
*Corresponding author: E-mail: adhikary_apurba@yahoo.com;

Asian Journal of Research in Computer Science

4(4): 1-7, 2019; Article no.AJRCOS.53311
ISSN: 2581-8260

Performance Analysis of a Faster In−place External
Sorting Algorithm

Asaduzzaman Nur Shuvo1, Apurba Adhikary1,2*, Md. Bipul Hossain1

and Sultana Jahan Soheli1

1
Department of Information and Communication Engineering, Noakhali Science and Technology

University, Noakhali − 3814, Bangladesh.
2
Electronics and Communication Engineering Discipline, Khulna University, Khulna − 9208,

Bangladesh.

Authors’ contributions

This work was carried out in collaboration among all authors. Author ANS designed the study,
performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript.

Authors AA and MBH managed the analyses of the study. Author SJS managed the literature
searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2019/v4i430122

Editor(s):
(1) Dr. M. Ilayaraja, Assistant Professor, Department of Computer Science and Information Technology,

Kalasalingam University, Krishnankoil, India.
Reviewers:

(1) Mohammad Shabaz, Chandigarh University, India.
(2) Sapan Naik, Uka Tarsadia University, India.

(3) Faki Ageebee Silas, Bingham University, Nigeria.
Complete Peer review History: http://www.sdiarticle4.com/review-history/53311

Received 05 October 2019
Accepted 11 December 2019

Published 09 January 2020

ABSTRACT

Data sets in large applications are often too gigantic to fit completely inside the computer’s internal
memory. The resulting input/output communication (or I/O) between fast internal memory and
slower external memory (such as disks) can be a major performance bottle−neck. While applying
sorting on this huge data set, it is essential to do external sorting. This paper is concerned with a
new in−place external sorting algorithm. Our proposed algorithm uses the concept of Quick−Sort
and Divide−and−Conquer approaches resulting in a faster sorting algorithm avoiding any additional
disk space. In addition, we showed that the average time complexity can be reduced compared to
the existing external sorting approaches.

Original Research Article

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.AJRCOS.53311

2

Keywords: External sorting; in−place sorting; sorting; external memory.

1. INTRODUCTION

External sorting is a class of sorting algorithms
that can handle massive amounts of data.
External sorting is required when the data being
sorted do not fit into the main memory of a
computing device (usually RAM) and instead
they must reside in the slower external memory,
usually a hard disk drive. Thus, external sorting
algorithms are external memory algorithms and
thus applicable in the external memory model of
computation.

External sorting is required when the number of
records to be sorted is larger than the computer
can hold in its high−speed internal memory. It is
quite different from internal sorting, even
though the problem in both cases is to sort a
given file into increasing or decreasing
order. External sorting algorithms generally fall
into two types, distribution sorting, which
resembles quicksort, and external merge sort,
which resembles merge sort. The latter typically
uses a hybrid sort−merge strategy. In the sorting
phase, chunks of data small enough to fit in main
memory are read, sorted, and written out to a
temporary file. In the merge phase, the sorted
sub−files are combined into a single larger file.
The most common External sorting
algorithm used is still the Merge−Sort as
described by Knuth [1], Nasim and Islam [2] and
others.

Fang−Cheng Leu, Yin−Te Tsai and Chuan Yi
Tang [3] proposed an algorithm in which they
gave attention to reduce disk I/O complexity but
they did not give attention to reduce the time
complexity of sorting. By exploiting the sorting
technique of Dufrene and Lin [4], here we
propose a new external sorting algorithm. The
proposed algorithm is faster than the algorithm
proposed by Dufrene and Lin [4], and uses Quick
sort and special merging process described by
Singh and Naps [5] demanding no other external
files except the original one. Since our proposed
algorithm is based on the algorithm proposed by
Dufrene and Lin [4], the algorithm is reviewed in
Methodology section.

