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ABSTRACT 
 

Soft-computing techniques for fire safety parameter predictions in flammability studies are essential 
for describing a material fire behaviour. This study proposed, two novel Artificial Intelligence 
developed models, Multivariate Adaptive Regression Splines (MARS) and Random Forest (RF) 
methods, to model and predict peak heat release rate (pHRR) of Polymethyl methacrylate (PMMA) 
from Microscale Combustion Calorimetry (MCC) experiment. From the statistical analysis, MARS 
presented the highest coefficient of determination (R2) values of (0.9998) and (0.9996) for training 
and testing respectively, with low MAD, MAPE and RMSE values. Comparatively, MARS 
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outperformed RF in the predictions of pHRR, through its model algorithms that generated optimized 
equations for pHRR predictions, covering all non-linearity points of the experimental data. Amongst 
the input variables (sample mass, THR, HRC, pTemp and pTime), heating rate (β), highly 
influenced pHRR outcome predictions from MARS and RF models. However, to validate the 
performance and applicability of the proposed models. Results of MARS and RF were 
benchmarked with that from Artificial Neural Network (ANN) methods. The MARS and RF models 
observed the least error deviation when compared with pHRR results for PMMA from the ANN 
models. This study therefore, recommends the adoption of MARS and RF in the predictions of 
flammability characteristics of polymeric materials.  

 
 
Keywords: Flammability; Multivariate Adaptive Regression Splines (MARS); Random Forest (RF); 

Microscale Combustion Calorimetry (MCC); PMMA. 
 

1. INTRODUCTION 
 
Polymethyl methacrylate (PMMA) is an 
amorphous molding transparent thermoplastic 
material with excellent physical and chemical 
properties. These properties allow for its 
processing and application for several domestic, 
industrial and aviation purposes. Amid other 
materials, PMMA is one of the most successfully 
explored and evaluated polymers by the thermal 
and fire safety industries when estimating a 
material fire behaviour, making it a benchmark 
for comparison with other materials. However, it 
is very flammable. That is the reason why 
continues improvements of its thermal and 
combustion stability with advanced fire modelling 
techniques is still important [1,2]. So far, various 
standard fire tests or calorimetry techniques from 
small-scale to large-scale to measure the 
flammability properties and parameters of PMMA 
materials have been developed and used [1]. 
Largely, PMMA flammability properties and 
parameters are quantified with Microscale 
combustion calorimeter (MCC) apparatus [1,3,4]. 
 
The microscale combustion calorimetry (MCC), 
also termed as pyrolysis combustion flow 
calorimetry (PCFC) is a small-scale device that 
uses milli-gram sized mass samples with 
practices of analytical pyrolysis, combustion gas 
analysis, and flow calorimetry [5]. From the 
combustion outcomes, innumerable flammability 
characteristics and material properties are 
measured with ASTM D7309-13 standards, 
which includes, heat release rate (HRR), peak 
pyrolysis temperature (Tp), total heat released 
(THR), and heat release capacity (HRC) 
[6,7,2,8]. Several researchers [9-12,13] have 
performed and used MCC experimental results to 
screen and evaluate the flammability of pure 
polymers. It is worth affirming that the database 
obtained from MCC experiments can be 
modelled to predict the flammability and fire 

safety parameters with developed estimation 
methods. 
 
Previous researches from literature works used 
empirical methods with chemistry-based models 
like additive molar group contribution               
methods, quantitative structure-property 
relationship (QSPR), and quantitative structure-
activity relationship (QSAR) to estimate 
flammability properties from measured MCC 
experiments, with good and acceptable results 
[14-16]. However, these chemistry-based models 
required the material molecular moiety/ functional 
group and chemical structure to be available in 
the database to estimate a material property. 
This presented Limitations for measuring 
material properties, as materials without 
functional groups or chemical structures in their 
database could not be estimated [17]. In addition, 
the models were not able to fully account for the 
intrinsically non-linear and complex nature of 
experimental datasets. This presented large 
errors in the model predictions [17,18]. This 
created huge gabs in fire parameter predictions 
that needed to be solved.  
 
