
*Corresponding author: E-mail: fokides@aegean.gr;

British Journal of Education, Society &
Behavioural Science

20(3): 1-11, 2017; Article no.BJESBS.33520
ISSN: 2278-0998

SCIENCEDOMAIN international

 www.sciencedomain.org

Redefining the Framework for Teaching
Programming to Primary School Students:

Results from Three Pilot Projects

Emmanuel Fokides 1* and Pinelopi Atsikpasi 1

1University of the Aegean, Rhodes, Greece.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: 10.9734/BJESBS/2017/33520
Editor(s):

(1) Vlasta Hus, Department of Elementary Teacher Education, University of Maribor, Slovenia.
Reviewers:

(1) Stamatios Papadakis, University of Crete, Greece.
(2) Ludgleydson Fernandes De Araújo, Universidade Federal do Piauí, Brasil.

Complete Peer review History: http://www.sciencedomain.org/review-history/18968

Received 18 th April 2017
Accepted 4 th May 2017

Published 8 th May 2017

ABSTRACT

Aims: The study summarizes the findings of three pilot projects in which 2nd, 5th, and 6th-grade
primary school students were taught basic programming concepts using game-like applications.
Study Design: Experimental study with one experimental and two control groups in each pilot
project.
Place and Duration of Study: Sample: A total of 198 2nd, 5th, and 6th-grade students participated
to the studies, coming from 3 primary schools located in Athens, Greece. The duration of the
projects was between September 2016 and February 2017.
Methodology: In all projects, three groups of students were formed. One was taught using tablets
or a game development programming environment, while the other two were taught the same
subjects using conventional methods.
Results: Results' analyses revealed that students who used the applications had better learning
outcomes, compared to the ones that were taught conventionally. The results can be attributed to
the increased students' motivation and to the applications' game-like characteristics.
Conclusion: On the basis of the results, suggestions for redefining the framework for teaching
programming are presented.

Original Research Article

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

2

Keywords: Kodable; Kodu; mobile apps; primary school students; programming; tablets.

1. INTRODUCTION

Technology has changed many aspects of our
lives. As far as education is concerned,
technology has imposed a significant shift in
focus; from knowledge acquisition to the
acquisition of a set of skills that will render
students creative and capable of responding to
the needs of modern society. Students have to
stop being passive users of devices and
applications and become content designers and
creators [1]. Even if Prensky [2] describes young
students as "digital natives", as a result of their
familiarity with technology, their skills are still
associated with the simple use of devices and
applications. The prevailing educational model
continues to be that of facilitating learning
through the use of technology, that is also related
to the simple use of ICT tools during teaching.

The question that emerges is how we can turn
students from adept users to skillful content
designers and creators through technology?
There are many who believe that this can be
achieved if students acquire programming
knowledge and skills [3]. There are multiple
benefits for students when they learn how to
program: development of analytical thinking,
development of skills related to the design of
algorithms, and a positive impact on their
creativity and imagination [4,5]. Researchers
suggested that when the teaching of
programming becomes an enjoyable experience
the results are noteworthy [6].

The teaching of programming concepts, in Greek
primary schools, is included in the last two
grades, not as an independent course, but a part
of the IT course [7]. However, the content is
poor, outdated, not well organized, and students
face difficulties [8]. Therefore, a two-fold
intervention is needed to rectify the problem. The
first is to redefine the objectives and the content
of programming as a teaching subject. The
second is to find easy and fun to use tools, so as
students to become motivated to learn how to
program and to develop positive attitudes
towards this subject.

Three pilot projects were designed and
implemented over a school year. Though the
target groups were students of different ages,
they shared some common features: (a) the tools
that were used exploited the elements of fun and
play, (b) the programming concepts that were

taught were basic but went beyond those
included in the official curriculum, and (c) the
duration and sample sizes were sufficient so that
reliable conclusions can be drawn. The main
research questions were: (a) to what extent
primary school students can understand basic
programming concepts, (b) what is the
appropriate teaching method, (c) how important
are the elements of fun and play, and (d) what is
the role of students' autonomy during the
learning process. The coming sections
summarize the rationale, methodology, and
findings of these projects. On the basis of the
experience gained, specific suggestions on how
to improve the current situation are also
presented.

