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ABSTRACT 
 

Microarray gene expression technologies represents a widely used tool in transcriptomics and 
genomics studies worldwide. Even if this technology exhibits a low dynamic range as well as a 
feeble sensitivity and specificity (limited performances) with respect to RNA sequencing (RNA-seq) 
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methodology in whole transcriptomic and/or genomic studies; it is noteworthy to underline the 
stability of the former (microarrays) because of their well-established biostatistics and bioinformatics 
analysis schemes. Several studies shown that inadequate data pre-processing as regards 
microarray gene expression data analysis; i.e. inadequate gene expression data normalization (DN) 
and scarce noise background subtraction (BS), might compromise microarray aptitude in calling 
correctly significantly differentially expressed genes (DEGs). Here, we were interested in assessing 
the performance of 20 different microarrays background correction and gene expression data 
normalisation arrangements from R software “linear models for microarray and RNA-seq data 
analysis” package, by comparing the number of differentially expressed genes detected by our 
previous developed custom microarray designs and RNA-seq platform. The present study basing 
exclusively on several clustering and principal component analysis (PCA) as well as descriptive and 
inferential statistic surveys, developed in the R programing environment, suggested a predominance 
of microarray data normalisation systems with respect to noise background correction procedure. 
Although, all processed background subtraction and gene expression data normalization 
arrangement (BS+DN) claimed to improve the agreement (sensitivity) between microarrays and 
RNA-seq in calling DEGs; quantile normalisation procedure applied to our processed custom 
microarray designs has been recorded as exhibiting the best sensitivity (p-value<0.05), since 
discriminates the highest number of DEGs in agreement with RNA-seq as opposed to the others 
analysed microarray gene expression data normalisation systems. In conclusion our findings 
confirmed the pre-eminence of data pre-processing procedure in microarray gene expression 
profiling analysis according a priority to data normalisation procedure and suggested the stability of 
quantile normalisation system with respect to the others processed normalisation arrangements in 
the present executed gene expression comparative study.   
 

 
Keywords: Microarrays; RNA-seq; data normalisation (DN); background subtraction (BS); differentially 

expressed genes (DEGs). 
 

1. INTRODUCTION 
 
DNA microarray is a technology that 
simultaneously evaluates quantitative 
measurements for the expression of thousands 
of genes. DNA microarrays have been used to 
assess gene expression between groups of cells 
of different organs or different populations. In 
order to understand the role and function of the 
genes, one needs the complete information 
about their mRNA transcripts and proteins 
[1]. Expression microarrays are designed to 
quantify the amount of mRNA in a specific 
sample. However, this can only be done 
indirectly through quantifying the color intensities 
returned by labeled mRNA molecules bound to 
the array surface. Translating pixel intensities 
into transcript expression requires a series of 
computations and/or operations, generically 
known as data pre-processing and normalization 
steps [2]. Typically, the first transformation 
applied to expression data, referred to as 
normalization, adjusts the individual hybridization 
intensities to balance them appropriately so that 
meaningful biological comparisons can be made. 
There are a number of reasons why data must 
be normalized, including unequal quantities of 
starting RNA, differences in labelling or detection 
efficiencies between the fluorescent dyes used, 

and systematic biases in the measured 
expression levels. Conceptually, normalization is 
similar to adjusting expression levels measured 
by northern analysis or quantitative reverse 
transcription PCR (RT–PCR) relative to the 
expression of one or more reference genes 
whose levels are assumed to be constant 
between samples. More than a decade, 
oligonucleotide microarrays have been the 
method of choice for transcriptional profiling 
studies, used to characterize biological systems. 
The power of microarray platforms depends on 
the number, identity and specificity of the 
oligonucleotide probes for their target gene 
models [3-4]. Gene expression microarrays are 
widely used as measurement tools in 
biologicalresearch by processing a wide range of 
methods for microarray data analysis,ranging 
from simple fold change (FC) approaches to 
testing for differentialexpression, to many 
complex and computationally demanding 
techniques [5]. Recognizing this allows 
investigator to choose procedure more 
judiciouslyand methodologist to direct their 
efforts more efficiently. In microarray the 
hybridization intensity is represented by the 
amount of fluorescence emission, which give an 
estimate of the relative amount of the different 
transcript that is represented. Several factors 
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should be considered when setting up a 
microarray experiment. The development of an 
experimental plan (experimental design) can 
contribute to maximize the quality and quantity of 
information. Experimental design affects the 
efficiency and internal validation of microarray 
experiments [6]. Also, processing of the 
microarray image and normalization of the data 
result to be a crucial steps to remove systematic 
variation measuring gene expression value in 
microarray gene expression differential analysis. 
Hence, several image-processing methods have 
been developed and are now available for 
expression microarray. These methods estimate 
the amount of RNA from fluorescent array 
images, while trying to minimize the extraneous 
variation that occurs owing to technical artefacts 
[7-8]. For example robust multi-array average 
(RMA), corrects arrays for background using a 
transformation, normalizes them using a formula 
that is based on a normal distribution, and uses a 
linear model to estimate expression values on a 
log scale. However, for accurate comparisons 
both within and among experimental sets it is 
critical to consider issues such as data quality 
and processing method prior to data analysis. 
After condensing the data, a box plot can be 
used to visualize the detection range of each 
array, and to compare it with the known dynamic 
range of the array type. Data outliers with high 
background, low intensity, or narrow detection 
range can be identified. Hierarchical clustering of 
experiments can also be used to assess data 
quality by determining if replicate or biologically 
related samples cluster together. Another 
important preprocessing step is normalization, a 
process by which non biological variation is 
minimized and standardized and which allows 
comparisons between microarray experiments. It 
also generally makes data more consistent with 
the assumptions that underlie many inferential 
procedures. Normalization can be applied 
multiple times at different levels of analysis for 
different purposes. There are many different 
methods for normalizing microarray data i.e. 
microarray and RNAseq normalization scheme 
from linear models for microarray data analysis 
(limma) [9] of R statistical package [10]. Users 
should be aware that certain condensing 
algorithms, such as MAS 5.0 or RMA, normalize 
the data during the condensing process. 
Depending on the hypothesis, experimental 
objectives, and experimental design, additional 
normalization may or may not be required. One 
way to account for experimental differences 
between arrays during normalization is to divide 
every value on the array by the arithmetic or 

