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Abstract 

 
Linear-width is a well-regarded width parameter in graph theory. The constructs of linear loose tangle and 

linear tangle present obstacles to attaining linear-width. In this succinct paper, our primary focus will be the 

exploration of maximal linear loose tangles. 
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1 Introduction 
 

The study of graph width parameters is pervasive across various fields, including matroid theory, lattice theory, 

computer science, game theory, network theory, artificial intelligence, graph theory, and discrete mathematics, 

as evidenced by a substantial body of literature (see [1-22,23-35] for references). These graph width parameters, 

often explored in relation to obstruction, have spawned a considerable amount of scholarly research. 
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One such graph width parameter is linear-width, which has also been extensively studied (see [1,3,6,11] for 

references). Linear tangle, initially introduced in [1], plays a crucial role in determining whether a linear width 

is at most k, where k+1 represents the order of the tangle. Likewise, linear loose tangle, which was first 

introduced in [4], also serves as an obstruction to linear-width at most k if its order is k+1. 

 

In this concise paper, we focus on maximal linear loose tangle. While it may lack novelty, our objective is to 

contribute to the research on graph width parameters. 

 

2 Definitions and Notations 
 

In this section, we present the mathematical definitions and notations for each concept. 

 

2.1 Symmetric submodular function  
 

The definition of a symmetric submodular function is given below. 

 

Definition 1: Let X be a finite set. A function f: X → ℕ is called symmetric submodular if it satisfies the 

following conditions: 

 

· ∀A⊆X, f(A) = f(X\A). 

· ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a connectivity 

system.  

 

It is known that a symmetric submodular function f satisfies the following properties: 

 

Lemma 1 [18]: A symmetric submodular function f satisfies: 

 

1. ∀A⊆X, f(A) ≥ f(∅) = f(X). 

2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

 

In this paper, we use the notation f for a symmetric submodular function, a finite set X, and a natural number k. 

A set A is k-efficient if f(A)≤k. 

 

2.2 Linear tangle 
 

The definition of a linear tangle on a connectivity system (X,f) is provided below. Please note that in reference 

[1], the order is denoted as k instead of k + 1. It is important to note that when a graph does not contain any 

pendant vertices, the equivalence still holds. 

 

Definition 2 [1]: Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. A linear tangle of order k+1 on a connectivity system (X,f) is a family L 

of k-efficient subsets of X, satisfying the following axioms: 

 

(L1) ∅∈L, 

(L2) For each k-efficient subset A of X, exactly one of A or X\A in L, 

(L3) If A,B∈L, e∈X, and f({e})≤k, then A∪B∪{e}≠X holds. 

 

A linear tangle possesses the following characteristics: 

 

Lemma 2. Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. A linear tangle L of order k+1 on a connectivity system (X,f) satisfies 

following axioms: 

 

(L4)If e∈X, then X\{e} ∉ L 
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Proof. Assume, towards a contradiction, that there exists an element e in set X such that X\ {e} belongs to L. 

Under this assumption, by the properties of symmetric submodular functions, we have f(X/{e}) = f({e}) ≤ k. 

However, this condition conflicts with axiom (L3), leading us to a contradiction. This completes the proof. 

 

2.3 Linear loose tangle 
 

The definition of a linear loose tangle on a connectivity system (X,f) is given below. 

 

Definition 3[4]: Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. Let T be a subset of 2X that represents the order k+1 of linear loose tangle, 

and satisfies the following conditions: 

 

(IN) ∀e ∈ X, if f({e})≤k, then {e}∈T. 

(LTSU) For any A∈T and any element e∈X, if B⊆A∪{e} and f(B)≤k and f({e})≤k, then B∈T. 

(IW) X ∉ T. 

 

A maximal linear loose tangle is one that cannot be extended further without violating its defining conditions. 

 

3 Result of this Paper: Proving Maximal Linear Loose Tangle as a Linear 

Tangle 

 

We consider the case when the linear loose tangle on a connectivity system (X,f) is maximized. The 

lemmas\theorems and their corresponding proofs are presented below. Notably, Lemma 3 uses a proof that relies 

on the concept of maximality. 

 

Lemma 3. Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. If T is a Maximal linear loose tangle of order k+1 on (X,f), T saitisfies 

axiom (L2). 

 

Proof of Lemma 3: Assume that T is a Maximal linear loose tangle of order k+1 on (X,f). By definition, T is a 

subset of 2X that represents order k+1 of a linear loose tangle, and satisfies conditions (IN), (LTSU), and (IW). 