2. PROGRAMMING AS A TEACHING

SUBJECT

Programming, as a teaching subject, is included
in the Greek primary school's curriculum, as part
of the Informatics' course, which is taught just for
an hour each week, and only in the last two
grades. Its objectives are, through the use of a
simple programming language (Logo-like),
students to learn how to use simple commands
in order to create shapes or solve simple
problems, understand algorithmic structures, and
develop their problem-solving skills [7]. Apart
from the fact that Logo is outdated, compared to
other modern programming languages
addressed to children, the curriculum is poor
both in terms of its duration and content [9]. In
general, students face some major problems
when they learn how to program. They have a
poor understanding of how programs are
executed [10], and of the rules, logic, and syntax
of the programming languages [11]. Variables, as
well as other concepts, are not easy to grasp
[12]. The reasons for the above issues are young
students' lack of logical reasoning and their
undeveloped algorithmic and critical thinking [13].

The teaching/learning of programming fosters a
series of mental and cognitive skills. Besides
learning fundamental programming concepts
[14], students can develop a positive attitude
toward learning computing in general [4]. A better
understanding of mathematical concepts and
improvement of their social skills [4], problem-
solving skills [15], computational thinking [16],
higher order thinking skills [17], as well as an
impact on their creativity and imagination [5],
were noted. There is extensive literature on the

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

3

ways that programming can be taught to primary
school students. For example, Scratch and its
versions attracted the attention of the scientific
community [18]. Many have pointed out that its
effectiveness is the result of its game-like
characteristics [18]. Furthermore, very positive
results yield programming environments that
their purpose is the development of games.
Besides having the positive effects that were
previously mentioned, research has shown that
such programming environments render students
more creative and more motivated for learning
how to program computers [19].

3. THE PILOT PROJECTS

Assuming that game-like programming
environments are particularly effective, the
interest turned to them and it was decided to
examine their effectiveness. Therefore, in 2016,
three pilot projects were designed and
implemented. In the sections that follow, a brief
summary of their rationale and methodology, as
well as their main conclusions are presented. It
has to be noted that prior to the beginning of all
projects, students' parents were informed about
their goals and methods and their written consent
for their children's participation was obtained.

3.1 Pilot Project 1

In this project, the target group was sixth-grade
students (ages 11-12). The tool chosen for
teaching programming was Microsoft's Kodu
(http://www.kodugamelab.com/), that allows the
rapid development of 3D games. The
programming language has very simple rules
and it is based on physical terms and concepts
such as see, hear, and bump, for the control of
the games' characters and objects. Even 10-
year-olds developed their own games. The
programming concepts that were taught were
variables, sequences, and subroutines. Two two-
hour sessions were allocated for the teaching of
each programming concept. Students worked in
pairs. The teacher introduced each programming
concept and students were then asked to
developed mini-games using the programming
concept that has been introduced to them.

3.1.1 Methods

To enable comparison of the results, two more
groups of students were formed. To the first, only
evaluation sheets, presented in the coming
paragraph, were administered. Thus, it was
examined what students can intuitively perceive
regarding the above programming concepts. The
second group was taught conventionally. The
teacher taught using notes, presentations,
brochures, and the whiteboard. Instead of
developing mini-games, the teacher posed
problems, derived from students' everyday life,
associated with each programming concept, and
students (working in pairs) solved them, on
paper, in the form of pseudocode. For example,
in sequences, they were asked to write down the
recipe for a pizza in a form of a sequence of
events.

The assessment of students' performance was
done using: (a) evaluation sheets that were given
immediately after the end of each session and
(b) delayed post-tests, that were given about two
weeks after the end of the project, to test the
sustainability of knowledge. Each of the above
tests consisted of two distinct sections. The first
had multiple choice, fill-in-the-blanks, and right-
wrong questions (at least 10 of them). In the
second part, students were instructed to
transcribe, using programming terms and
concepts, everyday life activities (at least 5 such
problems). Also, at the end of the project, a short
questionnaire was administered in order to
investigate the attitudes and opinions of students
for Kodu (15 Likert-type questions). A total of 66
students participated in this project coming from
three neighboring schools in Athens, Greece.

3.1.2 Results

The sample (66 students), was divided into three
groups (no teaching-Group0, conventional
teaching-Group1, and with the use of Kodu-
Group2). For the analysis of the results, scores
on the basis of the number of correct answers in
each evaluation sheet were computed. Mean
scores per group of participants and per test are
presented in Table 1.

