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Analytical and empirical models analyze complex and non-linear interactions
between the input–output parameters of the system. This is very important in
the case of photovoltaic systems to understand their real performance potential.
On the other hand, manufacturers of photovoltaic panels rate the maximum
performance of the system under fixed lab conditions as per standard testing
conditions (STCs) or nominal operating cell temperature (NOCT) standards of IEC.
These ratings do not provide the actual production potential of the system in a
field with fluctuating conditions of irradiance and temperature. For the case of a
concentrated photovoltaic (CPV) system, utilizing multi-junction solar cells
(MJCs), there is no commercial tool available to analyze the performance and
production, despite some recent empirical models that also require post-
processing of experimental data to be used in conventional models. In this
study, an artificial neural network (ANN)-based performance model is
presented for a multi-junction solar cell, which is not only convenient to apply
but can also be easily expanded to predict the real-field performance of the CPV
system of any designed size. In addition, the ANN-based model showed a high
accuracy of 99.9% in predicting the performance output of MJCs as compared to
diode-based empirical models available in the literature. The irradiance
concentration at the cell area and the cell temperature are taken as inputs for
the neural network. If both of these parameters are known, then the cell efficiency
as an output can accurately predict the CPV performance for a field operation.
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1 Introduction

Energy is very important for the development of the modern
world. However, sustainable energy is even more important for the
survival of our environment (Bailek et al., 2018; Cho et al., 2019;
Chen et al., 2020). Global emissions have increased by more than
20% since the last decade (Shahzad et al., 2017). Many renewable
energy resources can be utilized to achieve the sustainability goal
(Burhan et al., 2016a; Burhan et al., 2017a; Peng et al., 2020). Solar
energy is the only capable renewable energy resource that can meet
the current global energy needs (Burhan et al., 2018a; Hakimi et al.,
2020). The solar photovoltaic system is the simplest technology to
produce sustainable electricity. The most efficient photovoltaic
system is the concentrated photovoltaic (CPV) system, using
multi-junction solar cells (MJCs), as they offer the highest energy
efficiency of 47.1% (NREL, 2022). However, the multi-junction solar
cell has a more complex principle of operation compared to
conventional single-junction solar cells (Oh et al., 2015; Burhan
et al., 2016b; Muhammad et al., 2016). To lower the system cost,
MJCs are operated under high irradiance concentrations (assets,
2020), and as a result, under high temperatures (Burhan et al.,
2019a), low-cost solar concentrators replace the expensive solar cell
material (Cherucheril et al., 2011; Burhan et al., 2019b). The
response and the resultant I–V curve of the solar cell change
immediately with even minor changes in temperature or
irradiance concentration (Burhan et al., 2017b; Burhan et al., 2018b).

The manufacturers of photovoltaic panels rate their performance
at certain conditions of radiation and temperature which are not
achievable most of the time in real-field operations. Standard testing
conditions (STCs) (IEC 60904-3) or nominal operating cell
temperature (NOCT) (IEC 61215 and IEC 61646) are two IEC
standards that are used to rate the performance of photovoltaic
panels as per the defined laboratory conditions, AM 1.5 spectrum,
1,000W/m2 irradiance, and 25°C cell temperature (Burhan et al.,
2017c). To analyze the real-field potential of the photovoltaic system,
it is very important to understand and analyze its behavior with
changing conditions. By only knowing the standard efficiency of PV
panels, one cannot predict the actual energy production from
photovoltaic panels under realistic changing weather conditions.
There are well-developed empirical and analytical expressions for
the performance analysis of conventional single-junction photovoltaic
cells under sunlight. However, there are limited studies related to
performance models of concentrated photovoltaic systems, which are
only empirical relations (Burhan et al., 2018c; Burhan et al., 2021). In
addition, the structure and operation of concentrated photovoltaic
systems make the performance modeling of the CPV system complex
due to many factors affecting its performance (Burhan et al., 2018d).
The twomain parameters dictating the output of the MJC-based CPV
system are the irradiance concentration and cell temperature,
assuming accurate solar tracking and maximum power point
tracking during the operation. These are the two operational
parameters varying throughout the operation as the rest of the
system parameters related to optics and cell materials remain
unchanged. A small change in the irradiance concentration
generates a new set of temperature gradients of the MJC (Burhan
et al., 2016c; Burhan et al., 2018e).