 

Consider a k-efficient subset A of X, that is f(A) ≤ k. We aim to prove that exactly one of A or X\A is in T. 

By axiom (LTSU), since A is k-efficient, A should be in T. For X\A to also be in T, there must exist an element e 

in X\A such that f({e}) ≤ k. However, because A ∪ X\A = X, and we know from axiom (IW) that X ∉ T, we have 

a contradiction. In other words, the logical connection is that condition (LTSU) potentially allows us to include 

both A and X\A in T, but doing so would cause us to violate condition (IW), and hence we conclude that exactly 

one of A and X\A is in T.  

 

Next, suppose that neither A nor X\A is in T. As T is a maximal linear loose tangle, we can add either A or X\A to 

T without violating any of the conditions (IN), (LTSU), and (IW). Therefore, by maximality, at least one of A or 

X\A must be in T. 

 

Hence, exactly one of A or X\A is in T, proving that T satisfies axiom (L2). This concludes the proof. 

 

Lemma 4. Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. If T is a Maximal linear loose tangle of order k+1 on (X,f), T saitisfies 

axiom (L3). 

 

Proof of Lemma 4: Assume that T is a maximal linear loose tangle of order k+1 on (X, f), meaning that T 

satisfies conditions (IN), (LTSU), and (IW). We need to show that for any A, B ∈ T and e ∈ X with f({e}) ≤ k, we 

have A∪B∪{e} ≠ X. 

 

For the sake of contradiction, assume that there exist A, B ∈ T and e ∈ X such that f({e}) ≤ k and A ∪ B ∪ {e} = 

X. 
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Now, let's consider a set D = A ∪ B. If f(D) > k, D cannot be in T by definition as it is not k-efficient.  

If f(D) ≤ k, we need to consider the (LTSU) axiom carefully. If D ∈ T, then because {e} ∈ T (due to f({e}) ≤ k 

and axiom (IN)), we would have D ∪ {e} ∈ T by axiom (LTSU), as D ∪ {e} is a subset of D ∪ {e}, and f(D) ≤ k 

and f({e}) ≤ k. But this would imply X ∈ T, contradicting axiom (IW) that states X ∉ T. Hence, we conclude that 

our assumption that A ∪ B ∪ {e} = X must be false.This concludes the proof. 

 

Lemma 5. Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. If T is a Maximal linear loose tangle of order k+1 on (X,f), T saitisfies 

axiom (L1). 

 

Proof of Lemma 5: Assume that T is a maximal linear loose tangle of order k+1 on (X, f), meaning that T 

satisfies conditions (IN), (LTSU), and (IW). By Lemma 1, for any A ⊆ X, f(A) ≥ f(∅). Since ∅ is a subset of 

every set, f(∅) ≤ k holds, implying that ∅ is k-efficient. 

 

Now, condition (IN) of T states that for every e ∈ X, if f({e}) ≤ k, then {e} is in T. Specifically, for the empty set, 

which we've shown is k-efficient, this implies that ∅ should be in T. 

Hence, T satisfies axiom (L1), and this concludes the proof. 

 

From Lemmas 3, 4, and 5, we can derive the following theorem: 

 

Theorem 6. Let X represent a finite set and f denote a symmetric submodular function delineated over X, 

mapping to the non-negative integers. If T is a Maximal linear loose tangle of order k+1 on (X,f), T is linear 

tangle of order k+1 on (X,f). 

 

4 Future Tasks: Linear Tangle Matroids 

 

In the future, I am contemplating researching the concept of "Linear Tangle Matroids." The concept                  

of tangle matroid was defined within the framework of matroids (see [18,36-41]). 

Here are definitions of tangle and tangle matroids. Please note that the connectivity function of a matroid M, 

denoted asλM(A), for a subset A of E(M), is defined as λM(A) = r(A) +r(E(M)−A)−r(M). 

 

Definition 4[23]: Let M be a matroid, and T a collection of subsets of E(M). Then T is a tangle of order k+1 

of M if 

 

(TM1) for all A ∈ T , λM(A) ≤ k; 

(TM2) for all A ⊆ E(M) with λM(A) ≤ k, either A ∈ T or E(M) − A ∈ T ; 

(TM3) if A, B, C ∈ T , then A ∪B ∪ C ≠ E(M); 

(TM4) for each e ∈ E(M), E(M)− {e} ∉ T 

 

We plan to investigate what characteristics emerge when the axiom (TM3) is modified to the following form, 

(LTM3): 

 

(LTM3) if A, B ∈ T, e ∈ E(M), λM({e}) ≤ k, then A ∪B ∪ {e} ≠ E(M). 