2. METHODOLOGY

We used optimal External Memory (EM)
algorithms for sorting. The following bound is the
most fundamental one that arises in the study of
EM algorithms:

Theorem 2.1 ([1]). The average−case and
worst−case number of I/Os required for sorting N
= nB data items using D disks is,

Sort (N)	= 	φ(
�

�
log� n) (2.1)

where,

N = The size of the external file (MB)
n = Number of blocks
B = Block size (MB) = M/2
M = size of memory (MB)

We discuss some recently developed external
sorting algorithms that use disks independently
and achieve bound (2.1) as used in Horowitz et
al. [6] and Vitter and Shriver [7]. The algorithms
are based upon the important distribution and
merge paradigms, which are two generic
approaches to sorting. They use online load
balancing strategies so that the data items
accessed in an I/O operation are evenly
distributed on the D disks. The distribution sort
and merge sort methods using randomized
cycling, Randomized Cycling Device (RCD) and
Randomized Cycling Memory (RCM) and the
simple randomized merge sort (SRM) are the
methods of choice for external sorting. For
reasonable values of size of RAM, M and D, they
outperform disk striping in practice and achieve
the I/O lower bound (2.1) with the lowest known
constant of proportionality. The steps of the
algorithm are shown in Fig. 1.

The proposed algorithm is the generalization of
internal Bubble sort. The algorithm works in two
phases. In the first phase, this algorithm works
as the algorithm described in [1]. That is, Block_1
and Block_S are read into lower half and upper
half of memory array respectively and they are
sorted using Quick sort. This phase terminates
when Block_2 is read into the upper half of
memory array and sorted with the remaining
records in the lower half of memory array.

After this, the algorithm switches to its second
phase. In this phase, Block_S−1 and Block_S
are read into the lower and upper half of memory
array respectively. Then the algorithm uses the
special merging process. The diagrams of sorting
by special merging technique have been shown
in Fig. 2. We say the merging process used here,
is a special one because, the merging is
accomplished in two steps. In the first step,
merging is applied to sort the records (as both

halves of memory array contain sorted records)
of the lower and upper half of memory array and
the sorted records are written simultaneously in
the position of Block_S−1 in the external file until
the block is full. In the second step, the
remaining records in the lower and upper half of
memory array are again merged and the sorted
records are written from the beginning of the
upper half of memory array simultaneously. Now
the upper half of memory array contains the
highest ordered records of Block_
Block_S−1.

After this, Block_S-2 is read into l
memory array. In this way, when the last block,
Block_2 has been processed, the upper half of

Fig. 1. Steps of algorithm (a) Apply quick sort; (b) Divide sub

Fig. 2. Sorting by

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.

3

halves of memory array contain sorted records)
f the lower and upper half of memory array and

the sorted records are written simultaneously in
1 in the external file until

the block is full. In the second step, the
remaining records in the lower and upper half of

e again merged and the sorted
records are written from the beginning of the
upper half of memory array simultaneously. Now
the upper half of memory array contains the
highest ordered records of Block_S and

2 is read into lower half of
memory array. In this way, when the last block,
Block_2 has been processed, the upper half of

memory array contains the highest sorted
records of the entire file and they are written in
the position of Block_S in the external file.

The next iteration starts with Block_S
Block_S-1 to be read into the lower and upper
half of memory array respectively. At the end of
this iteration upper half of memory array contains
the highest sorted records among t
Block_2, Block_3, …., Block_S-1
written in the position of Block_S
external file. After each pass, as in the case of
the Bubble Sort, the size of the external file is
decreased by one block. The last blocks to be
processed are Block_2 and Block_3, upon the
completion of which the whole file is sorted.

(a) Apply quick sort; (b) Divide sub−blocks; (c) First Iteration

Fig. 2. Sorting by special merging technique

; Article no.AJRCOS.53311

memory array contains the highest sorted
records of the entire file and they are written in
the position of Block_S in the external file.

teration starts with Block_S-2 and
1 to be read into the lower and upper

half of memory array respectively. At the end of
this iteration upper half of memory array contains
the highest sorted records among the blocks

1 and they are
written in the position of Block_S-1 in the
external file. After each pass, as in the case of
the Bubble Sort, the size of the external file is
decreased by one block. The last blocks to be
processed are Block_2 and Block_3, upon the

on of which the whole file is sorted.