Table 1. Means and standard deviations on all evalu ation sheets

Test

Group0 (N = 22) Group1 (N = 22) Group2 (N = 22)
M SD M SD M SD

ES1 7.58 1.15 12.65 1.28 15.20 1.18
ES2 6.40 1.25 11.58 1.45 15.05 1.68
ES3 8.32 1.48 12.65 1.12 14.56 1.88
Delayed post-test 11.35 2.20 16.38 1.98 19.22 1.76

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

4

One-way ANOVA tests were to be conducted to
compare the scores of the three groups in all
tests, in order to determine if they had any
significant differences. Prior to conducting these
tests, it was checked whether the assumptions of
ANOVA testing were violated. It was found that:
(a) all sub-groups had the same number of
participants, (b) there were no outliers, (c) the
data were normally distributed in all tests, and (d)
the homogeneity of variance was not violated, as
assessed by Levene's test of homogeneity of
variance. Since all assumptions for ANOVA
testing were met, the analysis was conducted.
The analysis showed that the teaching method
had a significant effect on the scores in all tests,
as presented in Table 2.

Table 2. One-way ANOVA results

Test Result
ES1 (variables) F(2, 63) = 228.10, p < .001
ES2 (sequences) F(2, 63) = 192.78, p < .001
ES3 (sub-routines) F(2, 63) = 96.67, p < .001
Delayed post-test F(2, 63) = 88.41, p < .001

Post-hoc comparisons were conducted using the
Tuckey HSD test on all possible pairwise
contrasts in all tests. It was found that:

• ES1. The mean total score for Group2
(M = 15.20, SD = 1.18) was significantly
higher (p < .001) than that of Group1
(M = 12.65, SD = 1.28), while both were
significantly higher than that of Group0
(M = 7.58, SD = 1.15) (p < .001 in both
cases).

• ES2. The mean total score for Group2
(M = 15.05, SD = 1.68) was significantly
higher (p < .001) than that of Group1
(M = 11.58, SD = 1.45), while both were
significantly higher than that of Group0
(M = 6.40, SD = 1.25) (p < .001 in both
cases).

• ES3. The mean total score for Group2
(M = 14.56, SD = 1.88) was significantly
higher (p < .001) than that of Group1
(M = 12.65, SD = 1.12), while both were
significantly higher than that of Group0
(M = 8.32, SD = 1.48) (p < .001 and
p < .001 respectively).

• Delayed post-test. The mean total score
for Group2 (M = 19.22, SD = 1.76) was
significantly higher (p < .001) than that of
Group1 (M = 16.38, SD = 1.98), while both
were significantly higher than that of
Group0 (M = 11.35, SD = 2.20) (p < .001 in
both cases).

Students were highly positive regarding their
experiences while using Kodu. More specifically,
they liked the:

• Whole project (M = 4.32, SD = 1.15).
• Application's game-like features (objects,

animation, sounds) (M = 4.28, SD = 1.32).
• The process of developing games (M =

4.22, SD = 1.54).
• Programming (M = 3.70, SD = 1.56).
• Group work (M = 3.62, SD = 1.24).

Students believed that they learned quite a lot
(M = 4.22, SD = 1.55) and quite easily (M = 4.17,
SD = 1.14). They also found Kodu easy to use
(M = 4.12, SD = 1.18), motivational (M = 4.08,
SD = 1.32) and they stated that they would like to
use it in other lessons (M = 3.95, SD = 0.96). No
problems were reported regarding Kodu's use,
while three reported problems regarding
collaboration.

3.2 Pilot Project 2

In the second project, the target group was fifth-
grade students (ages 10-11). The research
methodology was different than the previous one.
Since conventional teaching did not produce
good results, it was decided to examine different
types of teaching methods, but, in all,
collaboration between students played a major
role. Again, three groups of students were
formed. All used Kodu and students worked in
groups. In the first, the teacher had an active
role, systematically teaching the programming
concepts, by giving examples in Kodu, and by
providing constant support to students. In the
second, the teacher had only a supporting
role (e.g., answering technical questions) and
students studied the programming concepts
using detailed notes. In the third group, the role
of the teacher was, again limited, and the notes
were not available to students; they had to seek
by themselves solutions to the problems they
faced.

3.2.1 Methods

The main goal was for students to develop a
complex game, by the end of the project. This
was implemented in three stages. First, students
were asked to develop simple games, without
any programming, in order to explore the objects
included in Kodu. The second stage involved the
development of a simple game, by adding
interactions and by implementing a simple game

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

5

scenario that was given to them. Students came
into contact with important programming
concepts such as variables, sequences, logical
expressions (AND, OR), conditions (When-Do),
and subroutines. In the final stage, a detailed
game scenario was given to students and they
were asked to implement it in the best way they
could. This stage was significantly longer,
compared to the previous stages. The project
lasted for about three months (70 hours for each
group, 6 hours per week), due to the complexity
of the tasks together with the need to provide
students enough time to understand all the
programming concepts and to be able to apply
them. The target group was 63 fifth-grade
students coming from the same schools as in the
previous project.