Due to multi-parameter dependency, the relationship between
the input parameters of MJCs, such as concentration and

temperature, and the output parameters such as efficiency,
current, voltage, power, and temperature gradient is not linear.
The irradiance concentration at the MJC area largely affects their
temperature characteristics and electrical outputs (Theristis et al.,
2016). The analytical expression is not able to easily define the
performance characteristics of MJCs with such multi-parameter
dependency. On the other hand, empirical expressions require
some post-processing of input parameters to define the
performance characteristics of the MJC-based CPV system. The
artificial neural network (ANN) is an alternative approach to
complex expressions and finds the link between input and output
parameters in such non-linear cases of photovoltaic systems
(Kalogirou, 2000). A set of hidden neurons and their
corresponding layers are arranged such that their values and
structures define the complex interaction between input and
output parameters (Ghritlahre et al., 2020; Zeynali et al., 2020).
This ANN approach provides a simple solution for such a complex
task. However, extensive effort is needed to get a set of experimental
data with a broad range of input parameters as the ANN is trained
on such a set of experimental data (Burhan et al., 2019c; Motahar
and Bagheri-Esfeh, 2020). An ANN is a very promising tool for
complex and multivariable problems in the field of photovoltaics. It
can be applied for the prediction and estimation of solar irradiance
(Mellit et al., 2005a; Mellit et al., 2006), system capacity for both
standalone and grid-connected applications (Mellit et al., 2005b;
Mellit et al., 2007), electrical characteristics of the solar cell including
I–V curves (Almonacid et al., 2010), and the overall production of
the field installed system (Almonacid et al., 2011).

Due to the complexities of the MJC’s electrical and thermal
characteristics and structure of the CPV module, the ANN has the
advantage over conventional performance models that require an
understanding and simulations of the complex physical phenomena
involved in the CPV performance. In addition, they do not require
detailed information on the material and manufacturing of the
system. Also, there is no need for specific modeling software
(Almonacid et al., 2017). There are many commercial tools
available to simulate the performance of conventional
photovoltaic systems, i.e., HOMER (HOMER, 2015), RAPSIM,
TRNSYS + HYDROGEMS, ARES, SOMES, HYBRIDS2, SOLSIM,
INSEL (Bernal-Agustin and Dufo-Lopez, 2009), and iHOGA
(iHOGA, 2004). However, none of these tools can handle MJC-
based CPV systems. Therefore, in our previous study (Burhan et al.,
2017b), an empirical correlation was proposed for the performance
prediction of the MJC-based CPV system. However, it requires
complex processing of experimental data to determine the
temperature gradients of open-circuit voltage and short-circuit
current, although carrying out such an approach is not simple.
Although the CPV system can only respond to the direct normal
irradiance of solar energy, it is also a difficult parameter to predict
and analyze. However, there are many studies on ANNs to predict
the normal irradiance for concentrated photovoltaic (CPV)
applications. In this paper, the focus is on the development of a
performance model of the MJC-based CPV system using an artificial
neural network, equivalent to an empirical model (Burhan et al.,
2017b), with a higher accuracy and a simple set of input–output
parameters. The ANN is developed for triple-junction InGaP/
InGaAs/Ge MJCs, which was successfully able to provide cell
efficiency up to a concentration factor of ×550 and a temperature
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range of 25–90°C. A detailed comparison of the proposed ANN
configuration with our previously presented model is provided
showing a great improvement in the accuracy with very less
required information and computational effort/programming.