−blocks; (c) First Iteration

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.AJRCOS.53311

4

2.1 Algorithm Using Special Merging Technique

1. Declare the blocks in the external file to be half of memory array. Let the blocks are Block_1,
Block_2, …, Block_S−1, Block_S.

2. Read Block_1 into the lower half of memory array. Set T = S.
3. Read Block_T into the upper half of memory array.
4. Sort the entire memory array using Quick sort.
5. Write upper half of memory array to Block_T area of external file.
6. T = T−1.
7. Go to step 3 if T ≠ 1.
8. Write lower half of memory array to Block_1 area of external file. Set P = S.
9. Read Block_P into the upper half of memory array and set Q = P−1.
10. Read Block_Q into the lower half of memory array.
11. Sort (merge) the memory array by using Merge(). Here Merge () writes lowest sorted half of the

records of memory array to the Block_Q area of the external File. And then the remaining
records in the lower and upper half of the memory array are written from the beginning of the
upper half of memory array by Merge(), so that the upper half of memory array contains sorted
records.

12. Q = Q – 1.
13. Go to step 10 if Q ≠ 1.
14. Write the upper half of memory array to the area of Block_P in the external file.

P = P−1
15. Go to step 9 if p ≠ 2.

Merge()
{
// This procedure is used to merge (sort) the records in memory array.
// RAM [] is representing the memory array.
// n is the number of records that fit into memory array. That means block size is n/2.
h: = 1; // first position of the lower half of memory array.
Pt: = start of Block_Q.
j: = n/2 + 1; // first position of the upper half of memory array.
S: = j; copy: = j; loop: = 1;
/ / The Special merging process of the algorithm.

While (loop < S)
{

if (RAM [h] <= RAM [j]) then
{
Block_Q [pt]: = RAM [h]; h: = h + 1;
}
else
{
Block_Q[pt]: = RAM [j]; j: = j + 1;
}
 pt: = pt + 1; loop: = loop + 1;

}
while (h <= n/2)
{

if (RAM [h] <= RAM [j]) then
{

RAM [copy]: = RAM [h]; h: = h + 1;
}

}
}

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.AJRCOS.53311

5

3. RESULTS AND DISCUSSION

The time complexity of the internal Quick sort is
O (n	�����) in average case, as given by Knuth
[1]. Here, n is the number of records to be sorted.
So, the time complexity for the first phase of our
algorithm is n 	����� (N / B−1). In the second
phase, we use the special merging technique by
Merge ().

Now, as per special merging technique, if there
are n records in memory array, n / 2 records are
merged at a time. In addition, the time complexity
of merging is: 1/ 2 × (n/ 2 + n/ 2) = n/ 2 (as given
by Knuth [1]). Now, merging of records occurs
twice with n/2 records when special merging
technique is encountered in the algorithm. So,
the time complexity in the second phase is:

[(N / B − 2) + (N / B − 3) …. + 1] × (n/ 2 + n/ 2)

= [(N / B − 2) + (N / B − 3) + …. + 1] × n

= n∑ �
�

�
��

���

So, the total time complexity of the algorithm is:

T1 = n�����(N/B − 1) + ∑ �
�

�
��

���

3.1 Comparison of Time Complexity

The algorithm proposed by Dufrene and Lin [4]
uses only Quick sort to sort the external file. So,

the time complexity of the algorithm (in the
average case) is:

T2 = [(N/B – 1) + (N/B – 2) + …+ 1] × n�����

 = n����� ∑ �
�

�
��

���

Now we assume that, T1 = T2.

 n�����(N/B - 1) + n∑ �
�

�
��

���
 = n����� ∑ �

�

�
��

���

 �∑ �
�

�
��

���
 = ������∑ �

�

�
��

���

 ∑ �
�

�
��

���
 = �����∑ �

�

�
��

���

 1 = �����

But, 1 ����� (For n is a positive integer).
For n = 3,4,5… ∞

1 < �����

Therefore, T1<T2 for n>2. So, our algorithm is
better than the algorithm proposed by Dufrene
and Lin [1].