Research data was collected by evaluating
students' games. For their evaluation, the
technique of content analysis was utilized
(conducted by three independent raters) and a
complex scoring system was developed,
containing both quantitative and qualitative
criteria. The quantitative criteria included the
number and types of commands used, if they
were used properly, and if there were any
programming errors. The qualitative criteria were
those proposed by Consalvo and Dutton [20]; for
example, the aesthetic integrity of the game, the
complexity of the levels, the complexity of
commands, the gameplay, etc. In addition, at the
end of the project, a short questionnaire was
administered in order to examine the attitudes
and opinions of students regarding Kodu (15
Likert-type questions).

3.2.2 Results

The final sample size (63 students), was divided
into three groups (with teacher's assistance-
Group0, with the use of notes-Group1, and with
no notes and no teacher's assistance-Group2).
For the analysis of the results, the three games
that students developed were evaluated, with the
method mentioned in the previous section and a
total score for each was computed. Mean scores

per group of participants and per test are
presented in Table 3.

One-way ANOVA tests were to be conducted to
compare the scores of the three groups in all
games, in order to determine if they had any
significant differences. Prior to conducting these
tests, it was checked whether the assumptions of
ANOVA testing were violated. It was found that:
(a) all groups had the same number of
participants, (b) there were no outliers, (c) the
data were normally distributed in all tests, and (d)
the homogeneity of variance was not violated as
assessed by Levene's test of homogeneity of
variance. Since all the assumptions were met,
the ANOVA testing was conducted. The analyses
showed that the teaching method did not have a
significant effect on the scores of all games, as
presented in Table 4.

Students made positive remarks regarding their
experiences while using Kodu. More specifically,
they liked the:

• Application's game-like features (objects,
animation, sounds) (M = 4.35, SD = 1.18).

• Whole project (M = 4.23, SD = 1.23).
• The process of developing games (M =

4.05, SD = 1.24).
• Group work (M = 3.88, SD = 1.05).
• Programming (M = 3.82, SD = 1.15).

According to students' responses they learned
quite a lot (M = 4.12, SD = 1.16) and quite easily
(M = 4.10, SD = 1.02). They also found Kodu
easy to use (M = 3.95, SD = 1.05), motivational
(M = 4.18, SD = 1.15) and they stated that they
would like to use it in other lessons (M = 4.12,
SD = 0.85). Five students reported problems
when using Kodu, while two reported problems
regarding collaboration.

3.3 Pilot Project 3

The last study examined if it is possible to teach
programming to younger ages that the official

Table 3. Means and standard deviations of games' ev aluations

Test

Group0 (N = 21) Group1 (N = 21) Group2 (N = 21)
M SD M SD M SD

Game 1 44.15 19.12 46.18 15.50 45.85 14.28
Game 2 105.10 12.15 100.22 12.58 103.85 12.14
Game 3 164.05 24.12 160.50 22.40 162.55 22.38

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

6

curriculum dictates. The target group was
second-grade students (ages 7-8). Because
Kodu could not be used by children of this age,
tablets and an application, namely Kodable
(https://www.kodable.com/), were used. Kodable
was selected because of the simplicity of its
interface, the game-like features, and the
existence of ready-made and detailed lesson
plans. Although it is in English, the interface can
be easily understood rendering knowledge of
English unnecessary. The student/user guides
the application's character through labyrinthine
levels, collecting as many coins as possible.
Each level is completed when the character
reaches the exit. The guidance is done by using
the available commands as many times as the
user wants. The commands are placed by
dragging and dropping them to a limited number
of empty slots, suggesting that the program must
be completed using a limited number of
commands. The user executes the program,
sees the results, and, in case of an error, he/she
can redo the programming. The levels are of
escalating difficulty (e.g., more complex paths,
fewer available commands). It is worth noting
that there is no single correct solution to each
level. Sequences, conditions (if/then) and loops
were taught using this application. The lessons'
plans and activities were translated and adapted
into Greek.

