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Abstract

The Time Domain Finite Element Method (TDFEM) has been used extensively to solve transient
electromagnetic radiation and scattering problems. But in most implementations so far, vector
basis functions have been used to discretize the field variables. In multiphysics simulations that
involve coupling the electromagnetic equations with structural or fluid flow equations, nodal finite
elements can provide a unified data structure for a monolithic coupled formulation. With such
multiphysics simulations in view, in this work we develop a time-stepping strategy to model
electromagnetic radiation and scattering within the nodal finite element framework. Although
conservation of energy is well-known, we show in this work that there are additional quantities
that are also conserved in the absence of loading. We then show that the developed time-stepping
strategy (which is closely related to the trapezoidal rule that is widely used for solving linear
hyperbolic problems) mimics these continuum conservation properties either exactly or to a very
good approximation. Thus, the developed numerical strategy can be said to be ‘unconditionally
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stable’ (from an energy perspective) allowing the use of arbitrarily large time-steps. The
developed method uses standard elements with Lagrange interpolation functions and standard
Gaussian quadrature. We demonstrate the high accuracy and robustness of the developed
method for solving both interior and exterior domain radiation problems, and for finding the
scattered field from conducting and dielectric bodies.

Keywords: Electromagnetic radiation and scattering; Time domain; Trapezoidal rule; Nodal finite
elements.

1 Introduction
One of the most popular methods for conducting transient electromagnetic analysis is the Finite
Difference Time Domain (FDTD) method introduced by Yee [1]. The most important reasons for its
popularity are its programming simplicity, its minimum bookkeeping complexity, and the simplicity
of its numerical integration algorithm [2]. The Time Domain Finite Element Method (TDFEM) [3]–
[17] offers some advantages over the standard FDTD method, the most obvious one being its ability
to deal with unstructured grids, allowing versatility in modeling complex geometries. There are two
different approaches that are followed within TDFEM. In the first approach [3]–[11], one of the field
variables is eliminated from the set of Maxwell equations resulting in a second-order vector wave
equation, which is subsequently used to develop the variational formulation. Thus, either the electric
or magnetic field is the only unknown field-variable that is discretized and solved for. The other
field is obtained through postprocessing. In the other approach [11]–[17], two coupled first-order
Maxwell equations are simultaneously used to develop the variational formulation. Mixed set of basis
functions are used to discretize and solve for both the electric and magnetic fields simultaneously.
The transient analysis of electromagnetic radiation and scattering in two dimensions is modelled
assuming either z-polarized E field [18], [19] or z-polarized H field [20], [21].

For the solution of time domain electromagnetic radiation and scattering problems in unbounded
domains, yet another powerful method is the Finite Element Boundary Integral (FEBI) method [6]–
[19]. In this method, the infinite solution domain is divided into interior and exterior regions by an
artificial boundary. The boundary integral method is used to model the exterior field, whereas in
the interior domain a finite element method is used. On the artificial boundary, field continuity is
enforced to couple these two representations. For large scale transient electromagnetic problems,
the entire domain is divided in several subdomains, and subsequently, either the discontinuous
Galerkin [22]–[24] or the domain decomposition method [25]–[27] is used. Subdomains are related
to each other by equivalent surface currents.

In most of the TDFEM works [3]–[17], vector basis functions are used to discretize the field variable.
In [13], [14], [16], edge elements are used to discretize the electric field. There are relatively few
works [18], [28] within the TDFEM framework where nodal finite elements are used. In [18], two
first-order coupled equations are solved within a two-dimensional nodal framework. In [28], a second-
order equation is solved using integral lumping which allows the use of an explicit time integration
scheme with the time-step size required to be below the limiting value required for stability.

In [29] a family of unconditionally stable algorithm is presented within the FDTD framework
where the time evolution operator of the EM field is the exponential of a skewsymmetric matrix.
Orthogonal approximation of this operator leads to unconditional stability. In [30], two energy-
conserving methods are proposed within the FDTD framework. For time discretization, for the
coupled set of first order equations, a leapfrog strategy is used [15]–[17], while in the case of the
second-order TDFEM, central difference is used [6], [7], [10]. In order to suppress low frequency
spurious responses the Newmark formulation is modified in [9]. Rieben et. al. [17] have presented
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a strategy where energy is conserved in a time-averaged sense.

It is well known that in linear elastodynamics, the linear and angular momenta, and the total
energy (in an undamped system) are conserved in the absence of body forces and tractions on the
entire boundary. It was shown in [31] that the trapezoidal rule mimics these continuum conservation
properties, and is thus, in some sense an ‘optimal’ strategy for linear hyperbolic problems. Regarding
electromagnetic problems, it is well known that the total energy is conserved for interior domain
problems in the absence of any current or charge. In this work, we show (for perhaps the first time)
that, analogous to the linear and angular momenta in linear elastodynamics, there are additional
conservation laws that the electric and magnetic fields obey. Furthermore, we develop a time-
stepping strategy within a nodal finite element framework (that is similar to the trapezoidal rule in
the structural context) that mimics either exactly or to a very close approximation these continuum
conservation properties. Thus, the developed strategy can be said to be unconditionally stable (from
an energy perspective) [32], [33]. In Section 3, we demonstrate by means of a numerical example
also that the solution remains stable even with the use of a very large time step.

Although the implementation of the trapezoidal rule is relatively straightforward in the case of
structural or acoustic problems, it is not so in the case of electromagnetic problems, where material
discontinuities and sharp corners and edges pose severe problems of convergence to the correct
solution within the context of the nodal finite element method [11]. To account for material
discontinuities, we use a potential formulation along the same lines as in [34], [35].

The outline of the remainder of the article is as follows. In section 2, we derive the conservation
laws (including the energy conservation law) for the electric and magnetic fields followed by the
variational and finite element formulations. The additional considerations that are required to tackle
scattering from conducting and dielectric bodies are also presented. Section 3 presents examples
ranging from radiation in interior and exterior domains to scattering from conducting and dielectric
bodies in order to demonstrate the robustness of the proposed method.

