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Abstract 
 

This study considered Gross Domestic Product (N’ Billion) as the dependent variable (denoted by Y�),  
the Money Supply (N’ Billion) as the independent variable (denoted by X��) and the Credit to Private 
Sector as another independent variable (denoted by X��). The data were obtained from the Central Bank 
of Nigeria Statistical Bulletin for a period ranging from 1981 to 2014. Each series consists of 34 
observations. The study aimed at applying the generalized least squares to overcome the weaknesses of 
ordinary least squares to ensure the efficiency of the model parameters, unbiased standard errors, valid t-
statistics and p-values, and to account for the presence of autocorrelation. Based on ordinary least squares 
fitted regression model, our findings revealed that X�� and X�� contributed significantly to Y� and were 
able to explain about 67.95% of the variance in Y�. However, the diagnosis of the fitted regression model 
using Breusch and Godfrey test, ACF, and PACF showed that the residuals are correlated, hence the need 
for generalized least squares. Further findings from the results of generalized least squares estimation 
revealed that their estimates are better and that the additional information in the error terms 
(autocorrelation) could be explained and captured by AR (2). Thus, it could be deduced that generalized 
least squares provides better estimates than the ordinary least squares and also accounts for 
autocorrelation in time series regression analysis. 

Original Research Article 
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1 Introduction 
 
Classical regression model seeks to determine the relationship between the dependent variable and the 
independent variables. This regression model could be simple (consisting of one dependent and one 
independent variable) or multiple (consisting of one dependent and two or more independent variables). 
However, in the linear regression model, certain assumptions are made on how a dataset will be produced by 
an underlying data-generating process. According to [1], these assumptions include linearity (which ensures 
that the model specifies a linear relationship between the dependent and independent variables), 
homoscedasticity (which ensures that the error term has a finite constant variance), normality (which ensures 
that the error term is normally distributed) and no autocorrelation between the error terms (which ensures 
that the correlation in the error terms is zero). Moreover, regression model describes the value of the 
dependent variable as the sum of two parts, a deterministic part (explanatory variables) and the random part 
(error term).The error term is primarily a disturbance to an already stable relationship and is able to capture 
the remaining information in the dependent variable which could not be explained by the independent 
variables. Relating to the assumption on the error term, if the assumption of no correlation in the error term 
is violated, then, the underlying model would be rendered invalid with the standard errors of the parameters 
becoming biased. Moreover, if the errors are correlated, the least squares estimators are inefficient and the 
estimated variances are not appropriate [2-6]. By definition, autocorrelation is the lag correlation of a given 
series with itself, lagged by a number of time units (see [4]). Thus, when applying regression models to 
economic/management data in the presence of autocorrelation, the ordinary least squares estimation method 
ceases to provide efficient estimators and appropriate variances. In an attempt to overcome the weaknesses 
of ordinary least squares estimation method in the presence of autocorrelation, this study seeks to apply the 
generalized least squares estimation method since the least squares estimation method does not make use of 
the information of the unexplained variance as captured by the error terms in the dependent variable, 
whereas the generalized least squares (GLS) takes such information, the unexplained variance into account 
explicitly and is accomplished. 

 

This study was motivated by the fact that some previous studies have failed to use GLS to explore the 
additional information embedded in the error terms of Ordinary Least Squares (OLS) estimated regression 
model involving Gross Domestic Product, Money Supply and Credit to Private Sector in Nigeria. For 
example, [7] investigated the impact of money supply on economic growth in Nigeria between 1980 and 
2006 applying econometric technique ordinary least squares estimation, causality test and error correction 
models to time series data. The results revealed that although money supply is positively related to growth 
but the result is however insignificant in the case of gross domestic product growth rates on the choice 
between contractionary and expansionary money supply.  

 

Bakare [8] examined the determinants of money supply growth and its implications on inflation in Nigeria. 
The study employed quasi-experimental research design approach for the data analysis. The results of the 
regression showed that credit expansion to the private sector determines money supply growth by the highest 
magnitude in Nigeria. The results also showed a positive relationship between money supply and inflation in 
Nigeria. 