logarithmic median of the entire array. This 
effectively establishes a common reference for 
array-to-array comparisons. This calculation is a 
linear transformation, specific to each array, so 
the relative expression level differences between 
genes on the same array do not change. So, the 
global normalization method is based on the 
assumption that the total amounts of labeled 
mRNA in all samples are similar. Also, the 
internal controls as regards microarray gene 
expression data normalization can be genes with 
housekeeping functions that are constitutively 
expressed, or spiked cRNA controls [11]. When 
using internal controls, it is important to validate 
the assumption that the control genes have a 
constant transcription level across samples. 
Then, considering the necessity of removing 
systematic variation in performing microarray 
gene expression profiling analysis, we were 
interested to compare all background subtraction 
(BS) + microarray gene expression data 
normalization (DN) arrangement from limma R 
package [9] as regards our previous developed 
custom microarrays design manufactures based 
on both ex-CombiMatrix (CMB.S and/or CMB.D 
microarray design based on single and/or 
multiple oligonucleotide short probe set per gene 
model transcript) and ex-Roche NimbleGen 
(NMG.S and/or NMG.D microarray design based 
on single and/or multiple oligonucleotide long 
probe set per gene model transcript) platforms by 
assessing the agreement between microarrays 
and RNA-seq approaches in calling significantly 
differentially expressed genes (DEGs), analyzing 
two Vitis vinifera berry developmental stages [4]. 
For this purpose several hierarchical clustering 
analysis based on principal component 
considerations and/or analysis [12-13] developed 
in R software programming environment [10] 
have been performed. 
 
2. MATERIALS AND METHODS 
 
2.1 Gene Expression Differential Analysis 

by Applying Several Microarray 
Background Subtraction (BS) + Data 
Normalisation (DN) Arrangements 

 
Microarray gene expression differential analysis 
by processing two grape (Vitisvinifera) 
development stages (ripening and veraison) has 
been performed by processing 20 different BS + 
DN arrangements of the  limmaR package 
(version 3.10.3) [14]. In fact we combined 
Quantile, Cyclic Loess, Scale and None (Null) 
normalization methods with Saddle, Maximum 
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Likelihood Estimation, Robust Multiple-chip 
Average (RMA) and Robust Multiple-chip 
Average 75 (RMA 75) and None (Null) 
background subtraction (BS) methods for each 
considered microarray designs (in total four 
different microarray designs combined with 3 
different probe set average method were 
processed). In addition, Vitis vinifera RNA 
samples were also analyzed by sequencing-
based methods generally referred to as RNA-
seq, whose results were used as reference 
values evaluating the impact and/or the influence 
of microarray BS+DN arrangement procedures 
on genes expression results. Concerning the 
RNA-seq experimentation, two technical 
replicates each for two grape berry development 
stages (ripening and veraison) were prepared 
and sequenced using an Illumina Genome 
analyzer II machine yielding more than 59 million 
reads of average length 36 bp. Reads were 
aligned onto the 12x grape genome assembly 
followed by genome reconstruction step by 
cufflinks package that measured gene 
expression levels. Also, read count was 
performed using the packages RSEM (v1.1.21) 
[15] and Cufflinks (1.2.0 release, 
http://cufflinks.cbcb.umd.edu/). Next DESeq 
(version 1.1.6) package has been used for the 
gene expression differential analysis. RNA-seq 
raw data are available at SRA009962 as well as 
at URL http: //ddlab.sci.univr.it/cgi-
bin/gbrowse/grape [16].Indeed, differential gene 
expression (DGE) analysis between above 
mentioned grape development stages (Vitis 
vinifera repining and veraison development 
stages) was performed by comparing arrays 
processed with the same BS+DN combination 
and RNA-seq gene expression differential 
analysis results. In addition, DGE survey was 
conducted by applying linear models on the log-
expression values followed by an empirical 
Bayes moderated t-statistics on each gene 
aiming to reduce data variability errors. The 
“lmFit” and “eBayes” functions of the limmaR 
package (version 3.10.3) were used [14]. The 
False Discovery Rate (FDR) suggested by 
Benjamini and Hochberg [17] was adopted to 
control the FDR since gene expression 
differentially analysis usually englobes multiple 
comparisons statistical test. Significance of DGE 
analysis results of both custom (ex-CombiMatrix 
and ex-Roche NimbleGen) microarray designs 
based on multiple short and/or long probes per 
gene model transcript; CMB-D (CMB-D.fisher) 
and NMB-D (NMB-D.fisher) platforms 
respectively; when applying the mean and/or 
median values of the probe signals was also 