2 Mathematical Formulation

We will often use the following vector identity. If a and b are vectors, then

∇ · (a× b) = (∇× a) · b− a · (∇× b). (2.1)

The governing equations for transient electromagnetics (in the absence of charge) are given by

∂H

∂t
+

1

µ
∇×E = 0, (2.2)

ϵ
∂E

∂t
−∇×H = −j, (2.3)

∇ · (µH) = 0, (2.4)
∇ · (ϵE) = 0, . (2.5)

where E and H are the electric and magnetic fields, j is the current density, ϵ and µ are the
electric permittivity and magnetic permeability, respectively, ϵr = ϵ/ϵ0 and µr = µ/µ0 are the
relative permittivity and relative permeability, where ϵ0 and µ0 represent the permittivity and
permeability for vacuum, k = k0

√
µrϵr is the wave number of the medium, k0 = ω/c0 is the wave

number of vacuum, ω is the frequency of excitation (in the special case of harmonic excitation) and
c0 = 1/

√
ϵ0µ0 is the wave speed in vacuum.
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2.1 Conservation properties of the Maxwell equations
Throughout the following discussion, we assume ϵ and µ to be piecewise constant over the domain
Ω, and the domain itself to be unchanging with respect to time. The surface Γ is assumed to be
the union Γe ∪ Γh, where E × n is prescribed on Γe and H × n is prescribed on Γh. Integrating
Eqn. (2.3) over the domain, we get

d

dt

∫
Ω

ϵE dΩ = −
∫
Ω

j dΩ +

∫
Γ

n×H dΓ. (2.6)

Assume that Γ = Γh, and that H × n = 0 on Γh. Also assume j = 0. Then from Eqn. (2.6) we
get ∫

Ω

ϵE dΩ = constant. (2.7)

i.e., in the absence of loading,
∫
Ω
ϵE dΩ is conserved. In a similar fashion, if we integrate Eqn. (2.2)

over the domain, we get
d

dt

∫
Ω

µH dΩ =

∫
Γ

E × n dΓ. (2.8)

Now, if Γ = Γe and if E × n = 0 on Γe, then from Eqn. (2.8), we get∫
Ω

µH dΩ = constant. (2.9)

Next take the dot product of Eqn. (2.3) with the position vector x and integrate over the
domain. Using the vector identity given by Eqn. (2.1), and the fact that ∇× x = 0, we get

d

dt

∫
Ω

ϵ(x ·E) dΩ = −
∫
Ω

x · j dΩ −
∫
Γ

(x×H) · n dΓ

= −
∫
Ω

x · j dΩ −
∫
Γ

(H × n) · x dΓ.

Thus, if j = 0 and if H × n = 0 on the entire boundary, we get∫
Ω

ϵ(x ·E) dΩ = constant. (2.10)

i.e.,
∫
Ω
ϵ(x ·E) dΩ is conserved. In a similar fashion, we take the dot product of Eqn. (2.2) with x

and integrate over the domain. Then we have,

d

dt

∫
Ω

µ(x ·H) dΩ =

∫
Γ

(E × n) · x dΓ

Now, if Γ = Γe and if E × n = 0 on Γe, then∫
Ω

µ(x ·H) dΩ = constant. (2.11)

i.e.,
∫
Ω
µ(x ·H) dΩ is conserved.

Now take the dot product of Eqn. (2.3) with E, integrate over the domain and again use
Eqn. (2.1) to get

d

dt

∫
Ω

ϵ

2
(E ·E) dΩ = −

∫
Ω

E · j dΩ +

∫
Ω

(∇×E) ·H dΩ −
∫
Γ

(E ×H) · n dΓ

= −
∫
Ω

E · j dΩ − d

dt

∫
Ω

µ

2
(H ·H) dΩ +

∫
Γ

(H × n) · [(E × n)× n] dΓ.

(2.12)
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Thus, in the absence of loading j, and if E × n = 0 on Γe and H × n = 0 on Γh, then we get∫
Ω

1

2
[ϵ(E ·E) + µ(H ·H)] dΩ = constant. (2.13)

i.e.,
∫
Ω

1
2
[ϵ(E ·E) + µ(H ·H)] dΩ is conserved.

To summarize, in the absence of loading j, the following quantities are conserved:

D̄ =

∫
Ω

ϵE dΩ, (H × n = 0 on the entire boundary) (2.14a)

B̄ =

∫
Ω

µH dΩ, (E × n = 0 on the entire boundary) (2.14b)

α =

∫
Ω

ϵ(x ·E) dΩ, (H × n = 0 on the entire boundary) (2.14c)

β =

∫
Ω

µ(x ·H) dΩ, (E × n = 0 on the entire boundary) (2.14d)

Ē =

∫
Ω

1

2
[ϵ(E ·E) + µ(H ·H)] dΩ, (E × n = 0 on Γe and H × n = 0 on Γh), (2.14e)

with the field E also satisfying the constraint ∇ · E = 0. Although the conservation of Ē in
Eqn. (2.14e) is well-known, the conservation of the other quantities in Eqns. (2.14) appears not to
have been noted before.