 

Babatunde and Shuaibu [9] studied the relationship between money supply, inflation and capital 
accumulation in Nigeria between 1970 and 2010. The study investigated the long run relationship between 
the variables using Johansen Cointegration test while error correction model was conducted on the variables 
to capture their short-run disequilibrium behaviour. Cointegration test results revealed that variables 
employed in the study shared long-run relationship. Also, the results of the error correction model indicated 
that money supply has a positive relationship to capital accumulation in Nigeria. 
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Chinaemerem and Chigbiu [10] investigated the impact of financial development variables on economic 
growth in Nigeria using Augmented Dickey-Fuller (ADF) test, Granger Causality test, Co-integration and 
Error Correction Method (ECM) were employed on time series data from 1960 – 2008. The results revealed 
that Money Supply (MS) and Credit to Private Sector (CPS) are positively related to the economic growth of 
Nigeria. The Johansen and Granger tests showed that Money Supply and Credit to Private Sector are co-
integrated with GDP in Nigeria. 

 

Inam [11] provided further evidence on the role of money supply on economic growth in Nigeria between 
1985-2012 using augmented Cobb-Douglas production and relying on co-integration/Error correction 
methodology. It was found that money supply has a significant positive impact on economic growth in 
Nigeria. 

 

Usman and Adejare [12] examined the effect of the money supply, foreign exchange on Nigeria economy 
using secondary data obtained from Central Bank of Nigeria Statistical bulletin covering the period of 1988 
to 2010. Multiple regressions were employed in the data analysis. Narrow Money Supply, Broad Money, 
exchange rate and interest rate were found to have significant effects on the economic growth. 

 
Yakubu and Affoi [13] analyzed the role of Commercial banks credit on economic growth in Nigeria from 
1992 to 2012 using ordinary least squares. The findings revealed that Commercial bank credit has a 
significant effect on the economic growth in Nigeria. 

 
Ujiju and Etale [14] examined the role of monetary policy instruments in controlling inflation in Nigeria 
using secondary time series panel data for the period covering 1982 to 2011. The study employed multiple 
regression technique and findings revealed that interest rate, minimum rediscount rate, liquidity ratio and 
cash reserve ratio had no significant influence on inflation.  

 

Olowofeso et al. [15] examined the impacts of private sector credit on economic growth in Nigeria using the 
Gregory and Johansen co-integration test. The method was applied to quarterly data spanning 2000: Q1 to 
2014: Q2, while the modified ordinary least squares procedure was employed to estimate the model 
coefficients. The study found a cointegrating relationship between output and its selected determinants, 
albeit, with a structural break in 2012: Q1. The error correction model confirmed a positive and statistically 
significant effect of private sector credit on output while increased prime lending rate inhibiting growth. 

 
Solomon and Marshal [16] studied the linkage between finance companies intermediation functions and 
economic growth in Nigeria. Using an annual time series data spanning the period of 1992 – 2014 with the 
application of ordinary least squares, co-integration test and Granger causality test.  The relative statistic 
results showed evidence for a strong and positive correlation between NLA and GDP in both short run and 
long run. 

 

Nwoko et al. [17] examined the extent to which the Central Bank of Nigeria Monetary Policies could 
effectively be used to promote economic growth, covering the period of 1990-2011. The influence of money 
supply, average price, interest rate and labour force were tested on Gross Domestic Product using the 
multiple regression models as the main statistical tool for analysis. The findings indicate that average price 
and labour force have a significant influence on Gross Domestic Product while money supply was not 
significant. The interest rate was negative and statistically significant. 

 
Inam and Ime [18] investigated the impact of monetary policy on the economic growth of Nigeria using 
annual data covering the period of 1970 to 2017 with the application of ordinary least squares technique and 
the Granger causality test. The results indicated a positive and insignificant relationship between money 
supply and economic growth. Also, no causality between money supply and economic growth was indicated.  
 
 



 
 
 

Akpan and Moffat; JAMCS, 26(4): 1-15, 2018; Article no.JAMCS.39949 
 
 
 

4 
 
 

2 Materials and Methods 
 
2.1 Regression model 
 
Rawlingset al. [3] defines a standard regression model as 

 
�� 	= 	�� 	+	��,��,� 	+	����,� + ⋯	+	����,� 	+ 	��                                                                         (1) 

 

where 
 

�� = dependent variable 
�� =regression parameters, i = 1,…, n 
��� =independent variables, i = 1,…, n 
�� 	=error term assumed to be i.i.d. N(0, ��

�) 
 

(see also [19, 20, 21, 5]). 
 