estimated by applying the Fisher’s combined p-
value method to combine evidence from multiple 
probes of the same gene [16-18]. A gene was 
considered as differentially expressed (DE) when 
showing a mean difference of the expression 
value greater than or equal to two folds between 
the 2 grape berry development stages at a False 
Discovery Ratio ≤ 0.05 (FDR≤0.05). Only genes 
shared among all the platforms were included in 
the present performance comparisons survey 
[16]. 
 

2.2 Hierarchical Clustering Survey, 
Principal Components Analysis 
(PCA) and Biplot Graphic Survey in R 
programing Environment 

 
Principal component analysis (PCA) is a 
dimensionality reduction technique that is widely 
used in data analysis. Reducing the 
dimensionality of a dataset can be useful in 
different ways. Lower dimension can sometimes 
significantly reduce the computational time of 
some numerical algorithms. Besides, many 
statistical models suffer from high correlation 
between covariates, and PCA can be used to 
produce linear combinations of the covariates 
that are uncorrelated between each other [12]. 
There are many packages and functions that can 
apply principal component analysis (PCA) in R. 
In this study we used the function prcomp from 
the stats package. We also visualized PCA in R 
using Base R graphics. However, with purpose to 
improve PCA graphic visualization (biplot 
graphic) in R, “ggbiplot” script or function, which 
is implemented by Vince Q. Vu, and available on 
“github” library has been used.Since skewness 
and the magnitude of the variables influence the 
resulting PCs, it is good practice to apply 
skewness transformation, center and scale the 
variables prior to the application of PCA. Here, 
we applied a log transformation to the variables 
(number of DEGs) but we could have been more 
general and applied a Box and Cox 
transformation [13]. The prcomp function returns 
an object of class prcomp, which have some 
methods available. The print method returns the 
standard deviation of each PCs, and their 
rotation (or loadings), which are the coefficients 
of the linear combinations of the continuous 
variables. The summary method describe the 
importance of the PCs. The first row describe 
again the standard deviation associated with 
each PC. The second row shows the proportion 
of the variance in the data explained by each 
component while the third row describe the 
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cumulative proportion of explained variance. 
The plot method returns a plot of the variances 
(y-axis) associated with the PCs (x-axis). The 
Figure is useful to decide how many principal 
components to retain for further analysis. Also, R 
has an amazing variety of functions for cluster 
analysis. In this study, we used three of the many 
approaches: hierarchical agglomerative, 
partitioning, and model based. Indeed, model 
based approaches assume a variety of data 
models and apply maximum likelihood estimation 
and Bayes criteria to identify the most likely 
model and number of clusters. Specifically, 
the Mclust() function in the “mclust” package 
selects the optimal model by hierarchical 
clustering for parameterized Gaussian mixture 
models. One chooses the model and number of 
clusters with the largest BIC [19-20]. 

 
3. RESULTS 
 
3.1 Principal Component Analysis 

Measuring the Variability of Detected 
DEGs Among Array Features and 
RNA-seq by Combining Several 
Custom Microarray Platforms  BS 
and DN systems 

 
Since skewness and the magnitude of the 
variables influence the resulting principal 
components (PCs) factors, it is good practice to 
apply skewness transformation, center and scale 
the variables prior to the application of principal 
component analysis (PCA) (see materiel and 
methods). Here we applied a log transformation 
to the variables (number of DEGs recognized as 
such by both array and RNA-seq, by combining 
several custom microarrays BS and DN 
systems). The plot method returned a plot of the 
variances (y-axis) associated with the PCs (x-
axis) (Fig. 1). The Figure below (Fig. 1) is useful 
to decide how many PCs to retain for further 
analysis. Standard deviation associate to 
processed principal components by combining 
microarray features BS and DN systems ranged 
from 4.34 to 1.577e-15, while proportion of 
variance oscillated between 0.94 and 0.00. In 
addition, the cumulative proportion analysis 
explaining the variance (data variability) 
suggested (i) the first PC account for morethan 
94% and (ii) the first two PCs accounts for more 
than 97% of the variance of the data (Fig. 1). 
Considering as a whole this funding opined the 
first two principal components as satisfactoriness 
factors explaining presently analysed data 
variability (variability as regards the number of 

commonly called DEGs between processed 
array features and RNA-seq), even if the first 
principal component claimed to explain more 
than 90% of analysed data variability (Fig. 1). 
 