2.2 Variational and FEM formulations
Our goal is to devise a numerical strategy that mimics the (continuum) conservation properties
listed in Eqns. (2.14) within the context of the A-ψ potential formulation. Let v := ∂A/∂t and
w := ∂(∇ψ)/∂t. In the A-ψ formulation, we take

E = −w − v, (2.15)

H =
1

µ
∇×A. (2.16)

Thus, since ∇ψ ·n is discontinuous while ∇ψ×n is continuous at the interface, we get the desired
tangential continuity of the E field at a material interface. We use the gage condition ∇ ·A = 0.
Using Eqns. (2.15) and (2.16), we see that Eqns. (2.2) and (2.4) are automatically satisfied, while
Eqns. (2.3) and (2.5) reduce to

ϵ

[
∂2A

∂t2
+∇

(
∂2ψ

∂t2

)]
+∇×

(
1

µ
∇×A

)
= j, (2.17)

∇ ·
[
ϵ(∇ψ̇ + Ȧ)

]
= 0, (2.18)

where superposed dots indicate time derivatives. Using Eqn. (2.1), the variational formulation is
given by ∫

Ω

ϵAδ ·
[
∂2A

∂t2
+
∂2(∇ψ)

∂t2

]
dΩ +

∫
Ω

1

µ
(∇×Aδ) · (∇×A) dΩ

+

∫
Ω

1

µ
(∇ ·Aδ)(∇ ·A) dΩ =

∫
Ω

Aδ · j dΩ +

∫
Γh

Aδ · H̄ dΓ, (2.19)∫
Ω

ϵ(∇ψδ) ·
[
Ȧ+∇ψ̇

]
dΩ =

∫
Γ

ψδϵ[(Ȧ+∇ψ̇) · n] dΓ, (2.20)
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where we have added a penalty term in the above variational form to enforce the gage constraint
on A [34], [36]. The quantity H̄ =H × n is prescribed on Γh.

It is well known that the above formulation fails to capture the singular fields in non-convex domains
with sharp corners and edges. Costabel et. al. [37] suggest a strategy where the penalty factor
associated with the regularization term varies with the distance from the corner or edge, while
Otin [38], [39] uses a zero penalty in the layers adjacent to corners and edges. We modify the latter
strategy as in [36], whereby we surround the entire nonconvex radiator/scatterer by a thin layer of
elements with zero penalty, and use a nonzero penalty in the remaining domain.

2.3 Time-stepping strategy
We propose the following time-stepping strategy over a time interval [tn, tn+1] with t∆ := tn+1− tn:

vn + vn+1

2
=
An+1 −An

t∆
, (2.21)

wn +wn+1

2
=

∇ψn+1 −∇ψn
t∆

, (2.22)∫
Ω

ϵAδ ·
[
vn+1 − vn

t∆
+
wn+1 −wn

t∆

]
dΩ +

∫
Ω

1

µ
(∇×Aδ) ·

[
∇×An +∇×An+1

2

]
dΩ

+

∫
Ω

1

µ
(∇ ·Aδ)

[
∇ ·An +∇ ·An+1

2

]
dΩ

=

∫
Ω

Aδ ·
(
1

2

∫ 1

−1

j(t̄) dξ

)
dΩ +

∫
Γh

Aδ ·
(
1

2

∫ 1

−1

H̄(t̄) dξ

)
dΓ, (2.23)∫

Ω

ϵ(∇ψδ) · (An+1 +∇ψn+1) dΩ +

∫
Γ

ψδϵ (An +∇ψn) · n dΓ

=

∫
Ω

ϵ(∇ψδ) · (An +∇ψn) dΩ +

∫
Γ

ψδϵ (An+1 +∇ψn+1) · n dΓ, (2.24)

where t̄ =
(
1−ξ
2

)
tn +

(
1+ξ
2

)
tn+1. The loading terms in Eqn. (2.23) have been formulated in a way

consistent with the linear time finite element method as presented in [40].

We now prove that the above time-stepping strategy conserves the quantities in Eqn. (2.14) in the
absence of loading. Choose Aδ = c, where c is a vector dependent only on time. Then Eqn. (2.23)
in the absence of loading reduces to

c ·
∫
Ω

ϵ [vn+1 − vn +wn+1 −wn] dΩ = 0.

Since c is arbitrary, we get∫
Ω

ϵ [vn+1 +wn+1] dΩ =

∫
Ω

ϵ [vn +wn] dΩ,

or, alternatively,
∫
Ω
ϵEn+1 dΩ =

∫
Ω
ϵEn dΩ. Thus, the quantity in Eqn. (2.14a) is conserved.

Next, choose Aδ = x. Then, since ∇×x = 0, Eqn. (2.23) in the absence of loading reduces to∫
Ω

ϵx · [vn+1 − vn +wn+1 −wn] dΩ + 3t∆

∫
Ω

1

2µ
∇ · (An +An+1) dΩ = 0.

Although it is possible for
∫
Ω
∇ ·An+1 dΩ to be nonzero, we find that it turns out to be zero in

all the examples, so that
∫
Ω
ϵx · En+1 dΩ =

∫
Ω
ϵx · En dΩ. Thus, the quantity in Eqn. (2.14c) is

conserved.
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The energy is not conserved exactly by the above algorithm (due to the presence of the penalty
term), but nevertheless find that energy conservation is satisfied almost perfectly as we show by
means of various numerical examples in Section 3.

For exterior domain problems, the first-order absorbing boundary condition on the spherical truncation
surface Γ∞ is given by

n× (∇×E) +
√
ϵµn×

(
n× ∂E

∂t

)
= 0. (2.25)

Assuming zero initial conditions, this can be written as

n× (∇×A) +
√
ϵµn× [n× (w + v)] = 0.

If R denotes the radius of Γ∞, then n× (n× v) is O(1/R), while n× (n×w) is O(1/R2), and,
hence, can be neglected. For the scaler field ψ we impose following far-field condition:

∇ψ · n = −ψ

R
.

Thus, for unbounded domain-problems, Eqns. (2.23)–(2.24) get modified to

∫
Ω

ϵAδ ·
[
vn+1 − vn

t∆
+

(∇ψ)n+1 − (∇ψ)n
t∆

]
dΩ +

∫
Ω

1

µ
(∇×Aδ) ·

[
∇×An +∇×An+1

2

]
dΩ

+

∫
Ω

1

µ
(∇ ·Aδ)

(
(∇ ·A)n + (∇ ·A)n+1

2

)
dΩ =

∫
Ω

Aδ ·
(
1

2

∫ 1

−1

j(t̄) dξ

)
dΩ

+

∫
Γ

Aδ ·
(
1

2

∫ 1

−1

H̄(t̄) dξ

)
dΓ −

∫
Γ∞

√
ϵ

µ
(n×Aδ) ·

[
n×

(
An+1 −An

t∆

)]
dΓ, (2.26)∫

Ω

ϵ(∇ψδ) · (An+1 −An +∇ψn+1 −∇ψn) dΩ +

∫
Γ∞

[ ϵ
R
ψδ (ψn+1 − ψn)− ϵψδ (An+1 −An) · n

]
dΓ =∫

Γ

ψδϵ (An+1 −An +∇ψn+1 −∇ψn) · n dΓ, (2.27)

where Γ now represents all surfaces barring Γ∞.