In recently times, novel soft-computing systems 
with Artificial Intelligence (AI) approaches like 
Artificial Neural Networks (ANN) methods, 
Support Vector Machines (SVM) systems etc., 
with machine learning algorithms have been 
used to model and predict thermal and 
flammability characteristics of materials, gaining 
significance importance with low marginal 
prediction errors [17,18]. One significant 
advantage of this AI methods is that, they do not 
require a materials molecular moiety or functional 
group to be available in the database before 
evaluating the material properties.  
 

Several successful research works in literature 
has reported excellent results achieved using 
soft-computing techniques for parameter 
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predictions in thermal, combustion and 
flammability studies.  Asante-Okyere, et al. [17] 
modelled and predicted flammability 
characteristics and parameters measured from 
microscale combustion calorimetry (MCC) of 
polymethyl methacrylate (PMMA) using 
generalized regression neural Networks (GRNN) 
and feed forward back propagation Neural 
networks (FFBPNN). In their study, it was 
observed that GRNN outperformed FFBP in 
predicting HRC datasets. Similarly, GRNN 
attained better THR, pTemp and pHRR 
predictions during training but generated a 
relatively poor correlation when estimating the 
testing data. Also, in the work of Burgaz, et al. 
[19] Artificial Neural Networks (ANN) techniques 
were used to model and estimate the thermal 
stability, crystallinity and thermomechanical 
properties of poly (ethylene-oxide)/clay 
nanocomposites. They obtained very good 
parameter predictions with minimal prediction 
errors. Hybrid based methods of Genetic 
Function Approximation and Least Squares 
Support Vector Machine were applied by Ma, et 
al. [20] to Predict the ecotoxicity of ionic liquids 
towards Vibrio fischeri under different 
temperatures. In addition, comparative 
evaluation research works by Mensah, et al. [19] 
undertaken, when they used Group Method of 
Data Handling Neural networks (GMDHNN) to 
predict the flammability characteristics of 
extruded polystyrene from microscale 
combustion calorimetry (MCC) experiments. With 
reference from the current-related research 
works on flammability and thermal analysis 
studies reviewed, it can be stated that ANN 
methods have been the most successfully and 
largely used, making it a benchmark for 
comparison with other techniques. However, 
problems of overfitting and slow model training 
time exist, largely due to the iterative tuning 
parameters of the models, and the training 
algorithms used [17,21,19].  
 
It is worth noting that, Multivariate Adaptive 
Regression Splines (MARS), is a novel soft-
computing technique, introduced by Friedman 
[21], has positioned itself as one of the most 
significant artificial intelligence (AI) methods in 
recent times. An advancement on traditional 
multiple linear regression approach for solving 
regression function approximation problems with 
the main purpose to predict the values of a 
continuous dependent or outcome variable from 
a set of independent or predictor variables of 
complex systems. A piecewise basis function 
with non-linearity between dependent and 

independent variables. Advantages includes the 
addition of relative importance of the 
independent variables in the prediction of the 
dependent variable in an easily interpretable 
manner. The occurrence of split sub-regions and 
discontinuity of the approximating function at the 
boundaries of the intervals as binary recursive 
partitioning are usually eliminated. Hence, avoids 
overfitting and flexible but robust in predictions 
[22]. This algorithm has been applied to solve 
several engineering problems, for parameter 
predictions, including Thermal, Geosciences 
engineering, and combustion studies. Ziggah and 
Laari [23] successfully applied MARS technique 
in their study to transform two-dimensional (2D) 
coordinates between two nationals geodetic 
datums (Accra 1929 and Leigon 1977) used in 
Ghana. They further observed that the MARS 
technique has the ability to overcome the “black 
box” nature of artificial neural network (ANN) by 
given out functional relationship for predicting the 
parameters output. In addition, Qing-Song et al. 
[24], adopted two-step multivariate adaptive 
regression splines in their study to model and 
evaluate the quantitative relationship between 
gas chromatography retention indices and the 
molecular descriptors in the database. Amongst 
other works done in literature using MARS model 
for thermal and combustion studies include; 
Balshi, et al. [25], Durmaz, et al. [26] and Roy, et 
al. [27].  
 