Table 4. One-way ANOVA results

Game Result
Game 1 F(2, 60) = 1.15, p = .586
Game 2 F(2, 60) = 3.24, p = .602
Game 3 F(2, 60) = 2.85, p = .498

3.3.1 Methods

At the beginning of each session, the teacher
made a short introduction about the
programming concept that he was about to
teach, drawing examples from students'
everyday lives. Next, students worked, in pairs,
using the tablets, resolving the levels of the
corresponding concept. In-classroom activities

followed, which required teamwork and included
worksheets and games. Each session lasted for
two teaching hours and each programming
concept required two sessions. Immediately
following the end of the teaching of a
programming concept, students completed an
evaluation sheet, consisting of three distinct
parts. The first one had multiple choice, fill-in-the-
blanks, and right-wrong questions. In the second
part, students were instructed to transcribe, using
programming terms and concepts, everyday life
activities (as in the first pilot project). The third
part followed Kodable's philosophy and
presentation layout. Students were presented
with a level and they had either to complete the
missing commands or to check whether the
solution was correct (identifying any errors). Also,
about a month after the end of the project,
students completed a delayed post-test which
had the same structure as the evaluation sheets
but included all the programming concepts that
they were taught. They also completed a short
questionnaire for the evaluation of their
experiences and views regarding the use of
tablets/application (15 Likert-type questions).

For examining the significance of the project's
results, two more groups of students were
formed. The first one used board games instead
of tablets. This method has been used by other
researchers with noteworthy results [21]. Each
board game was a printed and enlarged
Kodable's level. The same was done for the
characters and for all the other elements
included in the application. The students, working
in pairs, placed the various elements/commands
on the board and the teacher "executed" the
"program" determining if it "worked" properly.
The in-classroom activities, as well as the way
students worked, were the same as in the tablets
group. The second group of students was taught
conventionally, using notes. These notes
followed Kodable's philosophy and way of
presenting the learning material. Once again,
students worked in pairs. The in-classroom
activities were also the same as in the previous
groups.

Table 5. Means and standard deviations on all evalu ation sheets

Test

Group0 (N = 23) Group1 (N = 23) Group2 (N = 23)
M SD M SD M SD

ES1 (21) 12.48 2.42 15.35 1.85 17.88 1.34
ES2 (20) 6.54 1.68 9.85 1.48 10.56 1.57
ES3 (20) 9.56 1.52 11.38 2.12 13.46 1.70
Delayed post-test (22) 10.13 2.45 13.58 2.91 16.85 2.17

Notes. Maximum scores for each test are reported in parenthesis. ES1 = evaluation sheet sequences,
ES2 = evaluation sheet conditions, ES3 = evaluation sheet loops

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

7

3.3.2 Results

The sample size (69 students), was divided into
three groups (conventional-Group0, board game-
Group1, and tablets-Group2). As in the first pilot
project, scores on the basis of the number of
correct answers in each evaluation sheet were
computed. Mean scores per group of participants
and per test are presented in Table 5.

One-way ANOVA tests were to be conducted to
compare the scores of the three groups in all
tests, in order to determine if they had any
significant differences. Prior to conducting these
tests, it was checked whether the assumptions of
ANOVA testing were violated. It was found that:
(a) all sub-groups had the same number of
participants, (b) there were no outliers, (c) the
data were normally distributed in all tests, and
(d) the homogeneity of variance was violated in
one test, as assessed by Levene's test of
homogeneity of variance. In the cases where all
assumptions for ANOVA testing were met, this
analysis was conducted. In the case where the
assumption of the homogeneity of variance was
violated, the Brown-Forsythe test was conducted,
which is robust in cases of heteroscedasticity.
The analyses showed that the teaching method
had a significant effect on the scores in all tests,
as presented in Table 6.

Table 6. One-way ANOVA results

Test Result
ES1 Brown-Forsythe F(2, 51.45)

= 35.78, p < .001
ES2 F(2, 66) = 42.47, p < .001
ES3 F(2, 66) = 27.10, p < .001
Delayed post-
test

F(2, 66) = 40.63, p < .001

Post-hoc comparisons were conducted using the
Tuckey HSD test on all possible pairwise
contrasts in all tests except the one in which the
homogeneity of variance was violated. To that,
the Games-Howell test was conducted. It was
found that:

• ES1. The mean total score for Group2
(M = 17.88, SD = 1.34) was significantly
higher (p < .001) than that of Group1 (M =
15.35, SD = 1.85), while both were
significantly higher than that of Group0
(M = 12.48, SD = 2.42) (p < .001 in both
cases).

• ES2. The mean total score for Group2
(M = 10.56, SD = 1.57) was not
significantly higher (p = .286) than that of

Group1 (M = 9.85, SD = 1.48), while both
were significantly higher than that of
Group0 (M = 6.54, SD = 1.68) (p < .001 in
both cases).

• ES3. The mean total score for Group2
(M = 13.46, SD = 1.70) was significantly
higher (p < .001) than that of Group1 (M =
11.38, SD = 2.2), while both were
significantly higher than that of Group0
(M = 9.56, SD = 1.52) (p = .003 and p <
.001 respectively).