Let the fields and their variations in Eqns. (2.26)–(2.27) be interpolated as

A =NÂ, Aδ =NÂδ,

∇×A = BÂ, ∇×Aδ = BÂδ,

∇ ·A = BpÂ, ∇ ·Aδ = BpÂδ,

ψ =Nψψ̂, ψδ =Nψψ̂δ,

∇ψ = Bψψ̂, ∇ψδ = Bψψ̂δ,

where Â and ψ̂ denote the nodal values of A and ψ, Âδ and ψ̂δ denote their respective variations

7



Nandy and Jog; JAMCS, 26(4): 1-26, 2018; Article no.JAMCS.39632

and

N =


N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .

 ,

B =


0 −∂N1

∂z

∂N1

∂y
0 −∂N2

∂z

∂N2

∂y
. . .

∂N1

∂z
0 −∂N1

∂x

∂N2

∂z
0 −∂N2

∂x
. . .

−∂N1

∂y

∂N1

∂x
0 −∂N2

∂y

∂N2

∂x
0 . . .

 ,

Bp =

[
∂N1

∂x

∂N1

∂y

∂N1

∂z

∂N2

∂x

∂N2

∂y

∂N2

∂z
. . .

]
,

Nψ =
[
N1 N2 N3 . . .

]
,

Bψ =



∂N1

∂x

∂N2

∂x

∂N3

∂x
. . .

∂N1

∂y

∂N2

∂y

∂N3

∂y
. . .

∂N1

∂z

∂N2

∂z

∂N3

∂z
. . .

 .

Using the arbitrariness of the variations, we get[
KAA KAψ

KψA Kψψ

] [
Ân+1

ψ̂n+1

]
=

[
fA
fψ

]
, (2.28)

where, with nmat denoting the skew-symmetric matrix whose axial vector is n,

KAA =

∫
Ω

[
2ϵ

t2∆
NTN +

1

2µ
BTB +

1

2µ
BT
pBp

]
dΩ +

∫
Γ∞

1

t∆

√
ϵ

µ
NTnmatn

T
matN dΓ,

KAψ =

∫
Ω

2ϵ

t2∆
NTBψ dΩ,

KψA =

∫
Ω

ϵBT
ψN dΩ −

∫
Γ

ϵNT
ψn

TN dΓ −
∫
Γ∞

ϵNT
ψn

TN dΓ,

Kψψ =

∫
Ω

ϵBT
ψBψ dΩ −

∫
Γ

ϵNT
ψn

TBψ dΓ +

∫
Γ∞

ϵ

R
NTN dΓ,

fA =

∫
Γ

NT

(
1

2

∫ 1

−1

H̄(t̄) dξ

)
dΓ +

∫
Ω

NT

[(
1

2

∫ 1

−1

j(t̄) dξ

)
+

2ϵ

t2∆
An +

2ϵ

t∆
vn +

2ϵ

t2∆
∇ψn +

2ϵ

t∆
wn

]
dΩ

−
∫
Ω

1

2µ

[
BT (∇×An) +B

T
p (∇ ·An)

]
dΩ +

∫
Γ∞

1

t∆

√
ϵ

µ
NTnmatn

T
matAn dΓ,

fψ =

∫
Ω

ϵBT
ψ(An +∇ψn) dΩ −

∫
Γ

ϵNT
ψn

T (An +∇ψn) dΓ +

∫
Γ∞

ϵNT
ψ

[
ψn
R

− nTAn

]
dΓ.

2.4 Axisymmetric formulation
An axisymmetric formulation in a cylindrical coordinate system (r, θ, z) can be given if the excitation
and geometry in a radiation problem are axisymmetric. Let the excitation and geometry be such
that Er = Ez = 0 and Eθ = Eθ(r, z). Corresponding to this, we have Hθ = 0, and Hr and Hz are
functions of r and z. Under these assumptions, ∇×E has the following simple expression in the

8
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r–θ–z system:

∇×E = −∂Eθ
∂z

êr +

(
Eθ
r

+
∂Eθ
∂r

)
êz (2.29)

Since the only nonzero component of E is tangential to the mesh in the r-z plane (in the out-
of-plane direction), there is no discontinuity in the normal component of E at the surface of an
inhomogeneity. Hence, there is no need to work with potentials, and we can work directly with E
even for inhomogeneous domains. Furthermore, since ∇ ·E = 0 we do not even need to include the
regularization term. Hence, the only equation that we need to consider is

ϵ
∂2E

∂t2
+∇×

(
1

µ
∇×E

)
+
∂j

∂t
= 0.

The variational form can be written as∫
Ω

ϵEδ ·
∂2E

∂t2
dΩ +

∫
Ω

1

µ
(∇×Eδ) · (∇×E) dΩ +

∫
Γ∞

1

cµ
(Eδ × n) ·

(
∂E

∂t
× n

)
dΓ =

−
∫
Ω

Eδ ·
∂j

∂t
dΩ −

∫
Γh

Eδ ·
∂H̄

∂t
dΓ, (2.30)

where H̄ =H×n is prescribed on Γh, and on Γ∞ we have the radiation condition given by (2.25).
We propose the following time-stepping strategy for Eqn. (2.30):

vn + vn+1

2
=
En+1 −En

t∆
, (2.31a)∫

Ω

ϵEδ ·
(
vn+1 − vn

t∆

)
dΩ +

∫
Ω

1

µ
(∇×Eδ) ·

[
∇×En +∇×En+1

2

]
dΩ+∫

Γ∞

1

cµ
(Eδ × n) ·

(
En+1 −En

t∆
× n

)
dΓ = −

∫
Ω

Eδ ·
(
jn+1 − jn

t∆

)
dΩ −

∫
Γh

Eδ ·
(
H̄n+1 − H̄n

t∆

)
dΓ.