Thus, the dependent variable for a time series regression model with independent variables is a linear 
combination of independent variables measured in the same time frame as the dependent variable. Estimates 
of the parameters of the model in (1) can be obtained by Least Squares Estimation Method (see more details 
in [22,3]). 
 

2.2 Method of ordinary least squares for simple linear regression  
 
The least squares estimation procedure uses the criterion that the solution must give the smallest possible 
sum of squared deviations of the observed �� from the estimates of their true means provided by the solution. 

Let ��� and ��� be numerical estimates of the parameters ��and ��, respectively, and let  
 

��� 		= 		 ��� 		+		�����                                                                                                                           (2) 
 
be the estimated mean of �� for each �� ,  �	 = 1,…,	n.  
 

The least squares principle chooses ��� and ��� that minimize the sum of squares of the residuals, SSE: 
 

SSE  =∑ ��� 	− 	����
��

���   =   ∑ ��
��

���                                                                                                   (3) 
 
where �� 	=	 (�� 	−	���) is the observed residual for the ith observation. 
 
Also, we can express �� in terms of ��, �� , ��, and ��.  Hence, we have 
 

�� = 	 �� −	�� −	����                           (4) 
 

Equation (4) becomes 
 

SSE  =	∑ (�� − 	�� −	����)
��

�	��	                                                                                                        (5) 
 

The partial derivative of SSE with respect to the regression constant, ��, that is,  
 

����

���
  =  

�

���
[∑ (�� −	�� −	����)

��
�	��	 ]                                                                                             (6) 

 

with some subsequent rearrangement, the estimate of �� is obtained as 
 

��� 		= 	 �
∑ ��
�
���

�
� 	− �� �

∑ ��
�
���

�
�                                                                                                            (7) 
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The partial derivative of SSE with respect to the regression coefficient, ��, that is,  
 

����

���
  =  

�

���
[∑ (�� −	�� −	����)

��
�	��	 ]                                                                                             (8) 

 
rearranging equation (8), we obtain the estimate of  �� 
 

��� 			= 		
∑ ����	�

∑ �� ∑ ��
�
���

�
���

�
�
���

∑ ��
��

��� 	�	
�∑ ��

�
��� �

�

�

                                                                                                           (9) 

 

2.3 Method of generalized least squares (GLS) 
 
Consider a simple regression model in (10) 
 

�� 		= 			 �� 		+		���� 		+ 		��		                                                                                                            (10) 
 
or put it in a matrix form 
 

Y  =  X� + �                                                                                                                                     (11) 
 
where Y is the n × 1 response vector: X is an n ×	k + 1 model matrix: � is a k + 1 × 1  vector of the 
regression coefficients to the estimate; and � is an n×1 vector of errors. Assuming that �	~	��(0, �

���) leads 
to well-known OLS estimator of �, 
 

���� 	= (�′�)���′�                                                                                                                        (12) 
 
with covariance matrix  
 

Var(����) 	= ��(�′�)��                                                                                                                 (13) 
 
 To generalize the OLS, we assume that �	~	��(0, �), where the error covariance matrix � is symmetric 
and positive-definite. The diagonal entries in � correspond to non-constant error variance, while nonzero 
off-diagonal entries correspond to correlated errors. 
 