Another novel non-parametric regression model, 
Random Forest (RF), is an ensemble learning 
technique introduced by Breiman [28], as a 
combination of tree predictors that are robust and 
hardly overfits; yielding high accurate predictions. 
This method is widely used as an enhanced 
prediction model providing variable importance 
measures that recognizes significant predictor 
variables. RF encompasses the advantages of 
low bias, ease of interpretation of variables in 
decision trees. Overfitting problem in decision 
trees are avoided by averaging the                  
outcomes across different decision trees [29]. 
This model has been used to successfully predict 
and estimate parameters for thermal and 
combustion analysis applications. Palmer, et al., 
predicted aqueous solubility using random forest 
methods [30]. An estimation of coal                    
gross calorific values has been analyzed based 
on various RF methods [31]. Furthermore, 
Random Forest, have been applied as a 
Classification and Regression Tool for 
Compound Classification and QSAR Modeling 
tool for compound classification with QSAR 
modeling [32].  
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Henceforth, literature works involving RF and 
MARS demonstrate novelty approaches and are 
data integrated algorithms that identifies features 
contributing most to a model prediction using 
importance input variable contributions. In spite 
of the novelty of MARS and RF model from 
literature works, there is no comparative study 
using both modelling techniques to estimate the 
flammability characteristics of PMMA from MCC 
parameters. This present research therefore 
explores the alternatives to model and predict 
flammability characteristics and parameters 
measured from MCC experiments of polymethyl 
methacrylate (PMMA with MARS and RF models 
by comparing their predictability performance. 
Furthermore, the proposed MARS and RF model 
performance results will be compared with 
results of predicted pHRR from ANN methods 
[17] to validate MARS and RF applicability and 
reliability for engineering parameter predictions. 
The paper is structured as follows: Firstly, the 
experimental sample material, procedures, and 
methods used in this study are described. 
Secondly, we illustrate and discuss conducted 
MCC experimental results and obtained MARS-
RF model results. Finally, the main conclusions 
drawn from the results are discussed.  
 

2. MATERIALS AND METHODS 
 

2.1 Materials  
 
The referenced PMMA material and related 
properties are listed in Table 1. The pellet PMMA 
material was Milled into powdered form before it 
was used for the MCC experiment. 
 
2.2 Microscale Combustion Calorimetry 

(MCC) Measurement 
  
The MCC-2 device [33], was used with guidance 
from ASTM D7309-13 and “Method A procedure 
[6,4].  Nine (9) constant heating rates, ranging 
from 0.1-3.5Ks-1 was considered for this 
experiment. However, 31 sample masses of 
PMMA in the range of (1-3.5 mg) was also used 
with 3-groupings. Heating of PMMA samples 
were carried-out and the temperatures of the 
Pyrolyzer and combustor was 75-600ºC and 900 
0
C, respectively. Peak heat release rate (pHRR), 

heat release capacity (HRC), peak heat release 
temperature (pTemp), peak heat release time 
(pTime) and total heat released (THR) were 
measured and recorded using “Method A” 
procedure [6]. 
 

2.3 Random Forest (RF) 

 
This algorithm works by growing an ensemble of 
decorrelated decision trees under bagging 
technique, based on binary recursive partitioning 
with a number of bootstrap samples (ntrees), 
producing a regression tree in a modified 
operation. Subsequently, random sampling of the 
numerous predictors (mtry) begin and the 
algorithm chooses the best split from among 
those sampled variables rather than considering 
all variables. Thus, Random Forest is useful in 
handling thousands of input variables without 
input variable deletion, with assigned percentage 
variable importance [34]. Specification of model 
parameters in RF model has less influence on 
model output obtaining a default (mtry) value as 
the square root of the total number of variables 
[35]. 
 
Therefore, the number of trees (ntree) needs to 
be set sufficiently high to avoid overfitting but a 
limited generalization error is generally produced. 
The final predictions are presented as mean 
value of individual predictions obtained by each 
decision tree.  
 