• Delayed post-test. The mean total score
for Group2 (M = 16.85, SD = 2.17) was
significantly higher (p < .001) than that of
Group1 (M = 13.58, SD = 2.91), while both
were significantly higher than that of
Group0 (M = 10.13, SD = 2.45) (p < .001 in
both cases).

Students made positive remarks regarding their
experiences while using the tablets and the
application. More specifically, they liked the:

• Application's game-like features (M =
4.55, SD = 1.10).

• Use of tablets (M = 4.32, SD = 1.04).
• The whole project (application and in-

classroom activities) (M = 4.18, SD =
1.12).

• Group work (in-classroom activities) (M =
3.92, SD = 1.00).

• Working in pairs (application) (M = 3.86,
SD = 1.12).

According to students' responses, conditions was
the most interesting programming concept,
followed by sequences and loops. At the same
time, conditions were considered the most
difficult one, followed by loops, while sequences
were the easiest programming concept. In
addition, students stated that they learned quite a
lot (M = 4.22, SD = 1.06) and quite easily (M =
4.15, SD = 0.82). They also found tablets easy to
use (M = 4.05, SD = 1.15), motivational (M =
4.00, SD = 1.05) and they stated that they would
like to use them in other lessons (M = 4.19, SD =
0.65). Only one student reported problems when
using tablets, while none reported problems
regarding collaboration or when working in pairs.

4. DISCUSSION-TOWARDS A NEW

FRAMEWORK FOR TEACHING
PROGRAMMING TO PRIMARY
SCHOOL STUDENTS

All three pilot projects provided useful insights on
how we can teach programming to students.

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

8

Indeed, by summarizing the findings of the three
pilot projects it can be noted that:

• In Pilot study 1, the results suggest that
students who used Kodu outperformed
students in the other two groups in all
tests, including the delayed post-test.
Thus, it can be argued that teaching
programming through the development of
digital games is a quite effective method.

• These results of Pilot study 2 suggest
that students' games, regardless of the
teaching methodology, did not have any
statistically significant differences. This is
an interesting finding, since it suggests that
the teaching method did not have any
statistically significant impact on students'
scores.

• Pilot study 3 was different from the
previous ones, since tablets were used
and the target group was very young
students. Taken together, the results of
this study suggest that students who
used the tablets/application outperformed
students in the other two groups in three
out of four tests, including the delayed
post-test. In ES2 (conditions) the results of
Group2 and Group1 were not statistically
significantly different, although both
outperformed students in Group0. It has to
be noted that in this test the mean scores
of all groups were significantly lower
compared to other tests (Table 5). Indeed,
by taking a closer look at this test, it was
found that most students (in all groups)
failed to transcribe, using programming
terms and concepts, everyday life activities
and also failed to complete the missing
commands or to check whether the
solution given to them was correct. Very
few students (10 out 69) managed to
complete the exercises where nested ifs
should have been used.

Regarding Kodu, an important finding was that
the results of the first study were in line with the
findings of similar studies that indicated that
Kodu made the teaching of programming
concepts more enjoyable, and, because of its
game-like features, it helped students to have a
better understanding of basic programming
concepts, and solve complex programming
problems [22, 23]. After all, Kodu's main purpose
is to develop games and games are compatible
with children's mentality [2]. It should also be
noted that students, although young, did not face
significant problems while using it. Based on

these findings, it can be argued that Kodu is an
attractive and effective tool for teaching
programming concepts to students. The third
pilot demonstrated that the teaching of
programming concepts, to very young students,
using tablets and game-like applications, is more
effective than conventional teaching methods.
The findings confirmed the results of previous
studies that indicated the relationship between
the use of mobile devices and the good learning
outcomes regarding programming concepts [24].
The absence of usage problems was noted in
other studies, which attributed this finding to the
familiarization of -even very young- children with
electronic devices [25].

As for the appropriate teaching method, one
should take into consideration the results of the
second pilot. It seems that the teaching method
is not so important if students have enough time
to study and practice. This is supported by the
fact that all groups had the same learning
outcomes. This finding may seem surprising and
perhaps difficult to interpret. Additionally, from
the literature review, no similar methodological
approaches were identified that would have
allowed the comparison of the findings. But a
closer examination of the results can lead to an
interesting conclusion. Unlike other studies, the
games, developed by the students, were
examined. Therefore, what was evaluated was
not an "instantaneous" effect, like in a test or in
an evaluation sheet, but the result of many hours
of work, trials and errors, testing, and exploring
alternative solutions. It is quite possible that,
initially, the three groups had differences, but
these were eliminated as students had enough
time to improve their games. So, even if a
teaching method was not that effective, students
(and their work) were the factor that balanced the
results.