Given that � is known, the log-likelihood for the model is  
 

�����(�) = 	−
�

�
����2� −	

�

�
log�(���	�) −

�

�
(� − X�)′���	(� − X�)                                      (14) 

 
which is minimized by GLS estimator of �, 
 

���� 	= (�′����)���′����                                                                                                          (15) 
 
with covariance matrix 
 

Var(����) = (�′����)��	                                                                                                              (16) 
 
Moreover, assuming that the process generating the regression error is stationary and the covariance of two 
errors depends only upon their separation (s) in time, it follows that: 
 

Cov(������ 	= 		���(������) = ����                                                                                             (17) 
 
where�� is the error autocorrelation at lag s. 
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Expressing���� in matrix form, we have: 

 

�	 = 	��

⎣
⎢
⎢
⎢
⎡
1										��							��	 					…							����

��									1								��	 				…							����

��								��							1				 …								����

⋮											⋮											⋮										⋱								⋮	
����					����	���� 			⋯ 						1 ⎦

⎥
⎥
⎥
⎤

  =  ���                                                                          (18) 

 

hence, for known values of �� and ��, then GLS estimator of � can be computed in a time series regression. 
In addition, in the error covariance matrix �, the large number (n-1) of different  �� makes their estimation 
impossible without specifying additional structure for the autocorrelated errors ([23]). Moreover, this 
additional could be specified to follow stationary time series models such as Autoregressive (AR), Moving 
Average (MA) and Autoregressive Moving Average (ARMA). 

 

2.4 Autoregressive (AR) process 
 
A stochastic process {��} is an autoregressive process of order �and is denoted by ��(�) ([24]), if  

 

��� = ������� + ������� + ⋯+ ������� + ��                                                                                    (19)  

 

where  ��� = �� − �.  

 

Using the backward shift operator, we have  

 

�(�)��� = ��                                                                                                                                     (20) 

 

where 

 

(i) ����� = ����� is a backward shift operator 

(ii) �(�) = 1 − ��� − ⋯− ���
� 

(iii) ��, ��, … , �� is a finite set of weighted parameters 

(iv) ��is a white noise process with mean, zero, and constant variance, ��. 

 

Because  ∑ ���� < ∞
�
��� , is an important condition for invertibility of an autoregressive process of order p, 

then, the process is always invertible. For an autoregressive process to be stationary, the roots of �(�) = 1 −
��� − ⋯− ���

� = 0, must lie outside of the unit circle. 

 

The AR processes are useful in describing situations in which the present value of a time series depends on 
its preceding values plus a random shock. The covariance function can be obtained by multiplying �����  on 
both sides of (19) and taking expectations, we have 

 

�� = ������ + ������ + ⋯+ ������,					� > 0        (21)  

 

where ���������� = �
��

�, for� = 0,
	0, for� > 0	,

� 

 

Dividing (21) by ��, we have  the following recursive relationship for the autocorrelation  

 

�� = ������ + ������ + ⋯+ ������,					� > 0.              (22) 
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2.5 Moving average (MA) process 
                    
According to [24], a stochastic process {��} is a moving average process of order �and is denoted by ��(�) 
if  
 

��� = �� − ������ − ⋯− ������                                                                                                      (23)  
 
where��� = �� − �. 
 
Using the backward shift operator, we have  
 

��� = �(�)��                                                                                                                                       (24) 
 
where 
 

(i) ���� = ���� is a backward shift operator 
(ii) �(�) = 1 − ��� − ⋯− ���

� 

(iii) ��, ��, … , �� is a finite set of weighted parameters 

(iv) ��  is a white noise process with mean zero, and constant variance ��. 
 
Because 1 + ��

� + ��
� + ⋯+ ��

� < ∞, is an important condition for stationarity of a moving average process 
of order q, thus, a finite moving average process is stationary.   Moving average process is invertible if the 
root of �(�) = 1 − ��� − ⋯− ���

� = 0, lie outside of the unit circle. The moving average processes are 
useful in describing phenomena in which events produce an immediate effect that only lasts for short time 
periods. 
 
For an ��(�) process,  
 

��� = �� − ������ − ⋯− ������                                                                                                      (25) 
 

�� = �(��)
� = �(�� − �)� = ���� − ������ − ⋯− �������

�
  

 
�� = ��

� + ��
���

� + ⋯+ ��
���

�  
 

�� = ��
��1 + ��

� + ⋯+ ��
�� . 

 
The variance is  
 

�� = ��
� ∑ ��

��
���   

 
where�� = 1 and��

� = �(��
�) 

 

2.6 Autoregressive moving average (ARMA) process 
 
A natural extension of pure autoregressive and pure moving average processes is the mixed autoregressive 
moving average (����) processes, which includes the autoregressive and moving average as special cases 
[24]. 
 