 
 

Fig. 1. PCA analysis explaining detected 
DEGs variability between several array 

features and RNA-seq approach 
 

3.2 Biplot Analysis Assessing Analysed 
Microarrays Dispersion by 
Processing Background 
Correction/Subtraction (BS) and 
Gene Expression Signal Data 
Normalisation (DN)  

 
There are many approaches to normalizing 
expression levels. Here, we processed 20 
microarrays BS+DN arrangement of limma R 
package with the purpose to assess analysed 
microarray features aptitude in calling DEGs 
recognized as such by RNA sequencing (RNA-
seq) approach. The present biplot survey 
graphic; providing an optimal visualization of the 
principal component analysis (PCA) reinforced 
the aptitude of the first principal component (CP) 
explaining more than 90% of the presently 
processed microarray features data variability 
(Fig. 2). Microarray design features based on 
long multiple probe set (NMG.D) exhibited a 
relative high stability as opposed to those based 
on long single probe per gene target (NMG.S) 
(Fig. 2). In the similar tendency, the same 
analysis evoked a major stability of microarray 
design based on short multiple probe set per 
gene model transcript (CMB.D) as opposed to 
array feature based on short single replicate 
oligonucleotide probe per gene model transcript 
(CMB.S) (Fig. 2). Then, this analysis suggested 
the stability of microarray tools in calling DEGs in 
agreement with RNA-seq approach, as 



 
 
 
 

Dago et al.; BJI, 19(4): 1-14, 2017; Article no.BJI.36345 
 
 

 
6 
 

depending on the type of arrays features 
designs, rather than microarray probe size. In 
addition, array design features based on different 
and/or multiple probes in targeting a gene model 
transcript claimed to stabilize detected expressed 
gene signal when compared to RNA-seq (Fig. 2). 
However, the first principal component of the Fig. 
2, indexed microarray features based on single 
long and/or short probe set targeting gene model 
transcript (NMG.S and CMB.S) as the substantial 
source of analysed data variability (number of 
DEGs between processed microarray designs). 
In the other word our findings supported a 
substantial disagreement between microarray 
features based on single (long or short) probe 
per gene model transcript and RNA-seq 
approach as opposed to microarray array design 
that include multiple (long and/or short) probe set 
per gene model transcript (Fig. 2). Interestingly, 
all analysed array features exhibited a consistent 
agreement in term of data pre-processing 
procedure by applying gene expression data 
normalization and background correction 
(background subtraction) (Fig. 2). Also, this 
analysis suspected a predominance of data 
normalisation (DN) procedure with respect to 
those of background subtraction (BS) in 
microarray data pre-processing survey (Fig. 2).  
 

3.3 Clustering Analysis Assessing 
Euclidian Distance between Analysed 
Microarrays Features and Applied 
Background Correction and Gene 
Expression Data Normalisation 
Systems 

 
Here we performed Euclidian distance clustering 
analysis with the purpose to assess the 
rearrangement of processed microarrays 
features and as well applied data normalization 
and background correction procedures. Cluster 
dendrogram graph referred to array features 
displayed two tendencies based on (i) the size of 
microarray oligonucleotide probe i.e. CMB: array 
design based on single and/or multiple short (35-
40mer) probes per gene model transcript and 
NMG: array design based on single and/or 
multiple long probe (60 mer) per gene model 
transcript as well as on (ii) microarray design 
strategies i.e. CMB.S: array design based on 
single short probe per gene model transcript, 
CMB.D: array design based on multiple short 
probe per gene model transcript, NMG.S: array 
manufacture based on single long probe per 
transcript model and NMG.D: array design 
established on multiple long probe per gene 

transcript model (Fig. 3). In addition, performed 
cluster analysis regarding array features 
exhibited a contrasting behaviour among both 
array design manufactures centred on long 
(NMG.D) and short (CMB.S) probes per gene 
model transcript when compared to microarray 
feature based on probe set average procedure 
sort out by Fisher method (CMB.D Fisher and 
NMG.D Fisher) (Fig. 3). Considering as a whole 
the present survey evoked a heterogeneous 
reply and performance of processed microarray 
designs in gene expression differential analysis, 
when RNA-seq approach was assumed as 
reference. Next, cluster dendrogram analysis 
referred to both microarray background 
correction and/or subtraction (BS) and data 
normalisation (DN), evidenced three distinct 
situations, suggesting a consistence influence of 
both microarray DN and BS procedures on array 
gene expression profiling analysis. Also, a 
coherent clustering evidence has been observed 
between processed data normalisation practice 
in comparison to background correction process 
(Fig. 3). Furthermore, this analysis suspected a 
predominance of data normalisation (DN) with 
respect to those of background subtraction (BS) 
methodology in the presently microarray data 
pre-processing step as well as suggested a 
relative agreement between quantile, cycle 
Loess and scale normalisation systems (Fig. 3).     
 

