≥ r + 1

Lemma 3.2. A code Ω based on an RRNS can
correct up to t errors, t ≤ ⌊r/2⌋, r is the number
of redundant moduli.

Assume an integer X is selected from a range
[0,MN ) with the corresponding residue set
[x1, x2, xN , xN+1xn], where N and n are chosen
such that Lemma 3.2 holds. If this integer
is passed through a noisy system such as the
encoding/encryption process, it is possible that
errors may be introduced into the residue vector.
Let the new vector with errors be

δi = xi + ej , i = 1, 2n & j = 1, 2, t (3.20)

Now at the decoding end, when δi is received, it
validity is tested by checking for possible errors
using the CRT in Equation (1.1). If the recovered
vector, δ is within the legitimate range, then it is

valid and no further action will be needed. But
if it is outside the legitimate range, then it can
be concluded that δ contain errors in its residues.
The relationship between X and δ will be

X = |δi − E|M , 0 ≤ E ≤ M (3.21)

Where, E is the amount of error that is
propagated into X; its magnitude can be
evaluated in a likewise manner using Equation
(1.1) as

E =

∣∣∣∣∣
t∑

j=1

ℓjδjej

∣∣∣∣∣
M

(3.22)

Let M in (3.22) be expressed as

M =

n∏
i=1

mi =

t∏
α=1

mα.

ln−t∏
β=l1

mβ (3.23)

where, [αi]
t
i=1 are the positions of residues with

errors and [βi]
ln−t

i=l1
are the remaining positions

without errors inside the vector δ. Therefore, let

M̂ =

ln−t∏
β=l1

mβ (3.24)

be the product of all moduli corresponding to
residues without errors in δ. This will make it
possible for us to detect and correct any number
of errors if and only if Lemma 3.2 is satisfied.

Theorem 3.3. For an RRNS code with proper
amount of redundancies r, such that the number
of errors that occur in a received vector, δ is
t ≤ ⌊r/2⌋, the original integer X can be found
by evaluating the equation

X = |δ|M̂ (3.25)

Proof. Equation (3.25) is employed iteratively to
find the one combination of M̂ (in u = nCr)
which produces the integer X that falls within the
legitimate range. This will imply a maximum of
u possible combinations since the position(s) of
error(s) cannot be determined apriori.

These processes can be simplified into an
algorithm as follows:

9
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Algorithm for the proposed error
detection and correction

I. Compute δ from the received vector δi using
Equation (1.1)

II. If δ is in the legitimate range, stop and output
δ

III. Compute iteratively starting from i = 1 using
Equation (3.25) to obtain X. If X is in
the legitimate range, stop and output X.
Otherwise, increment i and repeat Step III
for i ≤ u

IV. Compute X mod ei, i is the error position
where X is in the legitimate range.

3.4 Numerical Illustration

Let us demonstrate how this technique can be
used to detect and correct errors (in this case a
single error but applicable to any number of errors
provided the redundant moduli are sufficient to
satisfy Lemma 3.2). For the chosen moduli
set {2n−1 − 1, 2n,−1, 2n, 22n − 3, 22n + 1}, if
n = 3, then we have the set {3, 7, 8, 61, 65}.
Since the moduli set contains r = 2 redundant
moduli, implies it can correct t = ⌊2/2⌋ = 1
error. Also the legitimate range is [0, 168) while
the illegitimate range is [168, 666120). Now, let
X = 97 and the equivalent residue vector x =
[1, 6, 1, 36, 32] such that during transmission an
error is propagated at the first position (i.e. e1 =
2), the received vector will be δ = [2, 6, 1, 36, 32].

Thus,

xi = [1, 6, 1, 36, 32]

δi = [2, 6, 1, 36, 32]

To obtain δ using Equation (1.1), we substitute
the residue vector of δ and all necessary
parameters of the equation to get

δ =

∣∣∣∣∣
5∑

i=1

ℓi |kiδi|mi

∣∣∣∣∣
M

= 222137

The respective ℓi and multiplicative inverses, ki
are:
ℓi = [222040, 95160, 83265, 10920, 10248] and
ki = [1, 4, 1, 1, 62].
Since the result for δ = 222137 falls within the
illegitimate range, it can be concluded that an
error has occurred; similarly, we notice that when
the errors occurred at positions 2 and/or 5 (i.e.
e2 = 3, e5 = 12), the calculated results fall in
the illegitimate range, and so we have to further
process by employing the proposed technique.
The results are shown in Table by performing
all the possible combinations. From Table , it
is observed that every iteration for X yields an
illegitimate value except at the position where the
error is introduced. This sole legitimate number
is turned out in all the cases to be the correct
integer that was transmitted. Now to get the
respective residue in error, a modulo operation of
that number by its modulo is performed. That is,
97 mod 3 equals 1; likewise the other examples
for channels 2 and 5.