(2.31b)

We discretize the different terms as

Eθ =NÊθ, H = N̄Ĥ,

∇×E = BÊθ, E × n = n̂NÊθ,

with similar interpolations for the variations, where

N =
[
N1 N2 . . .

]
,

n̂T =
[
nz −nr

]
,

N̄ =

[
N1 0 N2 0 . . .

0 N1 0 N2 . . .

]
,

B =

 −∂N1

∂z
−∂N2

∂z
. . .

N1

r
+
∂N1

∂r

N2

r
+
∂N2

∂r
. . .

 .
(2.32)

For points on the axis r = 0, instead of the B matrix in Eqn. (2.32), we use the following matrix [36]

B =

−
∂N1

∂z
−∂N2

∂z
. . .

2
∂N1

∂r
2
∂N2

∂r
. . .

 . (2.33)

9
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After substituting the above discretizations into Eqns. (2.31) and eliminating v̂n+1, we get

KaxiÊθn+1 = faxi,

where

Kaxi =
2

t2∆

∫
Ω

ϵrNTN dr dz +
1

2

∫
Ω

r

µ
BTB dr dz +

1

t∆

∫
Γ∞

r

cµ
NTN ds,

faxi = −
∫
Ω

NT

(
jn+1 − jn

t∆

)
dr dz −

∫
Γh

NT

(
H̄n+1 − H̄n

t∆

)
ds+

2

t2∆

∫
Ω

ϵrNTEθn dr dz

− 1

2

∫
Ω

r

µ
BT (∇×En) dr dz +

1

t∆

∫
Γ∞

r

cµ
NTEθn ds+

2

t∆

∫
Ω

ϵrNT vn dr dz,

where ds =
√
dr2 + dz2. After solving for Êθn+1 , we can obtain Hn+1 using

Hn+1 =Hn − t∆
2µ

(∇×En +∇×En+1).

2.5 Scattering from conducting and dielectric bodies
Consider an incident wave Einc that impinges on a conducting or dielectric body. The total field is
given by the sum of the incident and the scattered field, i.e., E = Escat +Einc. In place of E, the
scattered field Escat should satisfy Eqn. (2.25) on Γ∞, i.e., on Γ∞:

n× (∇×E) +
√
ϵµn×

(
n× ∂E

∂t

)
= −µn× ∂H inc

∂t
+

√
ϵµn×

(
n× ∂Einc

∂t

)
. (2.34)

Hence, for scattering from conducting and dielectric bodies, fA in Eqn. (2.28) should be replaced
by f̄A given by

f̄A = fA −
∫
Γ∞

{
NTnmat

(
1

2

∫ 1

−1

H inc(t̄)dξ

)
+

√
ϵ

µ
NTnmatn

T
mat

(
1

2

∫ 1

−1

Einc(t̄)dξ

)}
dΓ,

where t̄ =
(
1−ξ
2

)
tn +

(
1+ξ
2

)
tn+1.

For scattering from conducting bodies, in addition to satisfying the Maxwell equations, on the
conducting surface we have to satisfy

E × n = 0. (2.35)

We enforce this constraint using a Lagrange multiplier technique. We follow the same time-stepping
strategy as in Eqns. (2.22)–(2.24). Thus, for scattering from conducting bodies, Eqn. (2.28) gets
modified to KAA KAψ

1
2

∫ 1
−1

∫ 1
−1N

T tTNλdξdη

KψA Kψψ 0
1
t∆

∫ 1
−1

∫ 1
−1N

T
λ tNdξdη 0 0


Ân+1

ψ̂n+1

λ̂n+1

 =

f̄A − 1
2

∫ 1
−1

∫ 1
−1N

T tTNλλ̂ndξdη

fψ
1
t∆

∫ 1
−1

∫ 1
−1N

T
λ tNÂndξdη

 ,
(2.36)

where t is a 2 × 3 matrix containing along its rows two linearly independent vectors t1 and t2
that are both perpendicular to the (unnormalized) normal n̄, (ξ, η) are natural coordinates that
parameterize the surface of the element, and

n̄ =
∂x

∂ξ
× ∂x

∂η
,

Nλ =

[
N1 0 N2 0 . . .
0 N1 0 N2 . . .

]
.

10
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Note that the surface Jacobian in Eqn. (2.36) gets canceled and hence does not appear in the
expressions. Since the Lagrange multiplier technique cannot handle abrupt changes in slope of the
continuum (e.g., edges of a cube), the entire A vector along edges with a discontinuous normal n
is set to zero, and the corresponding Lagrange multipliers are also suppressed.

For scattering from dielectric bodies, the material discontinuity leads to a discontinuity in E · n
although E×n is continuous at the dielectric interface. This physical requirement is automatically
taken care of by the assumed A− ψ form of E as in Eqn. (2.15).

3 Numerical Examples
In all the examples, we take c = 3× 108/

√
ϵrµr m/s.

3.1 Electromagnetic radiation inside a cube with conducting walls
Consider a cube of side-length π with conducting walls. The following solution (which is the
transient counterpart of the harmonic problem described in [35]) exactly satisfies the governing
equations and boundary conditions:

Ex = 2 cos(x) sin(y) sin(z) [cos(ωt)− sin(ωt)] ,

Ey = sin(x) cos(y) sin(z) [sin(ωt)− cos(ωt)] ,

Ez = sin(x) sin(y) cos(z) [sin(ωt)− cos(ωt)] ,

Hx = 0,

Hy =
−3

µω
cos(x) sin(y) cos(z) [cos(ωt) + sin(ωt)] ,

Hz =
3

µω
cos(x) cos(y) sin(z) [cos(ωt) + sin(ωt)] .