3.4 Impact of Background Correction and 
Gene Expression Data Normalization 
Arrangement Methods on Microarray 
Features Variability in calling 
accurately DEGs by Model Based 
Clustering Analysis 

 
This clustering analysis based on “mclust” 
package of R software includes both univariate 
and multivariate mixture parameters [19]. Then, 
focusing on multivariate features parameter, our 
analysis (mclust function outcome graphic) 
recorded 14 multivariate mixtures in the present 
gene expression comparative study (Fig. 4). 
Indeed, this graphic attributed high BIC values 
(see material and method chapter) to Scale, 
Quantile and Cyclic Loess normalisation 
methods by processing ellipsoidal, equal volume 
and equal shape (EEV) multivariate parameter 
advising their high performance enhancing  gene 
expression differential analysis quality as 
opposed to null normalisation factor. Next, 
focusing our attention on ellipsoidal, equal 
volume, shape, and orientation (EEE) 
multivariate mixture parameter, we were able to 



demonstrate the high performance of both 
Quantile and Cyclic Loess normalization 
methods with respect to Scale normalization 
method (Fig. 4). Interestingly, the other analyzed 
multivariate mixture parameters (more than 75% 
of them) suggested a high performance as well 
as a reliable stability of Quantile normalization 
system in detecting accurately DEGs in 
 

Fig. 2. Biplot graphic measuring microarray feature performance variability combining the 
former BS and DN procedures in discriminating DEGs

NMG.S/D are for ex CombiMatrix and ex Roche NimbleGen custom microarray platform 
designs based on short and/or long single and/or multiple probe set per gen

 

Fig. 3. Euclidean distance hierarchical clustering survey applied on both processed (i) 
microarray design features and
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demonstrate the high performance of both 
antile and Cyclic Loess normalization 

methods with respect to Scale normalization 
4). Interestingly, the other analyzed 

multivariate mixture parameters (more than 75% 
of them) suggested a high performance as well 

ntile normalization 
system in detecting accurately DEGs in 

agreement with RNA-seq approach in the 
present comparative gene expression differential 
analysis. In the other word, Quantile 
normalization system seems to be more tolerant 
as regards microarray background subtraction 
(BS) procedures as opposed to both Cyclic 
Loess and Scale normalization systems.   

 
2. Biplot graphic measuring microarray feature performance variability combining the 

former BS and DN procedures in discriminating DEGs in agreement with RNA-seq.
are for ex CombiMatrix and ex Roche NimbleGen custom microarray platform 

designs based on short and/or long single and/or multiple probe set per gene model transcript 
respectively 

 
ierarchical clustering survey applied on both processed (i) 

microarray design features and (ii) BS+DN arrangement methods 
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present comparative gene expression differential 
analysis. In the other word, Quantile 
normalization system seems to be more tolerant 

ckground subtraction 
(BS) procedures as opposed to both Cyclic 
Loess and Scale normalization systems.   

 

2. Biplot graphic measuring microarray feature performance variability combining the 
seq. CMB.S/D 

are for ex CombiMatrix and ex Roche NimbleGen custom microarray platform 
e model transcript 

 

ierarchical clustering survey applied on both processed (i) 
 



Fig. 4. BIC “mclust” clustering graphic by multivariate mixture survey assessing microarrays 
BS+DN arrangement assuming RNA

 

3.5 Detailed Evaluation of Inter
Microarray Features Data Variability 
by Processing Data Density 
Dispersion and Descriptive Statistic 
Survey 

 
We performeddensity dispersion analysis as 
regards microarray performance in gene 
expression differential data by processing 20 
BS+ DN arrangement (see material and methods 
chapter) assuming RNA-seq as reference. The 
present analysis exhibited an apparent stability of 
Quantile and Cyclic Loess normalisation system 
in calling DEGs in agreement with RNA
same analysis censured Null microarray gene 
expression data normalisation, since induces a 
relative high data variability in the present 
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” clustering graphic by multivariate mixture survey assessing microarrays 

BS+DN arrangement assuming RNA-seq approach as reference 

Detailed Evaluation of Inter-
Microarray Features Data Variability 
by Processing Data Density 
Dispersion and Descriptive Statistic 

dispersion analysis as 
regards microarray performance in gene 
expression differential data by processing 20 
BS+ DN arrangement (see material and methods 

seq as reference. The 
present analysis exhibited an apparent stability of 

le and Cyclic Loess normalisation system 
in calling DEGs in agreement with RNA-seq. The 
same analysis censured Null microarray gene 
expression data normalisation, since induces a 
relative high data variability in the present 

processed comparative gene expression profiling 
analysis (Fig. 5). In the other word, normalisation 
procedure in array pre-processing analysis is 
strongly required to enhance both quality and 
quantity information as regards microarray gene 
expression differential survey. The present 
analysis showed that normalisation procedure in 
microarray gene expression data analysis 
improved the number of detected and/or 
candidate differentially expressed genes (p
<0.05). Indeed, detected DEGs in agreement 
between microarrays and RNA
microarray gene expression data normalisation 
methods were correctly applied, ranged from 
3065 to 2861 against 2223 DEGs for non
normalized expression data (p
(Table 1). Interestingly, previous evoked 
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ession profiling 
5). In the other word, normalisation 

processing analysis is 
strongly required to enhance both quality and 
quantity information as regards microarray gene 
expression differential survey. The present 