Consequently, one has to reflect on how the
students worked. The dominant element, in all
three pilots, was students' collaborative work. By,
applying the constructivist views for the learning
process [26], students expressed and discussed
their views, and collaborated with each other
[27]. Further, they had the opportunity to actively
participate in the learning process, study the
subject in-depth, and discover its basic
principles, as suggested by the inquiry-based
instruction [28]. Important elements in this view
are intuitive thinking, logical leaps, originality,
and the conception of radical solutions to
problematic situations.

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

9

The results noted can be attributed to the use of
tools that raised students' interest. Indeed, this is
evident in their answers to the relevant
questions. This finding is common to many
studies [22,23,25]. This seems to have led to
increased incentives for learning and to a better
understanding of the programming concepts,
which, in turn, led to better learning outcomes, as
noted by other researchers [29]. Students had
the ability to control the outcomes of their work
and could easily monitor their progress, either by
running their games in Kodu or by executing their
programs in Kodable. Thus, they had greater
control over the learning process and greater
autonomy, as West [30] pointed out.

On the basis of the above, education
administrators and policy makers can consider:

� The incorporation of game-like

programming environments, such as Kodu
and Kodable, into the curriculum in order to
improve the way that programming is
taught to primary school students.

� A teaching framework can be derived from
an analysis of the methodology applied to
the pilots: (a) students' collaboration and
(b) with increased autonomy so as
students to have the opportunity to
discover, by themselves, their own
solutions to specific programming
problems.

� On the basis of the results, it can be
argued that programming can be taught at
a very early age.

� Programming courses should have enough
time allocated to them (in terms of teaching
hours), so the necessary skills can be
developed.

� Finally, a greater involvement of teachers
in the whole process should also be
considered. Training will probably be
necessary, but this is not expected to be
that difficult as the proposed programming
environments are simple to use and easy
to learn.

5. CONCLUSION

This study summarized the findings of three
research pilots that resulted from the need to
examine the effects of using game-like
programming environments in order to teach
basic programming concepts to primary school
students. Despite the positive results, there are
limitations that need to be acknowledged.
Although the samples were sufficient for
statistical analysis, they were relatively small;

thus, the results cannot be easily generalized.
The inclusion of more programming concepts
would have allowed a deeper understanding of
the problem. Finally, students may not have been
completely honest in their responses, confusing
the questionnaires with some form of evaluation.
Future studies could utilize larger sample sizes
and include additional programming concepts. In
order to have a wider range of results, both
quantitative and qualitative methods (such as
interviews with students and teachers and
observations) can be used. The use of other
programming tools would allow their comparison
and could lead to the selection of other
appropriate environments. Finally, it would be
interesting to examine the learning outcomes
when teaching programming to even younger
ages.

In conclusion, it can hardly be said that the
subject is closed. More extensive projects, in
terms of duration and content, but also with the
use of other tools and teaching methods, are
planned for the near future. However, the
evidence, so far, supports the view that game-
like programming environments have a positive
impact on the learning of programming concepts,
especially at younger ages.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Organisation for Economic Co-operation

and Development-OECD. Students,
computers and learning: Making the
connection. Paris: PISA, OECD Publishing;
2015.

2. Prensky M. Digital natives, digital
immigrants part 1. On the Horizon.
2001;9(5):1-6.

3. Resnick M, Maloney J, Monroy-Hernández
A, Rusk N, Eastmond E, Brennan K, Kafai
Y. Scratch: Programming for all.
Communications of the ACM.
2009;52(11):60-67.

4. Fessakis G, Gouli E, Mavroudi E. Problem
solving by 5-6 years old kindergarten
children in a computer programming
environment: A case study. Computers &
Education. 2013;63:87-97.

5. Papadakis S, Kalogiannakis M, Zaranis N.
Developing fundamental programming
concepts and computational thinking with

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

10

scratch Jr in preschool education: A case
study. International Journal of Mobile
Learning and Organisation. 2016;10(3):
187-202.

6. Margulieux LE, Guzdial M, Catrambone R.
Subgoal-labeled instructional material
improves performance and transfer in
learning to develop mobile applications.
Proceedings of the Ninth Annual
International Conference on International
Computing Education Research. 2012;71-
78.