(3.1)

Ax =
−2

ω
cos(x) sin(y) sin(z) [sin(ωt) + cos(ωt)] ,

Ay =
1

ω
sin(x) cos(y) sin(z) [cos(ωt) + sin(ωt)] ,

Az =
1

ω
sin(x) sin(y) cos(z) [cos(ωt) + sin(ωt)] ,

ψ = 0,

jx =

(
2ϵµω2 − 6

µω

)
cos(x) sin(y) sin(z) [cos(ωt) + sin(ωt)] ,

jy =

(
3− ϵµω2

µω

)
sin(x) cos(y) sin(z) [cos(ωt) + sin(ωt)] ,

jz =

(
3− ϵµω2

µω

)
sin(x) sin(y) cos(z) [cos(ωt) + sin(ωt)] .

(3.2)

The problem is solved with ω = 3× 108 rad/s, applying j throughout the domain, and with initial
A consistent with that in the solution given by Eqns. (3.1) and (3.2). We model the domain with
a 4 × 4 × 4 mesh of 27 node hexahedral elements. The time-step t∆ is chosen to be 10−9 sec,
and the time of simulation to be 4 × 10−8 sec. Fig. 1 shows the almost perfect match between
the analytical (A) and FEM (F) time responses for the electric field components at two points
(x, y, z) = (π/4, π/8, 3π/4) and (3π/4, π/4, π/8). Since E × n = 0 on the entire boundary, the
quantities B̄ and β should be conserved as per Eqns. (2.9) and (2.11). Fig. 2 shows that the

11
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Fig. 1. Time variation of the electric field for the cube with conducting
walls example

proposed time-stepping strategy exactly mimics these conservation properties. Furthermore, after
4 × 10−8 sec, we set j to zero, i.e., after this time there is no external loading, and hence, as per
Eqn. (2.13), Ē should be conserved. Fig. 2 shows that our numerical strategy conserves Ē after
4× 10−8 sec, thus mimicking the continuum requirement.

3.2 Radiation problem inside a cube with prescribed H on the
boundary

This problem is based on [41]. The analytical solution is given by

Ex = sin(ωt− kz), Ey = sin(ωt− kx), Ez = sin(ωt− ky),

Hx =
k

µω
sin(ωt− ky), Hy =

k

µω
sin(ωt− kz), Hz =

k

µω
sin(ωt− kx),

jx =

(
k2

µω
− ωϵ

)
cos(ωt− kz), jy =

(
k2

µω
− ωϵ

)
cos(ωt− kx), jz =

(
k2

µω
− ωϵ

)
cos(ωt− ky),

Ax =
1

ω
cos(ωt− kz), Ay =

1

ω
cos(ωt− kx), Az =

1

ω
cos(ωt− ky),

ψ = 0.

The problem is modelled with ω = 2, k = 3, µ = 30/8 and ϵ = 0.2. A cube of dimension 2 is
modelled with a mesh of 6 × 6 × 6 elements of 27 node brick elements. The time-step is taken as
0.1 sec. Fig. 3 shows the almost perfect match between our FEM results (F) and the analytical
solution (A). The result is shown upto 10 sec at two different points of the domain. After 10 sec
H ×n is set to zero and after 15 sec j is set to zero. From Fig. 4, we see that after 15 sec, D̄ and
α are conserved exactly in accordance with Eqns. (2.14a) and (2.14c), while (due to the presence
of the penalty term) conservation of Ē as per Eqn. (2.14e) is satisfied approximately. In order
to demonstrate the stability of the algorithm, we use a time step that is twenty times that used
previously, namely, 2 s, and also run the simulation for a much larger period, namely 100 s. Fig.
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Fig. 2. Conservation of various quantities in the cube with conducting
walls example

Fig. 3. Time variation of the electric field for the cube with
boundary-prescribed H problem

5 shows the conservation of different quantities and the bounded nature of the solution. This is a
numerical verification of the unconditionally stable nature of the proposed algorithm.
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Fig. 4. Conservation of different quantities for the cube with prescribed
H × n example

Fig. 5. Bounded nature of the solution and conservation of various
quantities with a very large time step for the cube with

boundary-prescribed H problem
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3.3 An axisymmetric radiation problem
An axisymmetric analytical solution to the transient Maxwell equations on an unbounded domain
expressed in terms of spherical coordinates r-θ-ϕ is

Er = Eθ = 0,

Eϕ = P (1)
n (cos θ) [jn (kr) cos(ωt) + yn (kr) sin(ωt)] ,

Hϕ = 0,

Hr =
n

µωr sin θ

(
P (1)
n (cos θ) cos θ − P

(1)
n+1 (cos θ)

)
[jn (kr) sin(ωt)− yn (kr) cos(ωt)] ,

Hθ =
P

(1)
n (cos θ)

µωrc

{
[ωryn+1 (kr)− c(n+ 1)yn (kr)] cos(ωt)

− [ωrjn+1 (kr)− c(n+ 1)jn (kr)] sin(ωt)
}
,

(3.3)

where n is any integer, jn and yn denote the spherical Bessel functions of the first and second kind,
and P

(m)
n denote the associated Legendre polynomials. In the limit as θ tends to 0 or π, we have

Eϕ = Hθ = 0 and

lim
θ→0

Hr =
n(n+ 1)

µωr
[jn (kr) sin(ωt)− yn (kr) cos(ωt)] ,

lim
θ→π

Hr =
(−1)nn(n+ 1)

µωr
[jn (kr) sin(ωt)− yn (kr) cos(ωt)] .

The domain that we choose for our simulation is a hollow sphere of inner and outer radii a and
R∞, respectively (see Fig. 6). We have used a mesh of nr × nθ = 1 × 6 elements for the FEM
discretization. We prescribe an absorbing boundary condition on the boundary at R∞, and prescribe
H̄ on the inner boundary as per Eqns. (3.3). We have used n = 1, µr = 1, ϵr = 1, ka = 10 and
kR∞ = 10.5. Fig. 7 shows the almost perfect match obtained between the analytical (A) and
FEM (F) solutions at two points.