lysis showed that normalisation procedure in 
microarray gene expression data analysis 
improved the number of detected and/or 
candidate differentially expressed genes (p-value 
<0.05). Indeed, detected DEGs in agreement 
between microarrays and RNA-seq, when 
microarray gene expression data normalisation 
methods were correctly applied, ranged from 
3065 to 2861 against 2223 DEGs for non-
normalized expression data (p-value<0.05) 
(Table 1). Interestingly, previous evoked 



apparent stability displayed by Quantile an
Cyclic Loess normalisation methods in calling 
DEGs in concordance with RNA
generation sequencing approach was partially 
confirmed by descriptive statistic results reported 
in Table 1. In fact, Quantile normalization method 
exhibited a high stability with respect to the other 
analysed normalisation procedures and 
discriminated more DEGs in agreement with next 
generation sequencing approach (Table 1 and 
Fig. 5). Moreover Fig. 5 suggested a high data 
dispersion as regards Scale normalisation 
methodology with opposed to those of Cyclic 
 

Fig. 5. Multivariate analysis assessing data variability as density dispersion as regards 
analysed microarray designs by pro
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apparent stability displayed by Quantile and 
Cyclic Loess normalisation methods in calling 
DEGs in concordance with RNA-seq next 
generation sequencing approach was partially 
confirmed by descriptive statistic results reported 

1. In fact, Quantile normalization method 
lity with respect to the other 

analysed normalisation procedures and 
discriminated more DEGs in agreement with next 
generation sequencing approach (Table 1 and 

5 suggested a high data 
dispersion as regards Scale normalisation 

logy with opposed to those of Cyclic 

Loess. This result was confirmed by our 
processed descriptive statistic evoking a relative 
difference between variance parameter refereed 
to the latter’s (Table 1). Taking together the 
present findings suggested the sta
quantile normalisation system in array gene 
expression differential analysis and exhibited 
both Quantile and Cyclic Loess normalisation 
methodologies as discriminating a considerable 
number of differentially expressed gene in 
agreement with RNA-seq as opposed to array 
feature without any normalisation procedure (p
value <0.05). 

 
5. Multivariate analysis assessing data variability as density dispersion as regards 

analysed microarray designs by processing array BS+DN arrangement
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Table 1. Descriptive statistical analysis measuring the performance of both ex-CMB and ex-NMG microarray platforms BS+DN arrangement. 
 
 Scale (Saddle, Mle, Ram, 

Ram75, None) 
Quantile (Saddle, Mle, 
Ram, Ram75, None) 

Cyc.Loess (Saddle, Mle, 
Ram, Ram75, None) 

None (Saddle, Mle, Ram, 
Ram75, None) 

Mean (DEGs) 2860.3 3065.28 2971.1 2222.97 
Maximum (Number of DEGs) 4869 4875 4890 4305 
Minimum (Number of DEGs) 453 673 283 617 
Standard Deviation (Log DEGs) 0.68 0.56 0.67 0.60 
Variance (Log DEGs) 0.45 0.29 0.41 0.38 

 
Table 2. Descriptive statistic assessing intra-array designs data variability (detected DEGs in agreement with RNA-seq) by combining DN+BS 

methods 
 
DN+BS methods Statistical parameters 

*
CMB.S 

*
CMB.D 

*
CMB.S fisher 

*
NMG.S 

*
NMG.D 

*
NMG.D fisher 

Scale (DN)+ Saddle, Mle, Rma, 
Rma75, Null (BS) 

Mean of DEGs 1402.3 868.1 1875.4 3318.46 4469.66 4543 
Log. Variance 0.08 0.17 0.05 0.00 0.00 0.00 
Log. Standard Deviation (SD) 0.28 0.4 0.22 0.06 0.04 0.06 

Quantile (DN)+ Saddle, Mle, 
Rma, Rma75, Null (BS) 

Mean of DEGs 1469.7 1441 2145 3492.4 4551.87 4684.2 
Log. Variance 0.09 0.21 0.02 0.00 0.00 0.00 
Log. Standard Deviation (SD) 0.29 0.43 0.13 0.06 0.03 0.05 

Cyclic-Loess (DN)+ Saddle, 
Mle, Rma, Rma75, Null (BS) 

Mean of DEGs 1507.8 1073.4 2042 3556.53 4367.67 4676.2 
Log. Variance 0.08 0.48 0.02 0.00 0.00 0.00 
Log. Standard Deviation (SD) 0.27 0.66 0.14 0.04 0.03 0.05 

Null (DN)+Saddle, Mle, Rma, 
Rma75, Null (BS) 

Mean of DEGs 1302.6 735.5 1734.4 2228.45 3362.26 4092.8 
Log. Variance 0.03 0.00 0.01 0.42 0.19 0.001 
Log. Standard Deviation (SD) 0.16 0.07 0.1 0.004 0.002 0.04 

*
CMB.S and CMB.D: custom microarray designs based on single and/or multiple short oligo probe set (35-40 mer) per gene model transcript. NMG.S and NMG.D: custom 

microarray designs based on both single and multiple long oligo probe set (60 mer) per gene model transcript. Fisher indicates probe average by the Fisher probability method. 
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3.6 Assessment of Intra-Microarray 
Variability Vis-à-vis of Detected 
Differential Expressed Genes (DEGs) 
in Agreement with RNA-seq 
Combining Microarray Gene 
Expression Data Normalisation (DN) 
and Background Subtraction (BS) 