In this paper, the materials and methodology are discussed first,
in which, first, the comparison of the ANN with empirical models is
presented. Second, there is a detailed discussion on the collection of
experimental data for the training and testing of the ANN. Lastly,
the methodology is presented, in which the use ofMJC data obtained
from a trained ANN is discussed to calculate the performance of the
CPV module. The constant parameters and algorithm used to train
the ANN are also discussed in Section 2. In Section 3, the training
accuracy of the ANN is presented first with mean squared error
(MSE) and regression plots. The MJC performance data obtained
from the trained ANN are compared against empirical models and
experimental data. Lastly, the MJC performance data from the
trained ANN are used to predict the real-field power output of
the CPV system against the actual available weather data.

2 Materials and methods

2.1 Artificial neural network and the
empirical model

Figure 1 shows the graphical representation of a typical artificial
neural network. The ANN consists of three kinds of layers and their
associated neurons. The first layer represents the input layer, and the
number of neurons in input layers is equal to the number of input
parameters. In the current study, the irradiance concentration at the
cell area and the cell temperature are the two inputs for the neural
network, as these two parameters are important to determine the
performance of the MJC. The last layer represents the output layer,
and similarly, the number of neurons in the output layer represents

the number of output parameters. In this study, the cell efficiency is
taken as the output parameter, as it not only gives the first
performance impression of the multi-junction solar cell but all
other parameters can also be calculated if the cell efficiency is
known. Even the energy output of the CPV system can be
calculated if the input power and receiver area are known. A
detailed discussion of the calculation of the associated MJC
parameters will be given at the end of this section. Other layers
in between input and output layers are called hidden layers. The
number of hidden layers, the number of associated neurons in these
hidden layers, and the associated values of these neurons represent
the complex interaction between input and output parameters. The
structure of these trained hidden layers replaces the need for a
conventional empirical model. The graphical representation of the
ANN and its comparison with the empirical CPVmodel are given in
Figure 1.

2.2 Experimental setup and data preparation
for the ANN

To get the structure and associated values of the hidden layers,
the ANN is trained for a broad set of data of input and output
parameters. Figure 2 shows the experimental data for the MJC solar
efficiency against the concentration of solar radiations at the cell
area, for different values of cell temperature. The detailed values of
the training dataset for input and output parameters are given in
Table A1. To ensure accuracy, a large set of training data containing
315 sample values are considered. It is very important to note that
the data presented in this study are based on the performance of the
MJC, not the CPV system. To generalize the dataset, any design
parameter such as the area of the MJC and concentrator area is not
considered. Hence, the ANNmodel is trained for the performance of
the MJC, and once the MJC performance parameters are known, the
CPV power output can be determined with the required design
parameters.

Figure 3 shows the schematic of the experimental setup
typically utilized to record the performance characteristics of

FIGURE 1
Graphical representation of the ANN and its comparison with the
empirical CPV model.

FIGURE 2
Experimental data for the MJC at different irradiance
concentrations and cell temperatures.
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the MJC. It is important to mention here that the triple-junction
InGaP/InGaAs/Ge MJC was provided by Arima company and so
were its performance data. The portion of the experimental setup
considered in the training of the ANN consists of an MJC, a
temperature regulator to set the cell temperature value,
maximum power point tracking (MPPT) to maximize the
output, and the conversion/constant parameters to determine
the cell efficiency. The red dotted lines in Figure 3 represent the
domain of the ANN model, concentrating assembly, and CPV
module. The black dotted lines represent the flow of the recorded
data to the data logger, and the solid black lines are used to label
the different components in the system. The concentration value
considered is the amount of radiation concentrated directly over
the cell area. This irradiance concentration value is different than
the irradiance value that is normally considered in conventional
PV models. The irradiance represents the amount of solar
radiation received per unit area by the solar concentrator.
However, the concentration value considered in the training
dataset represents the amount of concentrated radiation
collected over a unit area of the MJC. The temperature
regulator ensures a set value of cell temperature. The electrical
output of the MJC is passed through the MPPT module, which
ensures that the MJC is operating at this maximum efficiency
point of the I–V curve. The output of the MJC is then stored in the
data logging unit, in the form of cell efficiency after applying the
associated conversion factors and design parameters of the
experimental setup. The values of irradiance concentration
and cell temperature are also recorded simultaneously. The
conversion factor shown in Figure 3, to convert the power
output of the MJC into efficiency, is given by

ηMJC � PMJC

Pinput
� Imppt × Vmppt

CC × AC × 1000
, (1)

where “Imppt and Vmppt” define the current and voltage output of the
MJC after the MPPT module, respectively. The term Ac represents

the cell area. However, the constant value “1,000” in the
denominator of Eq. 1 is used to convert concentration units from
suns to W/m2.