The algorithm works by considering a dataset, D 
with n number of variables,  1 , ..., nD D D  with 

 ,i i iD x y , given an independent test case 

0D with operator 0x , random forests (RF) 

regression model can be deduced as follows  
[28,36]: 
 
i. The data set D is sampled with 

replacement to generate bootstrap 
resamples 

1,..., ME E  

ii. For each resample , 1,..., ,mE m M  grow a 

regression tree mT . 

iii. In predicting the test case 
0D  with 

covariate 0x , the combined results given 

by individual trees gives the  predicted 
value obtained by the whole RF. 

 
Let’s Assume  

0
ˆ ( )mf x  denote the prediction of

0D  by mth tree, the random forest prediction for 

regression problems is expressed [37] as:  
 

0 0
1

1ˆ ˆ( ) ( )
M

m m
m

f x f x
M

 



                                      (1) 

 
For each bootstrap sample taken from the 
training data, there will be samples left behind 
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that were not included. These samples are called 
Out-of-Bag samples or “OOB”. Considering a 

default 
3

try

p
m   (where p is the number of 

predictor variables) an estimate of the error rate 
can be obtained, based on the training data, 
through the following steps to [35]; 
 
i. At each bootstrap iteration, the data not in 

the bootstrap sample is predicted (“out-of-
bag”, or OOB, data) using the tree grown 
with the bootstrap sample. 

ii. Aggregate of the OOB predictions error 
rate calculated, and termed “OOB” 
estimate of error rate. The “mean of 
squared residuals” is computed as 
Equation. (2); 

 

1 2

1

ˆ{ }
n

OOB
OOB i iMSE n y y                           (2) 

 

Where ˆ OOB
iy  is the average of the OOB 

predictions for ith observations “Percent 

variance’’ as;  
2

1
ˆ
OOB

y

MSE


 , where 2ˆ

y  is computed 

with n as divisor (instead of n-1). These 
performance measures are reliable test error 
estimate and correlate well with cross validation 
estimates.  
 

We operated RF with default settings for the 
number of variables used at each split with an 

trym of 2 to develop the models. 

 

2.4 Multivariate Adaptive Regression 
Splines (MARS) 

 

MARS is a non-parametric statistical regression 
modelling technique for fitting the relationship 
between a set of input and target variables of 
systems.  No specific assumption about the 
underlying functional relationship between the 
input variables and the output is required. A 
piecewise curve also known as basis functions 
(BF’s) provides superior flexibility to the model’s 
curves with better thresholds, and other linear 
modelling functions [25]. The MARS generated 
BF’s can then be searched in the stepwise 
manner. MARS models are built in a two-phase 
(forward and backward) procedure. In forward 
phase, it usually results in an overfit model, adds 
functions and finds potential knots or the forward 
stepping threshold (d), to improve the 
performance. Backward phase involves pruning 

or deleting the least effective terms (
pruneN ). The 

MARS model is mathematically presented as 
Equations. (3), [24,38].  
 

0 ( , )
1 1

( )
iKN

i ji v j i
i j

y c c b x
 

                   (3) 

 

Where; y is the output target variable, 0c is a 

constant, ic  is the vector coefficients of the non-

linear basis functions, 
( , )( )ji v j ib x is the truncated 

power basis function with  ( , )v j i as the index of 

the independent variable used in the ith  term of 

the jth  product. iK is a parameter that limits 

the order of interactions. In this study, the input 
variables that were considered are mass, heating 
rate (β), HRC, THR, pTemp, and pTime, and the 
output variable considered was pHRR. 
 

y pHRR , ( ,   ,HRC, THR, pTemp, pTime)x m   
 

The spline 
jib  can further be defined as:  

 

 ( )

0( ) ( )
q

ji jix t if x tq
ji ji Otherwisex x tb

 

  
              (4)

 

 

         (5) 
 
 

 

Where; 
jit  represents the “knots” of the spline, 

( 0)q q  denotes the power of the splines in the 

smoothness degree of the resultant function 
approximation. The splines are linear functions, 
when q = 1.  In the forward step, the BF’s 
selection conforms to Eq. (3), while in the 
backward procedure, the least contributive BF’s 
are deleted based on the generalized cross-
validation (GCV) criterion. The GCV criterion is 
an adjusted residual sum of squares, expressed 
as in Equation. (6) [21,38]. 
 