 
Assessment of intra-microarray data variability by 
processing previous evoked microarray DN+BS 
arrangement based on the R limma package, 
showed a relative stability of all analysed 
microarray features in discerning DEGs in 
agreement with RNA-seq. However, this study 
suggested the high susceptibility of microarray 
designs based on short oligonucleotide probe set 
per gene model transcript as regards applied 
DN+BS methods (Table 2). Indeed, array design 
based on multiple short probes set per gene 
model target exhibited a consistent versatility 
performances as regards considered and applied 
microarray DN+BS arrangement (Table 2) with 
respect to the other analysed array platforms. 
Nevertheless, microarray designs based on long 
oligonucleotide probe (60mer) per gene target 
claimed to be more stable with respect to those 
based on short oligo probe (35-40 mer) when we 
combined all microarray limma package 
background subtraction and expression data 
normalisation methods (Table 2). Apparent 
increasing of data variability has been observed 
between Null normalisation method and quantile, 
scale, and cyclic loess normalisation methods. 
This observed data variability could be explain by 
the fact that normalization in microarray 
experiment increases the number of differential 
gene expression candidates improving the 
quality and/or quantity of the experimentation 
results (Table 2). Then, the present results 
confirmed the relationship between microarray 
experimentation data pre-processing step and 
the quality of the results. Considering as a whole, 
our findings suspected a selective impact of 
microarray DN+BS methods; meaning depending 
on the microarray feature probes size.   
 

4. DISCUSSION  
 
In microarray experiments, removal of systematic 
variations resulting from array preparation or 
sample hybridization conditions is crucial to 
ensure sensible results from the ensuing data 
analysis. Then, normalizes expression intensities 
so that the intensities or log-ratios have similar 
distributions across a set of arrays. Linear 
models for microarray and RNA-seq data 

analysis (limma) implements a range of 
normalization methods for spotted microarrays. 
Smyth and Speed [21] describe some of the 
most commonly used methods. The methods 
may be broadly classified into methods which 
normalize the M-values for each array separately 
(within-array normalization) and methods which 
normalize intensities or log-ratios to be 
comparable across arrays (between-array 
normalization). Indeed, for single-channel arrays 
(our treated cases), within array normalization is 
not usually relevant and so normalize between 
microarray platforms is the sole normalization 
step.For single channel microarray data, the 
scale, quantile or cyclic loess normalization 
methods can be applied to the columns of data. 
So, scale normalization method scales the 
columns to have the same median [22-23], while 
quantile and cyclic loess normalization was 
originally proposed by Bolstad et al (2003) for 
Affymetrix-style single-channel arrays [24]. 
Quantile normalization forces the entire empirical 
distribution of each column to be identical. Cyclic 
loess normalization applies loess normalization 
to all possible pairs of arrays, usually cycling 
through all pairs several times [24-25]. Cyclic 
loess is slower than quantile, but allows probe-
wise weights and is more robust to unbalanced 
differential expression. Also, array background 
correction result to be a fundamental step 
managing custom microarray platforms. The 
default background correction action is to 
subtract the background intensity from the 
foreground intensity for each spot on array. 
Usually limma package be default integrate array 
background correction process with normalize 
within arrays function and/or script. The present 
study processed the performance of our previous 
developed custom array designs based on the 
ex-Combimatrix and ex- Roche NimbleGen 
microarray platforms by combining and/or 
integrating R limma package normalization and 
background correction methods with the purpose 
to discern the agreement between the latter’s 
(processed microarray platforms) and RNA-seq 
approach in gene expression differential 
analysis. This analysis was based exclusively on 
hierarchical clustering and principal component 
analysis (PCAs) and suggested the first 
component of above mentioned PCA survey, as 
able to fully explain the present analysed data 
variability (Fig. 1). However, standard deviation 
associate to our processed principal components 
(PC) by evaluating microarray BS+DN 
arrangements, in calling significantly differentially 
expressed genes (DEGs) in agreement with 
RNA-seq, ranged from 4.34 to 1.577e-15, while, 
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the cumulative proportion analysis explaining that 
variance (data variability) suggested the first PC 
account for more than 90% (Fig. 1). This result 
was confirmed by our developed biplot graphic 
by measuring performance variability as regards 
the analysed and/or processed microarray 
features (Fig. 2). This analysis suggested the 
highest stability of microarray designs based on 
multiple long and/or short oligonucleotide probe 
set per gene model target as opposed to those 
based on single probe per gene model transcript. 
Moreover, the present analysis enhanced and 
confirmed previous suspected instability 
regarding microarray design based on short 
single probe set per gene model transcript (CBM-
S) [26]. We therefore showed that the use of 
different oligo nucleotides probe per transcript 
model by using adequately microarray DN+BS 
methods, provided a stable measure of transcript 
abundance and/or intensity in gene expression 
differential analysis. However, our findings 
showed that disregarding applied microarray 
gene expression data normalization (DN) and 
background subtraction (BS), the present 
analysed array features exhibited heterogeneity 
behaviours among themselves [16]. By contrast, 
the same analysis seems to favour microarray 
platforms clustering based on data normalisation 
(DN) procedure with respect to those based on 
background subtraction (BS) (Fig. 3). Then, 
Euclidean distance clustering analysis suggested 
the preponderance of microarray gene 
expression data normalisation as opposed to 
those of their background correction. This could 
may be explain the integration and/or 
combination by the linear models for microarray 
and RNA-seq data analysis  (limma) package 
between array background subtraction (BS) 
function and those of gene expression data 
normalization (DN) methods under the 
“normalizeWithinArrays” application, since the 
latter performs array background correction by 
default [27]. Latter, we focused on a multivariate 
clustering analysis provided by “mclust” package, 
by selecting the optimal model, performing  
hierarchical clustering for parameterized 
Gaussian mixture models by favoring the model 
and number of clusters with the largest BIC 
parameter [19-20]. This clustering analysis 
recommended the needed of data normalization 
for our processed microarray platforms, since 
largest BIC value were calculated for Quantile, 
Cyclic Loess and Scale normalization methods 
respectively as oppose to Null normalization 
parameter (Fig. 4). The same analysis suspected 
the stability as well the tolerance of quantile 
normalization method as regard thelimma 