 

A tangle that satisfies (LTM3) rather than (TM3) is referred to as a Linear Tangle of order k+1 of M. 

 

5 Conclusion 
 

Drawing inspiration from the ideas presented in references [24], we will contemplate a matroid M and a Linear 

tangle T of M of order k+1. Define a function ρ: 2E(M) → N as follows: ρ(A) := min{λM(B): A is a subset of B 

and B is in T} if there exists a B such that A is a subset of B and B is in T. Otherwise, ρ(A) := k +1.  

It has been shown in reference [18] that ρ is the rank function of a matroid on E(M). Note that since it holds true 

in the case of a Tangle, it naturally extends to be applicable in the case of a Linear Tangle as well. If T is a 

Linear-tangle of a matroid M, we refer to M(T) as a “Linear tangle matroid” of M. Going forward, We aim to 

carry out the characterization of the aforementioned Linear Tangle Matroids. 
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Disclaimer 
 

This paper is an extended version of a preprint document of the same author. 

 

The preprint document is available in this link: https://www.preprints.org/manuscript/202305.2094/v1 [As per 

journal policy, preprint article can be published as a journal article, provided it is not published in any other 

journal]. 

 

Acknowledgements 
 

I humbly express my sincere gratitude to all those who have extended their invaluable support, enabling me to 

successfully accomplish this paper. 

 

Competing Interests 
 

Author has declared that no competing interests exist. 

 

References 

 
[1] Daniel Bienstock. Graph searching, path-width, tree-width and related problems (a survey). Reliability of 

Computer and Communication Networks, Vol.DIMACS. Series in Discrete Mathematics and Theoretical 

Computer Science. 1989;33‒50.  

 

[2] Fujita, Takaaki. Reconsideration of Tangle and Ultrafilter using Separation and Partition. arXiv preprint 

arXiv. 2023;2305.04306.  

 

[3] Fujita, Takaaki. Revisiting Linear Width: Rethinking the Relationship Between Single Ideal and Linear 

Obstacle. arXiv preprint arXiv. 2023;2305.04740.  

 

[4] Huszár, Kristóf, Jonathan Spreer, and Uli Wagner. "On the treewidth of triangulated 3-manifolds." arXiv 

preprint arXiv:1712.00434 (2017). 

 

[5] Robertson Neil, Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition. Journal of 

Combinatorial Theory, Series B. 1991;52.2:153-190. 

 

[6] Fujita T. Alternative Proof of Linear Tangle and Linear Obstacle: An Equivalence Result. Asian Research 

Journal of Mathematics. 2023;19(8):61–66. 

 

[7] Faure, Alexandre, Fabien Feschet. Linear decomposition of planar shapes. 2010 20th International 

Conference on Pattern Recognition. IEEE; 2010. 

 

[8] Fomin, Fedor V, Dimitrios M. Thilikos. On the monotonicity of games generated by symmetric 

submodular functions." Discrete Applied Mathematics. 2003;131.2:323-335. 

 

[9] Vatshelle, Martin. New width parameters of graphs. Unpublished doctoral dissertation, The University of 

Bergen; 2012. 

 

[10] SOARES, Ronan Pardo. Pursuit-evasion, decompositions and convexity on graphs. PhD Thesis. 

Université Nice Sophia Antipolis; 2013. 

 

[11] Kobayashi, Yasuaki, and Yu Nakahata. A Note on Exponential-Time Algorithms for Linearwidth." arXiv 

preprint arXiv:2010.02388 (2020). 

 

[12] Oum, Sang-il, and Paul Seymour. Testing branch-width. Journal of Combinatorial Theory, Series B. 

2007;97.3:385-393. 

https://www.preprints.org/manuscript/202305.2094/v1


 
 

 

 
Fujita; Asian Res. J. Math., vol. 20, no. 2, pp. 48-54, 2024; Article no.ARJOM.113274 

 

 

 
53 

 

[13] Fujita, Takaaki, and Koichi Yamazaki. "Linear width and Single ideal." IEICE Technical Report; IEICE 

Tech. Rep. 117.269 (2017): 21-27.  

 

[14] Fujita, Takaaki. "Relation between ultra matroid and Linear decomposition."  

 

[15] Bergougnoux, Benjamin, Tuukka Korhonen, and Igor Razgon. New Width Parameters for Independent 

Set: One-sided-mim-width and Neighbor-depth. arXiv preprint arXiv. 2023;2302.10643.  