        (6) 
 

where M is the number of non-constant BF’s,   
is the penalizing parameter (a default value of 3 

is assigned to  ), the higher the cost of 
approaches, the more basis functions will be 

 ( )

1 0( ) ( )
q

ji jit x if x tq
ji ji Otherwisex t xb  

   



 
 
 
 

Alhassan et al.; AJRCOS, 4(4): 1-14, 2019; Article no.AJRCOS.53584 
 
 

 
6 
 

eliminated.  is practically only increased during 
pruning process in order to obtain smaller 
models. N is the maximum number of 

observations ( maxN ), iy  is the ith measured 

element and ( )if x  denotes the ith predicted 

value of the model. The numerator is the mean 
squared error of the evaluated model in the 
training data, penalized by the denominator. The 
denominator accounts for the increasing variance 

when the model complexity augments. ( 1)
2

M 

is the number of hinge function knots. 
Minimization of Eq. (3) is done as a basis 
function is removed from each deletion step until 
an adequately fitted model is found. BF’s and the 
variable knot locations are data driven 
procedures and specific to the problem at hand. 
 

Table 1. Properties of “black” PMMA 
 

Property Value 
Molecular formula ([C5 H8 O2 ]n)     [4] 
Density 1180 kg/m

3           
[4,17] 

Thermal 
conductivity 

0.185 W/Mk      [4,17] 

Specific heat 1.510 J/gK        [4,17] 
 

2.5 Model Performance Indicators 
 
In this study, various statistical indices were 
computed to assess the performance of the 
developed MARS and RF models including 
coefficient of determination (R2), mean absolute 
deviation (MAD), mean absolute percentage 
error (MAPE), and root mean squared error 
(RMSE), and are mathematically expressed in 
Eq. (7-10) respectively. Generally, with (R

2
) 

values close to 1 indicates high degree of 
similarity between predicted and measured 
parameter values. Low MAPE, MAD and RMSE 
values indicate high confidence in model-
predicted values. The MARS and RF models 
were developed using Salford Predictive Modeler 
(SPM) [39], Software Suite (version 8.3, Salford 
Systems, San Diego, CA) which can be 
accessed online. 
 

2

2 1

2 2

1 1

( )( )

( ) ( )

n

i ii

n n

i ii i

N N P P
R

N N P P



 

 
  

  
   
 



 

                 (7) 

 

1

n

i ii
N P

MAD
n





                                          (8) 

1

1
100

n
i i

i i

N P
MAPE

n N


             (9) 

  

2

1

1
( )

n

i i
i

RMSE N P
n 

           (10) 

 

Given, 
 

1

1 n

i
i

N N
n 

                 (11) 

 

Where n is the total sample number, p is the total 

number of regressors in the training model, iN is 

the measured parameter value, iP  is the 

predicted parameter value, N is the mean 

measured parameter value and P  is the mean 
predicted parameter value [40]. 
 

3. RESULTS AND DISCUSSION 
 
3.1 MCC Experimental Results 
 
It is remarkable to know that under forced 
flaming combustion, heat release rate (HRR) is 
the principal indicator of fire hazard, therefore it 
is easy to obtain the fire hazard from measuring 
the HRR of a material [41]. Fig. 1, demonstrates 
a plot of specific heat release rate against 
temperatures of MCC test results from PMMA. 
Indications from Fig. 1 shows an increase in heat 
releasing rate as temperature increases 
[4,13,17].  
 
The statistical description of the obtained MCC 
parameters from the measured experimental 
data of thirty-one (31) sample masses              
ranging from (1-3.5 mg) with the nine (9) 
corresponding heating rates considered for this 
study are summarized and listed in Table 2, 
showing the minimum, maximum, mean and 
standard deviation values. These results              
are to show the measure of dispersion of the 
parameters determined around its mean         
values. 
 