Here, the reduction of time complexity of the
proposed algorithm from the algorithm proposed
by Dufrene and Lin [4] is calculated and shown in
the Table 1.

Fig. 3. Reduction of time complexity vs external file size

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.AJRCOS.53311

6

Table 1. Reduction of time complexity

External
file size
(MB)

RAM
size
(MB)

Record
size(Byte)

Number of
records In RAM
(n)

T1 for our proposed
algorithm(minutes)

T2 for algorithm by
Dufrene and Lin[4]
(minutes)

Ratio of time
complexity (T1/T2)

Reduction of time
complexity (%)

80 32 1024 32768 183 400 0.4575 54.25 %
160 32 1024 32768 2769 10000 0.2769 72.31 %
320 32 1024 32768 373 2000 0.1865 81.35 %
640 32 1024 32768 1411 10000 0.1411 85.89 %

Shuvo et al.; AJRCOS, 4(4): 1-7, 2019; Article no.AJRCOS.53311

7

From Table 1, it is definite that with the increase
of the size of the eternal file size, the reduction
of time complexity increases compared
to the algorithm proposed by Dufrene and Lin
[4].

Here, T1/T2 =
�������

���

�
×�

�������
���

�
×������

Now it is vibrant that, if (N−M)/M is higher, then
the proposed algorithm will have a clear
benefit over the algorithm proposed by
Dufrene and Lin [4]. Because, the proposed
algorithm will substitute Quick sort (N−M)/M
times by the special merging technique. So, the
algorithm will sort faster if the external file is
many times larger than the available
memory (RAM) of the computer. We have
calculated the reduction of time complexity (in
percentage) of the proposed algorithm from the
algorithm proposed by Dufrene and Lin [4].
Moreover, our proposed algorithm is faster than
the algorithm proposed by L. Arge [8], R.
Bayer and McCreight [9] and Rafiqul and Raquib
[10]. The reduction of time complexity with
respect to external file size has been shown in
Fig. 3.

4. CONCLUSION

In this paper, we proposed an external sorting
algorithm that proves to be very efficient in this
respect as each pass completes sorting of a part
of the external file. There is no need of extra disk
space in our proposed algorithm. The proposed
algorithm takes minimum comparisons to sort the
records and creates no extra file or huge priority
queue. In addition, our proposed algorithm
revealed that the average time complexity can be
reduced compared to the existing external
sorting approaches. Furthermore, we believe that
our proposed algorithm can be improved further
by reducing the disk I/O complexity.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Knuth DE. The art of computer

programming, sorting and searching,
addition Wesley reading. MA. 1973;3.

2. Md. Nasim Adnan, Md. Islam, Md. Nur
Islam, Md. Shohorab Hossen. A faster
hybrid external sorting algorithm with no
additional disk space. International
Conference on Computer and Information
Technology (ICCIT); 2002.

3. Fang−Cheng Leu, Yin−Te Tsai, Chuan Yi
Tang. An efficient external sorting
algorithm; 2000.

4. Dufrene WR, Lin FC. An efficient sorting
algorithm with no additional space.
Comput. J. 1992;35.

5. Singh B, Naps TL. Introduction to data
structures. West publishing Co, St Paul,
MN; 1985.

6. Ellis Horowitz, Sartaj Sahni, Sanguthevar
Rajasekaran. Fundamentals of computer
algorithms. W. H. Freeman and Company;
1998.

7. Vitter JS, Shriver EAM. Algorithm for
parallel memory, I: Two−level memories.
Algorithmica. 1994;110−147.

8. Arge L, Vitter JS. Optimal dynamic interval
management in external memory. In Proc.
IEEE Symp. on Foundations of Comp. Sci;
1996.

9. Bayer R, McCreight E. Organization and
maintenance of large ordered indizes. Acta
Informatica. 2012;1:173.

10. Md. Rafiqul Islam, Raquib Uddin SM. An
external sorting algorithm using merging.
Malaysian Journal of Computer Science.
2015;18(1):40−49.

© 2019 Shuvo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/53311