A stochastic process {��} is an ����(	�, �) process if {��} is stationary and if for every	�, 
 

�(�)��� = �(�)��                           (26) 
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For the process to be invertible, we require that the roots of �(�) = 0, lie outside the unit circle. The 
stationary and invertible ARMA process can be written in pure autoregressive representation, that is,  

 

П(�)��� = ��                                                           (27) 

 

whereП(�) =
�(�)

�(�)
= (1 − П�� − П��

� − ⋯ )                            (28) 

 

This process can also be written as pure moving average representation 

 

��� = �(�)��                  (29) 

 

where�(�) =
�(�)

�(�)
= (1 − ��� − ���

� − ⋯) 

 

to derive the autocorrelation function, we rewrite 

 

��� = ������� + ������� + ⋯+ ������� + � − ������ − ⋯− ������.                                        (30) 

 

Multiplying (30) by ����� and taking the expectation, we have 

 

�� = ������ + ������ + ⋯+ ������,					� ≥ � + 1                                          (31) 

 

where������������ = 0 for � > � 

 

dividing (31) by ��, we have  the following recursive relationship for the autocorrelation  

 

�� = ������ + ������ + ⋯+ ������,					� ≥ � + 1.                           (32) 

 

2.7 Detecting autocorrelation in the error terms 

 
Breusch– Godfrey (BG) Test is used to detect the presence of autocorrelation in the residuals of a fitted 
regression model. For instance, assume that the error term ��	  in equation (10) follows the Pth–order 
autoregressive AR(P) process 

 

��	 = 	������ 	+		������ 		+ ⋯	+	������ 	+	��                                                                             (33) 

 

where��	~	�(0, ��) 

 

The null hypothesis �� to be tested is that  

 

��:	�� = 	 �� = ⋯ =	�� = 0		  

 

Then, the test statistic is (n - p)��		~	��
�.  

 

The decision rule is that if the calculated value of the BG test statistic exceeds the critical  �� value 5% level 
of significance (also, if the p-value corresponding to the BG test statistic is less than 0.05 level of 
significance), the hypothesis of no autocorrelation can be rejected; otherwise not rejected ( see [25-27, 4]). 
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3 Results and Discussion  
 
In this study, we consider Gross Domestic Product (N’ Billion) as the dependent variable (denoted by ��),  
the Money Supply (N’ Billion) as the independent variable (denoted by ���) and the Credit to Private Sector 
as another independent variable (denoted by ���). The data were obtained as available from the Central Bank 
of Nigeria Statistical Bulletin for a period ranging from 1981 to 2014. Each series consists of 34 
observations. 
        
Since our aim is to apply generalized least squares to overcome the weaknesses of ordinary least squares to 
ensure efficiency of model parameters and to explore the additional information embedded in the residuals 
of a fitted regression model, we begin by modelling the relationship between the dependent and independent 
variables through a linear regression. The estimated model is presented in equation (34) below: 
 

�� 	= −410.8980						 + 			3.3476��� 	+ 			2.8239���	                                                                     (34) 
 
s.e          (275.8978)           (0.4925)               (0.6868) 
t-value    (−1.489)              (6.797)                (4.112) 
p-value   (0.1439)            (2.837e-08)           (0.0002) 
 
[Excerpts from Table 1] 
 

Table 1. Output of regression Model 
 

Call: 
lm(formula = �� ~ ���  + ���) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2842.9 -1314.1   424.7   611.9  2686.0 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -410.8980   275.8978  -1.489 0.143877     
���              3.3476     0.4925   6.797 2.84e-08 *** 
���             2.8239     0.6868   4.112 0.000179 *** 
--- 
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1363 on 42 degrees of freedom 
Multiple R-squared:  0.694, Adjusted R-squared:  0.6795  
F-statistic: 47.64 on 2 and 42 DF,  p-value: 1.58e-11 