3.2 Performance of MARS Model 
 
The main objective was to develop an optimized 
MARS model that can predict flammability 
characteristics of PMMA from MCC parameters. 
These parameters (mass, β, THR, HRC, pTemp, 
pTime) were considered as inputs variables to 
predict peak heat release rate (pHRR) as the 
output variable. Out of the total dataset 
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(31samples), Six (6) sample masses 
representing (20%) were used to test the 
generalization capability of model. The remaining 
80% (25 samples) were used to train the 
datasets for accuracy. MARS model is generally 
affected by various parameters. Parameters 
were then varied within limits to obtain the 
required number of combinations to build and 
train the model. This includes; the max. degree 
of self-interactions, Max functions, threshold, 
prune, generalized cross-validation penalty per 
knot, as given in Table 3 [6]. 

To build the MARS model, 10 basis functions 
were selected during the forward phase stepwise 
knot placement. Subsequently, a model 
generated piecewise linear GCV of 647.25529 
was used to prune and eliminate the least 
significance basis functions by deletion, during 
the backward phase. For the prediction of pHRR, 
piecewise interaction produced the lowest mean 
squared errors (MSE) in both training and testing 
stage as shown in Fig. 2. The variation between 
the predicted pHRR and the model data input 
variables indicates better performance during the 
training of the model as presented in Fig. 3. 

 

 
 

Fig. 1. Curves of plotted specific heat release rate versus temperature from MCC experiment of 
PMMA 

 

Table 2. Statistical description of the results obtained from the MCC experimental datasets 
  

 pHRR (W/g) HRC (J/g 
o
C) THR (kJ/g) pTemp (

o
C) pTime (s) 

Mean 639.9 506.8 26.6 376.2 607.1 
S. D 418.5 164.4 5.9 21.1 774.9 
Max 1278.8 918.5 31.8 406.9 2479.2 
Min 53.8 320.3 10.2 338.1 120.7 

 

Table 3. MARS model parameters 
 

Parameters                               Values 
 Max functions 10e

4
                               10 – 40  

Generalized cross-validation penalty per knot                               0, 2 – 4  
Self-interactions                               No 
Max interactions                               2 – 4  
Threshold                               1.0000e-4 
Prune                               Yes       
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The statistical results for predicting pHRR shows 
significant performance predictability, observing 
high coefficient of determination (R2) value of 
0.9998 and 0.9996 during training and testing 
respectively, with low and insignificant RMSE, 
MAD and MAPE values as listed in Table 4. The 
results from Table 4, signify high confidence in 
the model-predicted values agreeing well-with 
the experimental results, this indicates that the 
model is good and can generate reliable 
predictions. The relative important input variables 
in predicting pHRR are presented in decreasing 
order of contributions with plotted evidence of 
this assertion in Figs. (4 (a), (b) and (c). Out of 
the 6 input variables considered only three (3) 
had significant impact in the models’ prediction.  
Heating rate (β) was observed to be the input 
variable with the most significant impact on the 
model performance. This confirms works done in 
literature by Q. Xu, et al. [4,13].  
 
The final optimized MARS model for predicting 
pHRR consisting of 7 generated basis functions 
after the GCV’s least basis functions (BF’s) 
deletion. Related equations are presented in 
Table 5. This “basis functions” with their 
respective hinge functions generated covered all 
points of non-linearity of the experimental data 
[40]. The optimized model equation is the 
weighted sum of the “basis functions” as 
expressed in Equation. (12). A regression 
equation (13) for predicting pHRR of PMMA was 
generated as a function of (β, HRC, pTemp) from 
Table 5, Eq. (3).  In using Equations. (13), pHRR 
can easily be predicted. 
 

Y = 1216.14 + 383.221 * BF1 - 463.686 * BF2 + 
1.56806 * BF3 - 2.53986 * BF4 - 2.38165 * BF6 - 
1.4712 * BF7 - 2.85618 * BF9;                        (12) 
 

 

 

 

 

 

   1216.14   383.221 ( –  2) 

 463.686 (2  )   1.56806     534.2  

 2.53986  534.2  –    

 2.38165  385.3  –    

 1.4712    416.5    

2.85618     367.3        

pHRR

HRC

HRC

pTemp

HRC

pTemp





 

   





  



 (13)   

 