3.4 Transverse Magnetic (TM) solution of the Maxwell equations
A transverse magnetic (along r) solution of the Maxwell equations, which is derived from the
harmonic solution given in [36], is given by

Er =
ωn(n+ 1)

kr
sin(mϕ)P (m)

n (cos θ) [jn (kr) sin(ωt)− yn (kr) cos(ωt)] , (3.4a)

Eθ = t1t2 [t4 cos(ωt)− t5 sin(ωt)] , (3.4b)
Eϕ = −t3 [t4 cos(ωt)− t5 sin(ωt)] , (3.4c)
Hr = 0, (3.4d)

Hθ =
ωrt3
cµ

[jn (kr) cos(ωt) + yn (kr) sin(ωt)] , (3.4e)

Hϕ =
ωrt1t2
cµ

[jn (kr) cos(ωt) + yn (kr) sin(ωt)] , (3.4f)

Ar =
n(n+ 1)

kr
sin(mϕ)P (m)

n (cos θ) [jn (kr) cos(ωt) + yn (kr) sin(ωt)] , (3.4g)

Aθ = − t1t2
ω

[t5 cos(ωt) + t4 sin(ωt)] , (3.4h)

Aϕ =
t3
ω

[t5 cos(ωt) + t4 sin(ωt)] , (3.4i)

ψ = 0, (3.4j)
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Fig. 6. Mesh for the axi-symmetric radiation problem

where m and n are any integers, and

t1 =
sin(mϕ)

r sin θ
,

t2 = (n+ 1) cos θP (m)
n (cos θ) + (m− n− 1)P

(m)
n+1 (cos θ) ,

t3 =
m cos(mϕ)P

(m)
n (cos θ)

r sin θ
,

t4 = c(n+ 1)yn (kr)− ωryn+1 (kr) ,

t5 = c(n+ 1)jn (kr)− ωrjn+1 (kr) .

We have the following limiting values for m = n = 1:

Eθ|θ→0 = [t6 cos(ωt)− t7 sin(ωt)]ω sinϕ, Eϕ|θ→0 = [t6 cos(ωt)− t7 sin(ωt)]ω cosϕ,

Hθ|θ→0 = [t8 cos(ωt) + t9 sin(ωt)] t10 cosϕ, Hϕ|θ→0 = − [t8 cos(ωt) + t9 sin(ωt)] t10 sinϕ,

Aθ|θ→0 = − [t6 sin(ωt) + t7 cos(ωt)] sinϕ, Aϕ|θ→0 = − [t6 sin(ωt) + t7 cos(ωt)] cosϕ,

Eθ|θ→π = −Eθ|θ→0, Eϕ|θ→π = Eϕ|θ→0,

Aθ|θ→π = −Aθ|θ→0, Aϕ|θ→π = Aϕ|θ→0,

Hθ|θ→π = Hθ|θ→0, Hϕ|θ→π = −Hϕ|θ→0,
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Fig. 7. Time variation of electric field at Point 1 with (r, θ) = (10.25, 45◦),
and Point 2 with (r, θ) = (10.25, 165◦) in the axisymmetric radiation

problem

where

t6 =
2

kr
y1 (kr)− y2 (kr) , t7 =

2

kr
j1 (kr)− j2 (kr) ,

t8 = kr cos(kr)− sin(kr), t9 = kr sin(kr) + cos(kr),

t10 =
ω

µck2r2
.

We again choose the domain to be a hollow sphere with inner radius a and outer radius R∞. We
enforce the absorbing boundary condition at the outer radius, while at the inner radius we prescribe
the magnetic field H as per Eqn. (3.4). We choose ka = 5, kR∞ = 15, µr = 1, ϵr = 1, m = 1 and
n = 1 for our simulations. The domain is modelled with a 4×6×12 (in the r-θ-ϕ directions) mesh of
27-node brick elements. Fig. 8 shows the results upto 2×10−8 sec obtained using t∆ = 2×10−10 sec.
We again see an almost perfect correspondence between the analytical (A) and FEM (F) solutions
for both the near- and far-field points.

3.5 Scattering from an empty box
Consider a wave incident on an empty box with µr = 1, ϵr = 1 [10]. The incident wave is given by

Einc = 2{t− t0 − k̂ · (r − r0)/c} exp

[
−{t− t0 − k̂ · (r − r0)/c}2

τ2

]
Ê, (3.5)

where the parameters t0, r0 and τ define a temporal reference point, a spatial reference point
and the pulse shape, respectively. The domain is the empty box with dimensions (in meters) of
1.0× 0.5× 0.75. An H field consistent with Einc is applied on the entire boundary of the domain.
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Fig. 8. Time variation of the electric field for the transverse magnetic
field problem

The values of the parameters are chosen to be the same as in [10], namely, k̂ = ŷ, Ê = ẑ, ϵr = 1,
µr = 1, x0 = 0.5, y0 = 0.5, z0 = 0.375, t0 = 25.99 ns and τ = 5.25 ns. The domain is modelled
with a 4×2×3 (along the x, y and z directions) mesh of 27-node brick elements, and the time-step
is taken as 1 ns. The time variation of the E field upto 5 × 10−8 sec obtained using the proposed
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Fig. 9. Time variation of the electric field at Points 1 (0.17, 0.4, 0.16) and
2 (0.8, 0.1, 0.6) in the scattering from an empty box problem.

method (F) is plotted along with the analytical results (A) for two points with coordinates (x, y, z)
given by (0.17, 0.4, 0.16) and (0.8, 0.1, 0.6) in Fig. 9. Again, the good correspondence between the
proposed method and the analytical solution is evident.
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3.6 Scattering from a conducting sphere

Fig. 10. Time variation of ∂Ex/∂t at (0.33,−1.03,−0.45) for the scattering
from a conducting sphere example

An incident wave of the form (3.5) impinges on a conducting sphere of radius 0.8 m with pulse
parameters given by k̂ = ẑ, Ê = x̂, t0 = 25.99 ns, r0 = −1.2ẑ m and τ = 5.25 ns [6]. The
computational domain is truncated at R∞ = 3.8 m, and modelled with a 8× 8× 10 (r-θ-ϕ) mesh of
27-node brick and 18-node wedge elements. The total number of nodes in the domain is 4794. The
time step is taken to be 5× 10−10 sec. For the time variation of ∂Ex/∂t at (0.33,−1.03,−0.45), the
almost perfect match between the result obtained using edge elements in [6], and our conserving
strategy is evident from Fig. 10.

