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Abstract 
 

This paper examines the implementation of a self-starting five-step eight-order block method with two 
off-grid for stiff ordinary differential equations using interpolation and collocation procedures. The 
predictor schemes are then expanded using Taylor’s series expansion. Multiple numerical integrators 
were produce and arrived at a discrete scheme. The discrete schemes are of uniform order eight and are 
assembled into a single block matrix equation. These equations are simultaneously applied to provide the 
approximate solution for stiff initial value problem for ordinary differential equations. The order of 
accuracy and stability of the block method is discussed and its accuracy is established numerically. 
 

 

Keywords: Block method; stiff; five-step; power series. 
 

1 Introduction 
 
A considerable literature exist for the conventional k-step linear multi-step methods for the solution of 
ordinary differential equations (ODE’s) of the form 
 

 baxyxyyxfy ,,)(,),(' 00                                                                                         (1) 
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The solution is in the range ,bxa   where a and b are finite and we assumed that f satisfies the 

Lipschitz condition, which guarantees the existence and uniqueness of the solution of the problem (1). 
 

For the discrete solution of (1) by linear multi-step method has being studied by authors like [1] and 
continuous solution of (1) [2] and [3,4]. One important advantage of the continuous over discrete approach is 
the ability to provide discrete schemes for simultaneous integration. These discrete schemes can be 
reformulated as general linear methods (GLM) [5]. The block methods are self-starting and can be applied to 
both stiff and non-stiff initial value problem in differential equations. 
 

Definition 1. A stiff equation is a differential equations that are characterized as those whose exact 

solutions has a term of the form
cte , where c is a large positive constant. 

 

More recently, authors like [6,7,8,9] and [10] to mention few, these authors proposed methods ranging from 
predictor- corrector to hybrid block method for initial value problem in ordinary differential equation. 
 
In this work, we derived the continuous self-starting five-step order-eight block method with two off-grid 
using Taylor’s series expansion. This would help in coming up with a more computationally reliable 
integrator that could solve stiff differential equations problems of the form (1). 
 

2 Derivation Technique of the Self-starting Block Method 
 
We consider the continuous hybrid formula to be the form 
 

 
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j

j
j xxy                                                                                                                           (2) 

 

Interpolation and collocation procedures are use by choosing interpolation point t at a grid point and 

collocation points s at all points giving rise to st  system of equations whose coefficients are 

determined by using appropriate procedures. The first derivative of (2) is given by; 
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Then, substituting (3) in (1), we obtain 
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Now, collocating (4) at point 5)1(0,  sx sn and interpolating (2) at points 
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following system of equations; 
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Solving (5) , for 8)1(0,' jsj and substituting back into (2) gives a continuous linear multistep 

method of the form 
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Evaluating (7) at 7)1(1x gives a continuous discrete block formula of the form 
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2.1 Analysis of basic properties of the self-starting block method 
 
2.1.1 Order of the self-starting block method 
 

Let the linear operator  hxyL );( associated with the block method (8) be defined as  

 

 ))()(();( )0(
mnnm YbFydfhEyYAhxyL                                                            (9) 

 

Expanding using Taylor’s series and comparing the coefficients of h gives 
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Definition  2. The linear operator L and the associated continuous linear multistep method (9) are said to 
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error is given by 
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Expanding in Taylor’s series expansion gives and equating coefficients of the Taylor’s series expansion to 
zero yield a constant order eight with the following error constants 
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Hence, the self-starting block integrator is zero-stable. 

 

2.3 Consistency 
 
The block integrator (8) is consistent since it has order 18  
 

2.4 Convergence 
 
The self-starting block integrator is convergent by consequence of Dahlquist theorem below. 

 
Theorem  4. The necessary and sufficient conditions that a continuous LMM be convergent are that it be 
consistent and zero-stable [12]. 
 

2.5 Region of absolute stability 
 
Definition  5.  Region of absolute stability is a region in the complex z plane, where hz  . It is defined 

as those values of z such that the numerical solutions of yy ' , satisfy  jasy j 0  for any 

initial condition. 
The stability polynomial for our method is given by 



 
 
 

Raymond et al.; JAMCS, 26(4): 1-9, 2018; Article no.JAMCS.18909 
 
 
 

7 
 
 

 

6767

672673764

675676677

8

21

8

19

32

105

32

85

64

165

192

355

960

853

320

451

1280

711

3840

1177

8064

1247

1896

67

192

5

448

5

wwwwh

wwhwwhwwh

wwhwwhwwh






















































































































































































 

 
This gives the stability region shown in Fig. 1 shown below: 

 

 
Fig. 1. 