3.3 Performance of Random Forest (RF)  
    
The random forest (RF) model was developed by 
setting the number of trees to be built at 200 and 
number of predictors for each node at 3 with 
minimum non-terminal node size of 5. The output 
variable selected was (pHRR), while the input 
variables considered were mass, β, THR, HRC, 
pTemp, pTime. 80% of the total dataset (31) 
representing 25 samples were used to train 
(OOB) the model and the remaining 20% 
partitioned to test the model accuracy. In 
predicting the pHRR, lowest MSE values were 
attained against number of ensemble trees for 
both training and testing functions for the model 
as demonstrated in Fig. 5. The statistical 
performance evaluation results from the model 
presents low error of RMSE, MAPE and MAD 
with high coefficient of determination (R2) value 
of 0.9749 and 0.9562 during training (OOB) and 
testing respectively, signifying better predictive 
ability of well-fitted RF model as presented in 
Table 6.  Unlike MARS, in Random Forest (RF) 
all the 6 input variables with their respective 
contributions in building the model are presented. 
Heating rate (β) was observed to had                    
more substantial contributive effect to the 
models’ performance with graphical evidence in 
Fig. 6. 
               

Table 4. Statistical performance of MARS model in predicting pHRR 
 

MCC parameter pHRR 
Performance indicators R

2
 MAD MAPE RMSE 

Training 0.9998 4.3306 0.0076 4.9717 
Testing 0.9996 7.2297 0.0189 8.7518 

 
Table 5. The basis function (BF’s) and their related equations in the pHRR MARS model 

 
Basis function Hinge function 
BF1 max (0, HEATING_RATE - 2); 
BF2 max (0, 2 - HEATING_RATE); 
BF3 max (0, HRC - 534.2); 
BF4 max (0, 534.2 - HRC); 
BF6 max (0, 385.3 - PTEMP); 
BF7 max (0, HRC - 416.5); 
BF9 max (0, PTEMP - 367.3); 



 
Fig. 2. Plots of MARS Mean Squared Error (MSE) versus basis 

Fig. 3. % MARS output Prediction Versus. % measured input variables during training and 

Table 6. Statistical performance of RF model in predicting pHRR

MCC parameter 
Performance indicators 
Training (OOB) 
Testing 
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Plots of MARS Mean Squared Error (MSE) versus basis function based on training and 
testing dataset 

 

 
 

Fig. 3. % MARS output Prediction Versus. % measured input variables during training and 
testing 

 
Table 6. Statistical performance of RF model in predicting pHRR 

 
pHRR 

R
2
 MAD MAPE RMSE

0.9749 51.7575 0.2395 73.1342
0.9562 64.8713 0.0927 76.9207
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function based on training and 

 

Fig. 3. % MARS output Prediction Versus. % measured input variables during training and 

RMSE 
73.1342 
76.9207 



 

(a)                                             
 

            Fig. 4. Plots showing important contributions of (a) Heating rate (b) HRC and (c) pTemp 
 

Fig. 5. Plots of MSE versus number of trees based on training and testing data for RF model

Fig. 6. Plot of input variables percentage contributions to the RF modelling process
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                                   (b)                                              (c) 

Fig. 4. Plots showing important contributions of (a) Heating rate (b) HRC and (c) pTemp 

 
 

Plots of MSE versus number of trees based on training and testing data for RF model
 

 
 

Fig. 6. Plot of input variables percentage contributions to the RF modelling process
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Fig. 4. Plots showing important contributions of (a) Heating rate (b) HRC and (c) pTemp  

Plots of MSE versus number of trees based on training and testing data for RF model 

Fig. 6. Plot of input variables percentage contributions to the RF modelling process 
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Table 7. Comparison of the mean error deviation from MARS and RF and ANN models for 
predicting pHRR of PMMA 

 
Model  
 

Predicted pHRR (mean) 
for PMMA (W/g)  

Measured pHRR (mean) 
for PMMA (W/g) 

Error deviation  

MARS 642.86 639.9 2.96 
RF 
FFBPNN [17] 
GRNN [17]                                              

642.93 
643.95 
642.04 

639.9 
639.9 
639.9                                                  

3.03 
3.05 
3.14 

 