package processed background correction 
methods. Quantile normalization is routinely used 
in the treatment of both oligonucleotide and 
cDNA microarray data, even though there might 
be some loss of information in the normalization 
process. We recognize that the ideal 
normalization, if it ever exists, would aim to keep 
the maximal amount of gene profile information 
with the lowest possible noise. Then, Hu J. et al. 
(2007) proposed a valuable enhancement to 
quantile normalization, and demonstrate through 
three Affymetrix experiments that the enhanced 
normalization can result in better performance in 
detecting and ranking differentially expressed 
genes across experimental conditions [28]. Next, 
our performed density clustering analysis (Fig. 5) 
and as well descriptive statistical survey (Table 
1) proposed quantile normalization method 
applied to our developed microarray designs as 
exhibiting the highest agreement (sensitivity) with 
RNA-seq approach in calling accurately DEGs 
(p-value<0.05). Then, the lower variability 
observed between microarray pre-processed 
data by applying the background correction 
including quantile normalization system 
confirmed the advantage of merging all 
developed background correction systems of the 
R limma package with the quantile normalization 
method in gene expression differentially analysis. 
Taking together, the present analysis recognizing 
the needed of microarray gene expression data 
normalization in performing gene expression 
profiling survey, suggested this data pre-
processing step as mandatory for improving 
array gene expression data quality and quantity  
(Fig. 5 and Table 2). Also this study suspect a 
relative selective effect of the combination of 
processed  microarray gene expression data 
normalization (DN) and background correction 
(BS) methods on the performance of our 
developed microarray designs, since 
combination between analysed BS and DN 
methods applied to the same array exhibited 
contrasting results (Table 2). However, the same 
analysis supported an improvement of the quality 
of microarray gene expression analysis when we 
correctly applied data normalisation and 
background correction methods. In the other 
words, good concordance and/or agreement was 
observed between both microarray and RNA-seq 
platforms in calling DEGs candidates when 
analysed microarray platforms were rigorously 
submitted to normalization as well as to 
background correction procedures as opposed to 
Null normalization and background correction 
(Table 2 and Fig. 5). Moreover, our finding 
showed microarray design based on short oligo 



 
 
 
 

Dago et al.; BJI, 19(4): 1-14, 2017; Article no.BJI.36345 
 
 

 
13 

 

probes as more versatile as opposed to 
microarray design based on long probe replying 
to the limma package DN+BS combination. 
However, quantile and scale normalisation 
methods seem to stabilize array design based 
these oligonucleotide probes (short oligo probe) 
as opposed to cyclic loess method.  Experience 
with microarray data has repeatedly shown that 
normalization is a critical component of the 
processing pipeline, allowing accurate estimation 
and detection of differential expression (DE) [24]. 
The aim of normalization is to remove systematic 
technical effects that occur in the data to ensure 
that technical bias has minimal impact on the 
results. 

 

5. CONCLUSION      
 
The importance of microarray data normalization 
and background procedures in prelude to 
genomics and transcriptomics studies have been 
fully discussed and continued to captivate 
researcher community attention. The particularity 
of our study was to weight the performance of 
our previous developed microarray designs 
processed by alllimmapackage background 
correction (BS) and data normalisation (DN) 
combination methods with the purpose to weigh 
the agreement between our previous developed 
microarray design strategies and RNA-seq 
approach in a comparative gene expression 
differential analysis. The present study confirmed 
the necessity of both gene expression data 
normalization and background correction 
procedures in microarray analysis data pre-
processing step. Also, our findings preconized 
the preponderance of normalization methods 
with respect to background correction in the 
present performed microarray gene expression 
differential analysis. Finally, our results, exhibited 
quantile normalisation method as more tolerable 
as regards to applied limma package background 
correction systems with respect to Cyclic Loess 
and Scale normalisation methods.  
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