Table 1. Results of error detection and correction at selected positions

No. of

Iterations, i
M̂

X = |δ|M̂ X = |δ|M̂ X = |δ|M̂

e1 = 2, δ = 222137 e2 = 3, δ = 190417 e5 = 12, δ = 369025

1 222044 97 190417 1469885

2 95160 31817 97 83545

3 83265 55607 23887 35965

4 10920 3737 4777 8665

5 10248 6929 5953 97

10



Agbedemnab et al.; AJRCOS, 4(4): 1-14, 2019; Article no.AJRCOS.53646

4 PERFORMANCE
EVALUATION

The results on the performance of the proposed
scheme were analysed theoretically in terms
of the hardware requirements, which has an
implication for cost; the delay imposed by the
various units/stages, which is a factor of the
speed of the proposed scheme; and finally
compared with existing similar existing schemes
on key parameters.

4.1 Hardware Requirements
Regarding the hardware requirements of the
proposed scheme, the forward converter is made
up of six modulo adders comprising of two CSAs
and two CPAs to compute the first and second
residues respectively; these are (n − 1)-bits
and n-bits wide. The third residue is the n-
least significant bits of the binary number X and
so, does not require any computation but the
fourth and fifth residues are also respectively
computed using two CPAs; these are also (2n −
1)-bits and (2n + 1)-bits wide. Therefore,
the estimated area for the forward converter is

(8n − 2)∆FA . The reverse converter requires
two CPAs of (4n + 1)-bits wide (for CPA 1)
and modulo M (i.e. CPA2). There are
also three modulo M CSAs implemented in a
cascading fashion. Finally, a multiplier (a Booth
encoded) unit, [25, 26, 27] to do five different
multiplication operations. These will require a
total area of (5n2 + 32n − 2)∆FA. According
to the proposed architecture for implementing
the forward converter, there are only two stages
due to the parallel implementation. Therefore
the estimated delay for the forward converter is
DAdder2 + DAdder6 = (4n + 3)∆FA and the
estimated delay for the revere converter is (5n2+
22n + 1)∆FA. Finally, the number of iterations
during the error detection and correction is u =
nCt , thus 5C1 = 5 iterations.

4.2 Comparison of Proposed
Scheme with Existing
Schemes

Next, we compared the performance of the
proposed scheme with existing similar schemes
on some parameters as shown in Table .

Table 2. Performance comparison

Scheme Iterations Error Correction Architecture
Single Multiple F/C R/C

[22] nCt NO YES NO NO
[21] 2× nCt YES NO YES NO
[23] nCt NO YES NO NO
[15] 2× nCt YES NO YES NO
Proposed nCt YES YES YES YES

From the table, it is seen that the schemes presented by [21] and [15] have a high number of
iterations (i.e. 2× nCt) in order to detect and correct just a single error during transmission. These
schemes presented architectures for the forward conversion (F/C) process but in doing so, they
failed to present a combined converter for both the information and redundant parts but did do
separately. This approach is not good for hardware optimisation. These schemes however, failed
to present architectures for the reverse conversion (R/C) process. The schemes by [22] and [23] on
the other hand, did not show any architecture for both the forward conversion and reverse conversion
processes. However, these schemes detected and corrected multiple errors with nCt number of
iterations (i.e. half the number of iterations for the schemes by [21] and [15]. A comparison using
the above parameters with the proposed scheme puts it a notch higher. Thus, whiles the number of
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iterations are lower (i.e. nCt ), it detects both single and multiple errors during transmission. The
scheme has also shown the architectures for both the forward conversion (combined information and
redundant parts) process and the reverse conversion process.

5 CONCLUSION

The paper presented an error detection and
correction technique using RRNS with two
redundant moduli in addition to the moduli
set {2n−1 − 1, 2n,−1, 2n}; this is necessary
because during the encoding process of security
systems such as cryptographic and stenographic
schemes there is the likelihood of errors
being propagated. In that case, the errors
need to be detected and corrected during
the decoding process in order to ensure that
whatever is transmitted at the senders end is
received accurately at the receivers end. The
proposed error detection and correction scheme
demonstrated that depending on the number of
redundant moduli, it can detect and correct both
single and multiple errors. Hardware realisation
of the scheme at both ends – binary to RNS
and RNS to binary, was also presented. Finally,
a theoretical analysis show that it outperforms
existing similar state of the art schemes.
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