3.7 Scattering from a dielectric sphere
Consider a Neumann pulse as given in Eqn. (3.5) incident on a dielectric sphere of radius 0.5 m
having µr = 1 and ϵr = 6.0 [5]. The parameters in the Neumann pulse are chosen to be Ê = x̂,
k̂ = ẑ, t0 = 25.9 ns, r0 = −1.3ẑ and τ = 5.25 ns. The computational domain is truncated at
R∞ = 2 m and is modeled with 10 node tetrahedral elements. In order to show that our strategy
converges with respect to mesh refinement, we use two meshes. The coarse and fine meshes used
have 10696 elements/14798 nodes and 24342 elements/33832 nodes, respectively. The respective
time-steps used for the coarse and the fine meshes are 0.5 ns and 0.2 ns. The plot of the time
variation of E · t at (−0.04,−0.07,−0.72) with t = 0.96x̂+0.26ŷ+0.13ẑ and at (0.05, 0.05,−0.96)
with t = −0.89x̂ − 0.08ŷ + 0.44ẑ is depicted in Fig. 11 which again shows the excellent match
between the coarse and fine mesh results, and the results obtained using edge elements in [5].

3.8 Scattering from a coated dielectric sphere
An incident Neumann pulse with the same parameters as in the previous example impinges on a
conducting sphere of radius 0.3 m with a coating of dielectric material having thickness of 0.2 m,
and µr = 1 and ϵr = 8 [5]. The computational domain is again taken to be a sphere with R∞ = 2
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Fig. 11. Time variation of E · t for the scattering from a dielectric
sphere example

m. A coarse mesh with 13313 nodes/9414 elements and 0.5 ns time-step and a fine mesh with 32243
nodes/22849 elements and 0.25 ns time-step are used to conduct the analysis. The time variation
of Ex at (0.077, 0.076,−0.85) and E · t at (0.02,−0.088,−0.76) with t = 0.94x̂ + 0.32ŷ + 0.1ẑ is
shown in Fig. 12. Once again the extremely good match between our coarse and fine mesh results,
and the results obtained using edge elements in [5] is evident from the figure.
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Fig. 12. Time variation of the electric field for the scattering from a
coated dielectric sphere example

3.9 Scattering from a conducting L shape domain
An incident Neumann pulse as given by Eqn. (3.5) with parameters Ê = cos(135◦)x̂+ sin(135◦)ŷ,
k̂ = cos(225◦)x̂ + sin(225◦)ŷ, t0 = 25.9 ns, r0 = 0.6x̂ + 1.4ŷ and τ = 5.25 ns impinges on an
L-shaped domain as shown in Fig. 13. The computational domain is a sphere of radius R∞ = 2.5
m. The problem is modeled with 10-node tetrahedral elements. The center point of the left-bottom
edge of the L-shape is chosen as the origin of the domain. Coarse and fine meshes with 16419 and
35947 nodes, and time-steps of 0.5 ns and 0.2 ns, respectively, are used to model this problem.
Fig. 14 shows the variation of Ex at (0.55, 0.89, 0.25) for both the coarse and fine meshes. The
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Fig. 13. Geometry of the L shape domain
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Fig. 14. The variation of Ex with time at (0.55, 0.89, 0.25) for the
conducting L-shaped domain problem.

convergence of the result with respect to mesh and time refinement is evident.

3.10 Scattering from a set of conducting spheres

An incident pulse as given by Eqn. (3.6) with parameters Ê = x̂, k̂ = ẑ, t0 = 13.66 ns, r0 = 0,
f = 500 × 106 and τ = 2.6 ns impinges on a set of three conducting spheres of radius 0.1 with
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Fig. 15. Scattered Ex at origin for the set of conducting spheres

centers at (0.2, 0, 0), (−0.1, 0.173, 0) and (−0.1,−0.173, 0) [22].

Einc = cos
[
2πf{t− t0 − k̂ · (r − r0)/c}

]
exp

[
−{t− t0 − k̂ · (r − r0)/c}2

τ2

]
Ê. (3.6)

The computational domain is chosen to be a sphere with radius R∞ = 0.6. Coarse and fine meshes
with 20335 and 30091 nodes, respectively are used for conducting the analysis. The time-step is
chosen to be 0.2 ns. Fig. 15 shows the convergence of the result with mesh refinement and the
good match of the converged result with that obtained in [22] using a discontinuous Galerkin (DG)
method.

4 Conclusion
Just as linear and angular momentum and total energy are conserved in the absence of loading
and dissipation in structural mechanics problems, we have derived a set of parameters that are
conserved in the absence of electromagnetic loading (see Eqns. (2.14)). Next, using a potential
formulation under a nodal finite element framework, we have formulated a time-stepping strategy
that mimics these continuum conservation properties. The strategy has been formulated for both
electromagnetic radiation and scattering problems for interior and exterior domain problems. It is,
in general, difficult to model sharp edges and corners within the context of nodal finite elements.
We have shown how the strategy can be suitably modified in the presence of sharp edges and corners
so that singularities can be captured. Numerous problems involving both radiation and scattering
from conducting bodies and dielectrics, and bodies with sharp corners and edges such as an L-
shaped domain have been solved, and the solutions compared against either analytical solutions or
numerical solutions obtained using other strategies in the literature in order to demonstrate the
robustness and efficiency of the proposed strategy.
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