 
So far, from equation (34) we noticed that the two independent variables are significant since their p-value 
values are less than 5% significance level and were able to explain about 67.95% of the variance in ��. To 
diagnose the fitted regression model in equation (34), we plot the Autocorrelation Function (ACF) and the 
Partial Autocorrelation Function (PACF) of the residuals of the model in equation (34).If the lags of the 
ACF and the PACF of the residuals of the fitted model are all zeros, then there is no additional information 
in the residual series and as such, the fitted model can be used for inference and future prediction. On the 
other hand, if the coefficient of the lag terms of both ACF and PACF are significant, then there remains 
additional information embedded in the residual series indicating the presence of autocorrelation. The 
implication is that, such a model is not efficient and cannot be used for inference; and in addition, the 
additional information can be modeled by an ARMA process. 
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Assessing the ACF and PACF in Figs. 1 and 2, we observed that the first 6 lags of the ACF and the first 2 
lags of the PACF are significant. This shows that there remains additional information in the residual series 
and such information can be modelled by ARIMA process. Moreover, we applied Breusch-Godfrey test to 
further confirm the presence of serial correlation in the residual series. From Table 2, the Breusch-Godfrey 
test revealed that autocorrelation is present in the residual series since the Breusch-Godfrey test = 20.986 at 
lag1 with corresponding p-value = 4.626e-06 which is less than 5% level of significance (that is P = 4.626e-
06< 0.05). 
 

 
Fig. 1. ACF of the Residuals of Regression Model 

 

 
Fig. 2. PACF of the Residuals of Regression Model 

 
Table 2. Breusch-Godfrey Test 

 
Breusch-Godfrey test for serial correlation of order up to 1 
 
data:  Model1 
LM test = 20.986, df = 1, p-value = 4.626e-06 

 
Having detected and confirmed the presence of autocorrelation in the residual series, we moved to identify 
the order of Autoregressive Moving Average (ARMA) model that could capture the information in the 
autocorrelated errors. Looking at the ACF and PACF in Figs. 1 and 2, we observed that the ACF decays 
slowly to zero while there is a cut-off at lag 2 in PACF. This implies that the autoregressive component is of 
order 2 while the moving average component is of order zero. Hence, ARMA(2,0) or AR(2) model is 
identified. 
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Therefore, to account for the autocorrelation in the error terms, we entertained the Generalized Least Squares 
(GLS) model comprising both regression and Autoregressive (AR) equations. The regression component is 
presented in equation (35) while the AR component is presented in equation (36) below: 
 

�� 	= −101.5704						 + 			2.8954��� 	+ 			2.4690���                                                                      (35) 
 
s.e          (767.1604)           (0.3788)            (0.4724) 
t-value    (−0.1324)              (7.6434)             (5.2265) 
p-value   (0.8953)              (0.0000)           (0.0000) 
 

��	 = 	0.4209���� 	+ 		0.4242���� 			+ 	��                                                                                       (36) 
 
[Excerpts from Table 3] 
 
 

Table 3. Output of Generalized Least Squares Model 
 

Generalized least squares fit by REML 
  Model: �� ~ ���  + ���  
  Data: NULL  
       AIC      BIC    logLik 
  736.6719 747.0979 -362.3359 
 
Correlation Structure: ARMA(2,0) 
 Formula: ~1  
 Parameter estimate(s): 
     Phi1      Phi2  
0.4208681 0.4242165  
 
Coefficients: 
                 Value Std.Error   t-value p-value 
(Intercept) -101.57037  767.1604 -0.132398  0.8953 
���              2.89541    0.3788  7.643414  0.0000 
���             2.46901    0.4724  5.226505  0.0000 
 
 Correlation:  
    (Intr) ���  
���   -0.105        
���  -0.106 -0.118 
 
Standardized residuals: 
        Min          Q1         Med          Q3         Max  
-1.81821289 -0.89636900  0.08773882  0.27858563  1.99126950  
 
Residual standard error: 1487.569  
Degrees of freedom: 45 total; 42 residual 

From equation (35), we observed that the two independent variables ���and ���are significant with their 
corresponding p-values less than 5% significance level, that is, (P =0.00 <0.05) and (P = 0.00 < 0.05) 
respectively. Also, it could be observed that a unit increase in ���  increases ��  by 2.8954  (N’Billion). 
Similarly, a unit increase in ���  increases ��  by 2.4690	(N’Billion) . For the autocorrelated model in 
equation (36), the parameters of the AR model are significant given that we are 95% confident that 0.4209 
(the coefficient of the first order term of the AR model) is between 0.1098 and 0.2351; and also, we are 95% 
confident that 0.4242 (the coefficient of the second order term of the AR model) is between -0.0683 and 
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0.7505 [as indicated in Table 4]. The implication is that, ���and  ���  significantly contributed to	��  up to the 
last two years.  
 