3.4 pHRR Models Prediction Comparisons  
 
Predicted pHRR mean error deviations observed 
from MARS and RF models where compared 
with Artificial Neural network (ANN) methods of 
feed forward back propagation (FFBP) and 
generalized regression neural network (GRNN) 
predicted mean pHRR results of PMMA from 
Asante-Okyere, et al. [17]. This was done to 
further validate MARS and RF models 
performances and applicability. It was observed 
that, the mean pHRR values of MARS and RF 
attained error deviations of 2.96 and 3.03 as 
compared to FFBPNN and GRNN that obtained 
3.05 and 3.14 respectively for evaluating PMMA. 
The MARS and RF models comparatively 
showed less deviation from the measured pHRR 
mean, this indicates MARS and RF models 
capability and reliability for predictions and good 
agreement with experimental data. The ANN 
models   on the hand exhibited relatively fair 
deviation errors. This error margin could partly be 
due to the rigorous operator iterative tuning of 
ANN model parameters, and the type of              
training algorithms used [17]. The errors 
observed from the models are presented in  
Table 7.  
 

4. CONCLUSION 
 
In this present study, flammability parameters 
were measured from microscale combustion 
calorimetry (MCC) experiments from polymethyl 
methacrylate (PMMA) material. The statistical 
descriptions from the experimental dataset was 
then normalized and compiled. Two soft-
computing techniques, Random Forest (RF) and 
Multivariate Adaptive Regression Splines 
(MARS) models were developed and used to 
model and  predict peak heat release rate 
(pHRR) of PMMA, considering  heating rate (β), 
mass (m), total heat released (THR), heat 
release capacity (HRC), heat release 
temperature (pTemp) and heat release time 
(pTime) as input variables.  The aim was to 
identify the best model for flammability 
characteristic predictions.  

It was evidence from the  statistical results that, 
MARS model achieved the highest coefficient of 
determination (R

2
) value of (0.9998) during 

training and (0.9996) for testing respectively, with 
least standard errors of MAD, MAPE, and RMSE, 
as compared with RF that achieved R

2 
(0.9749) 

and R2 (0.9562) for training and testing 
respectively in evaluating the flammability 
characteristics of PMMA from MCC parameters. 
This study therefore indicates, good performance 
agreement between the experimental and 
predicted results. Although, both models 
exhibited excellent prediction capabilities. On the 
whole, MARS outperformed RF in the prediction 
of pHRR data. 
 
The study further revealed heating rate (β) as the 
input variable with more significant impact on the 
outcome of MARS and RF prediction models 
performance as compared to mass, total heat 
released (THR), heat release capacity (HRC), 
heat release temperature (pTemp) and heat 
release time (pTime). This affirms from works 
done in literatures the positive correlation 
between heating rate (β) and pHRR; an 
important factor for predicting and describing 
combustion and fire spread parameters and 
growth from materials. In fact, MARS model was 
seen to be computationally more efficient with 
algorithms employed to construct series of 
simplified approximation linear regressions to 
finding the optimal model. 
 
However, to validate the performance and 
applicability of MARS and RF for assessing 
flammability properties and MCC parameters, 
benchmarks from Artificial Neural Network (ANN) 
methods of feed forward back propagation neural 
networks (FFBPNN) and generalized regression 
neural network (GRNN). FFBPNN and GRNN 
mean values of predicted pHRR results for 
PMMA from Asante-Okyere, et al. [17] where 
compared with MARS and RF models predicted 
pHRR mean results observed from this study. 
Overall, MARS and RF observed the least 
deviations of 2.96 and 3.05 followed by FFBNN 
(3.03) and GRNN (3.14) respectively, from 
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measured pHRR value for PMMA. This indicates 
that MARS and RF models are as good as ANN 
methods for predicting the flammability 
characteristics of PMMA. This study therefore 
adds to literature for fire safety parameter 
predictions of materials with slight superiority  
and accuracy as compared to the ANN            
methods. and strongly proposes MARS and RF 
models as efficient and more reliable             
technique in predicting the flammability 
characteristics of PMMA and other polymeric 
materials. 
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