 

[16] Munaro, Andrea, Shizhou Yang. On algorithmic applications of sim-width and mim-width of (H1, H2)-

free graphs." Theoretical Computer Science. 2023;955:113825. 

 

[17] Thilikos, Dimitrios M, Sebastian Wiederrecht. Approximating branchwidth on parametric extensions of 

planarity." arXiv preprint arXiv. 2023;2304.04517.  

 

[18] Geelen J, Gerards B, Robertson N, Whittle G. Obstructions to Branch-Decomposition of Matroids. 

Journal of Combinatorial Theory, Series B. 2006;96:560-570. 

 

[19] Hicks, Illya V, Boris Brimkov. Tangle bases: Revisited." Networks. 2021;77.1:161-172. 

 

[20] Geelen, Jim, and Stefan HM van Zwam. Matroid 3-connectivity and branch width." arXiv preprint arXiv. 

2011;1107.3914.  

 

[21] Thilikos DM. Algorithms and Obstructions for Linear-Width and Related Search Parameters. Discrete 

Applied Mathematics. 2000;105:239-271. 

 

[22] Fujita, Takaaki. Filter for Submodular Partition Function: Connection to Loose Tangle. Submitted; 2023. 

 

[23] Oum, Sang-il, and Paul Seymour. "Certifying large branch-width." Symposium on Discrete Algorithms: 

Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. 2006;22:26.  

 

[24] Grigoriev, Alexander. Tree-width and large grid minors in planar graphs. Discrete Mathematics & 

Theoretical Computer Science. 2011;13.  

 

[25] Müller, Theodor. The excluded minor structure theorem, and linkages in large graphs of bounded tree-

width. Diss. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky; 2014. 

 

[26] Fujita, Takaaki. Short note: Ideal in Graph Theory; 2023. 

 

[27] Fujita, Takaaki. "Ultrafilter in Digraph: Directed Tangle and Directed Ultrafilter." Journal of Advances in 

Mathematics and Computer Science 39.3 (2024): 37-42. 

 

[28] Fujita, Takaaki. Quasi-Ultrafilter on the Connectivity System: Its Relationship to Branch-Decomposition; 

2023. 

 

[29] Fujita, Takaaki. Ultrafilter in Graph Theory: Relationship to Tree-decomposition. 

 

[30] Fujita, Takaaki. Edge-UltraFilter and Edge-Tangle for graph. 

 

[31] Bożyk, Łukasz, et al. On objects dual to tree-cut decompositions. Journal of Combinatorial Theory, Series 

B. 2022;157:401-428. 

 

[32] Lozin, Vadim, and Igor Razgon. Tree-width dichotomy." European Journal of Combinatorics. 2022;103: 

103517. 

 

[33] Fujita, Takaaki, and Koichi Yamazaki. Equivalence between Linear Tangle and Maximal Single Ideal. 

Open Journal of Discrete Mathematics. 2018;9.01:7. 

 



 
 

 

 
Fujita; Asian Res. J. Math., vol. 20, no. 2, pp. 48-54, 2024; Article no.ARJOM.113274 

 

 

 
54 

 

[34] Bonnet, Édouard, et al. Twin-width VI: the lens of contraction sequences∗. Proceedings of the Annual 

ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied 

Mathematics; 2022. 

 

[35] Fujita, Takaaki, and Koichi Yamazaki. "Tangle and Ultrafilter: Game Theoretical Interpretation." Graphs 

and Combinatorics. 2020;36.2:319-330. 

 

[36] Geelen, Jim, and Stefan HM van Zwam. Matroid 3-connectivity and branch width. Journal of 

Combinatorial Theory, Series B. 2015;112:104-123. 

 

[37] Hall, Dennis. A characterization of tangle matroids." Annals of Combinatorics. 2015;19:125-130. 

 

[38] Van Zwam S. Preserving 3-connectivity in matroids of high branch width; 2011. 

 

[39] Van Zwam, Stefan. "When the branch width is high; 2011. 

 

[40] Geelen, Jim, Bert Gerards, and Geoff Whittle. Tangles, tree-decompositions and grids in 

matroids." Journal of Combinatorial Theory, Series B. 2009;99.4:657-667. 

 

[41] Hall II, Dennis Wayne. On Matroid and Polymatroid Connectivity. Louisiana State University and 

Agricultural & Mechanical College; 2014. 

__________________________________________________________________________________________ 
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the 

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 

 

 

 
 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/113274 