7. Hellenic Ministry of Education. Unified
curricular framework; 2003.
Available:http://www.pi-
schools.gr/programs/depps/
(Accessed 10 April 2017)

8. Papadakis ST, Kalogiannakis M, Orfanakis
V, Zaranis N. Novice programming
environments. Scratch & App Inventor: A
first comparison. In H. M Fardoun and J A.
Gallud (Eds.) Proceedings of the
Workshop on Interaction Design in
Educational Environments, New York:
ACM. 2014;1-7.

9. Grigoriadou Μ, Gogoulou Α, Gouli Ε.
Alternative instructional approaches in
introductory programming courses:
Teaching suggestions. Proceedings of the
3rd Conference on ICT in Education.
2002;239-248.

10. Pea RD. Language-independent
conceptual "bugs" in novice programming.
Journal of Educational Computing
Research. 1986;2(1):25-36.

11. Kristi AM. Problems in learning and
teaching programming-a literature study
for developing visualizations in the
Codewitz-Minerva Project. Codewitz Need
Analysis, Institute of Software System.
Finland: Tampere University of
Technology. 2003;1-12.

12. Pane J, Myers B. Usability issues in the
design of novice programming systems.
Technical Report (CMU-CS-96-132),
School of Computer Science, Carnegie
Mellon University; 1996.

13. Robin A, Rountree J, Rountree N.
Learning and teaching programming: A
review and discussion. Computer Science
Education. 2003;13(2):137-172.

14. Zhang JX, Liu L, Ordóñez de Pablos P,
She J. The auxiliary role of information
technology in teaching: Enhancing
programming course using Alice.
International Journal of Engineering
Education. 2014;30(3):560-565.

15. Akcaoglu M, Koehler MJ. Cognitive
outcomes from the game-design and
learning (GDL) after-school program.
Computers & Education. 2014;75:72-81.

16. Grover S, Pea R. Computational thinking
in K-12, a review of the state of the field.
Educational Researcher. 2013;42(1):38-
39.

17. Kafai YB, Burke Q, Resnick M. Connected
code: Why children need to learn
programming. Mit Press; 2014.

18. Su AY, Huang CS, Yang SJ, Ding TJ,
Hsieh YZ. Effects of annotations and
homework on learning achievement: An
empirical study of Scratch programming
pedagogy. Journal of Educational Techno-
logy & Society. 2015;18(4):331-343.

19. Preston J, Morrison B. Entertaining
education-using games-based and
service-oriented learning to improve STEM
education. Transactions on Edutainment
III. Berlin-Heidelberg: Springer; 2009.

20. Consalvo M, Dutton N. Game analysis:
Developing a methodological toolkit for the
qualitative study of games. Game Studies.
2006;6(1):1-17.

21. Mavridis A, Siribianou E,
Alexogiannopoulou B. Teaching
programming to kindergarten and primary
school students without using a computer.
Proceedings of the 9th Panhellenic
Conference of ICT Educators; 2015. Greek

22. Earp J, Dagnino FM, Ott M. Learning
through game making: an HCI perspective.
Universal Access in Human-Computer
Interaction. Universal Access to
Information and Knowledge. Springer.
2014;513-524.

23. Shokouhi S, Asefi F, Sheikhi B, Tee ER.
Children programming analysis; Kodu and
Story-Telling. Proceedings of the 3rd
International Conference on Advance
Information System, E-education &
Development; 2013.

24. Armoni M, Meerbaum-Salant O, Ben-Ari
M. From scratch to "real"
programming. ACM Transactions on
Computing Education (TOCE).
2015;14(4):25.

25. Goodwin K. Use of tablet technology in the
classroom. NSW Department of Education
and Communities; 2012.

26. Papert S. Mindstorms: Children,
computers and powerful ideas (2nd Ed.).
New York: Basic Books Inc; 1993.

27. Ertmer PA, Newby TJ. Behaviorism,
cognitivism, constructivism: Comparing

Fokides and Atsikpasi; BJESBS, 20(3): 1-11, 2017; Article no.BJESBS.33520

11

critical features from an instructional
design perspective. Performance Improve-
ment Quarterly. 2013;26(2):43-71.

28. Dostál J. Inquiry-based instruction:
Concept, essence, importance and
contribution. Olomouc: Univerzita
Palackého v Olomouci; 2015.

29. Snell S, Snell-Siddle C. Mobile learning:
The effects of gender and age on

perceptions of the use of mobile tools.
Proceedings of the Second International
Conference on Informatics Engineering &
Information Science. 2013;274-281.

30. West DM. Mobile learning: Transforming
education, engaging students, and
improving outcomes. Washington, Center
for Technology Innovation at Brookings;
2013.

© 2017 Fokides and Atsikpasi; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

 Peer-review history:

The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/18968