 

According to Fatunla, stiff algorithms have unbounded RAS, also Lambert showed that the stability region 
for L-stable schemes must encroach into the positive half of the complex plane. 

 

3 Numerical Examples 
 
We shall evaluate the performance of the self-starting block method on some challenging stiff problems and 
the results are displayed below. 
 

The following notations are used in the tables below. 
 
ERS    - Error in Skwame et al. (2012) 
ERM - Error in Mohammed and Yahaya (2012) 
 
Problem  1.  Consider the mildly stiff initial value problem 
 

1.0,1)0(,'  hyyy  
 

With exact solution: 
xexy )(

 
 
This problem was solved by [8], by adopting fully implicit four points block backward formula.  
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Table 1. Showing the result for stiff problem 1 
 

x Exact Result Computed Result Error in our method ERM 
0.01 0.9048374180359595 0.9048374180555555 1.959599 (-011) 2.5292(-06) 
0.02 0.8187307530779818 0.8187307555555556 2.477574 (-009) 2.0937(-06) 
0.03 0.7408182206817179 0.7408182624999998 4.181828 (-008) 2.0079(-06) 
0.04 0.6703200460356393 0.6703203555555557 3.095199 (-007) 1.6198(-06) 
0.05 0.6065306597126334 0.6065321180555554 1.458543 (-006) 3.1608(-06) 
0.06 0.5488116360940264 0.5488129556691562 1.319575 (-006) 2.7294(-06) 
0.07 0.4965853037914095 0.4965864992843365 1.197493 (-006) 2.5457(-06) 
0.08 0.4493289641172216 0.4493300698483614 1.105731 (-006) 2.1713(-06) 
0.09 0.4065696597405992 0.4065708250308643 1.165290 (-006) 3.1008(-06) 
0.10 0.3678794411714423 0.3678812102329587 1.769062 (-006) 2.7182(-06) 

 

Problem 2. Consider the highly stiff initial value problem, 
 

10,01.0,1)0(,'   hyyy
 

 

With exact solution:  
xexy )(  

 

[9] solved this problem.  by adopting an L-Stable hybrid block Simpson’s method of order six.  
 

Table 2. Showing the result for stiff problem 2 
 

x Exact Result Computed Result Error in our method ERS 
0.01 0.9048374180359595 0.9048374180555555 1.959599 (-011) 6.28(-03) 
0.02 0.8187307530779818 0.8187307555555556 2.477574 (-009) 1.88(-03) 
0.03 0.7408182206817179 0.7408182624999998 4.181828 (-008) 3.26(-03) 
0.04 0.6703200460356393 0.6703203555555557 3.095199 (-007) 1.06(-02) 
0.05 0.6065306597126334 0.6065321180555554 1.458543 (-006) 3.85(-03) 
0.06 0.5488116360940264 0.5488129556691562 1.319575 (-006) 1.45(-03) 
0.07 0.4965853037914095 0.4965864992843365 1.197493 (-006) 5.02(-04) 
0.08 0.4493289641172216 0.4493300698483614 1.105731 (-006) 2.76(-04) 
0.09 0.4065696597405992 0.4065708250308643 1.165290 (-006) 1.01(-04) 
0.10 0.3678794411714423 0.3678812102329587 1.769062 (-006) 3.74(-05) 

 

4 Discussion of the Results 
 
We consider two numerical examples in this paper. Mohammed, U., and Yahaya, Y. A., (2010) solved the 
first problem (which is a mildly stiff), where they proposed a fully implicit four points block backward 
difference formula. Our method gave a better approximation because we proposed a self-starting method, 
which does not, required a starting value. Skwame, Y., Sunday, J., and Ibijola, E. A., (2012) solved the 
second problem. They adopted an L-Stable hybrid block Simpson’s method of order six. Our method gave a 
better approximation, because the iteration per step in the new method is lower than the proposed method by 
Skwame, Y., Sunday, J., and Ibijola, E. A., (2012). 
 

5 Conclusion 
 
In this paper, we have presented a self-starting five-step eight-order block method for the solution of first 
order ordinary differential equations. The approximate solution adopted in this research produced a block 
method with L-stable stability region. This made it to perform well on stiff problems. The block method 
proposed was found to be zero-stable, consistent and convergent. The new block method was also found to 
perform better than the existing methods. 
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