Table 4. Confidence Interval for Output of Generalized Least Squares 
 
Approximate 95% confidence intervals 
 
 Coefficients: 
lower est.       upper 
(Intercept) -1649.762804 -101.570366 1446.622072 
���               2.130937    2.895408    3.659880 
���              1.515666    2.469012    3.422358 
attr(,"label") 
[1] "Coefficients:" 
 
 Correlation structure: 
lower      est.     upper 
Phi1  0.10979522 0.4208681 0.2351397 
Phi2 -0.06827319 0.4242165 0.7504677 
attr(,"label") 
[1] "Correlation structure:" 
 
 Residual standard error: 
lower est.    upper  
 772.639 1487.569 2864.029  

Now, comparing the estimates of the ordinary least squares regression that does not account for 
autocorrelation with the estimates of generalized least squares regression that accounts for autocorrelation, 
 

Table 5. Ordinary Least Squares (OLS) versus Generalized Least Squares (GLS) 
 

Model Ordinary 
Least 
Squares 
(O L S )  

Ordinary 
Least 
Squares 
(O L S )  

Ordinary 
Least 
Squares 
(O L S )  

Generalized 
Least 
Squares 
(GLS) 

Generalized 
Least 
Squares 
(GLS) 

Generalized 
Least Squares 
(GLS) 

��[���] ��[���] ��[���] ��[���] ��[���] ��[���] 

Parameter −410.8980 3.3476 2.8239 −101.5704 2.8954 2.4690 
Standard Error 275.8978 0.4925 0.6868 767.1604 0.3788 0.4724 
t-value −1.489 6.797 4.112 −0.1324 7.6434 5.2265 
p-value 0.1439 2.837e-08 0.0002 0.8953 0.0000 0.00000 

 
from Table 5, the main difference is the standard errors and the calculations based on the estimated variance 
of the coefficient probability distribution, that is, the coefficient of standard error, t-statistic and probability 
value (p-value). The standard errors are smaller except for that of the intercept when accounting for 
autocorrelation; that is to say, in GLS regression, the standard error, t-statistic and p-value are substantially 
different from those of the OLS regression. The implication is that GLS regression gives better estimates 
than the OLS regression. 
 

4 Conclusion 
 
This study explores the additional information (the unexplained variance that the independent variables 
could not capture) embedded in the error terms of the ordinary least squares estimated regression model and 
also ensures model efficiency. First of all, the relationship between the dependent variable, 	�� , and the 
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independent variables, ���   and  ��� , was determined using the ordinary least squares estimation method. 
The results of the ordinary least squares estimated regression revealed that ���   and  ���   contributed 
significantly to	�� and were able to explain about 67.95% of the variance in 	��. Furthermore, evidence from 
Breusch and Godfrey test, ACF and PACF revealed that the error terms were autocorrelated. To address the 
autocorrelation in the error terms, we applied the generalized least squares and the results of our analysis 
revealed that the estimates of the regression model were better than those of the ordinary least squares. Also, 
the autocorrelation in the error terms was found to be completely modeled by AR(2) process. Therefore, our 
study showed that where the error terms of ordinary least squares estimated regression model are correlated, 
the model parameters become inefficient, the standard errors biased; and the t-statistics and the p-values no 
more valid. On the other hand, this study evidently proved that generalized least squares is a panacea for the 
weaknesses of ordinary least squares and accounted for the presence of autocorrelation in the error terms. 
Moreover, the findings of this study are in tandem with the study of [10] that money supply and credit to 
private sector have significant effects on the economic growth. Methodologically, this study differs from 
previous study by applying the generalized least squares and by modeling the additional information 
embedded in the error term through AR(2) process. Furthermore, it is recommended that this study be 
extended to cover the possible violation of assumption of the homoscedasticity. 
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