2.3 ANN to CPV performance prediction

With the proposed ANN model, although it is trained for the
performance of a single MJC, the power output of the CPV module
can be easily determined. To estimate the output of the CPVmodule,
it is important to determine the size and characteristics of the
concentrating assembly. If the optical efficiency of CPV
concentrating is represented by “ηop,” then the power output of
the CPV module, “PCPV,” is given by

FIGURE 3
Schematic of the experimental setup to record the MJC performance.

FIGURE 4
Mean squared error plot during the training and testing phase of
the ANN of MJCs.
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PCPV � NC × ηMJC × ηop × DNI × Alens( ), (2)

where “ηMJC” represents the MJC efficiency and ‘Alens’ represents
the effective area of the solar concentrator. The terms in the
bracket represent the power output of a single MJC, and when it is
multiplied by the total number of MJCs in the module, i.e., “NC,”
then the total power output of the CPV module can also be
determined. However, the optical efficiency of the CPV
concentrating assembly is based on the material and number
of optical elements. For a PMMA Fresnel lens-based assembly, its
typical value is around 75%, and for a reflector-based Cassegrain
assembly, it can range from 85% to 90%. It is also important to

mention here that the CPV efficiency is the product of the MJC
and concentrating assembly efficiencies, i.e.,

ηCPV � ηMJC × ηop. (3)

2.4 ANN training, validation, and testing

The collected experimental dataset was then used in the Neural
Network Toolbox (nftool) of MATLAB. The input dataset (cell
temperature, TC, and the concentration at the cell area, CC) is a
matrix of 2 × 315, and the output dataset (cell efficiency, ηMJC) is a

FIGURE 5
Function-fit plot for the trained ANN of MJCs.

FIGURE 6
Regression plot for the trained ANN of MJCs.
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1 × 315 matrix. For training purposes, only 70% of the data points
(221) were reserved, while the remaining data points were dedicated
for validation and testing purposes, i.e., 15% (47 each). The
validation and testing data points were selected randomly from
whole datasets, and the remaining points were selected as the input
for the training of the ANN. In this work, there is only one hidden
layer comprising 10 hidden neurons. For the training algorithm,
Bayesian regularization was used for better accuracy, as it provides
the best relevance of input parameters to the neural network
training, known as the ARD method (Lampinen and Vehtari,
2001). However, while using the scaled conjugate gradient and

Levenberg–Marquardt, the regression accuracy dropped
significantly.

3 Results and discussion

By using the Bayesian regularization algorithm, the ANN was
trained with the backpropagation technique to minimize the mean
squared error of targeted and output values. The training was
initially started for 1,000 epochs. However, the algorithm
converged at 824 epochs, where the MSE was the lowest, as

FIGURE 7
Comparison of the ANN-based MJC performance with the experimental data and empirical model values.

FIGURE 8
ANN-based predicted power output of the CPV system with weather data of the DNI and ambient temperature.
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shown in Figure 4. The plot for the mean squared error of target and
output values during the training and testing phase of the ANN is
shown in Figure 4. On the other hand, the plot fit for target and
output values against input data is shown in Figure 5. It can be seen
that the error value is almost zero throughout the input range. This
can also be verified by regression plots of the training and testing
phases of the ANN as the regression value appears as 1 for both the
cases, Figure 6. This shows that the current methodology is perfectly
used to train and test the ANN for the performance prediction of
MJCs. Due to the high accuracy, the algorithm did not need to
validate the ANN. It is important to mention here that such a high
accuracy was obtained using the Bayesian regularization algorithm.
However, while using the scaled conjugate gradient and
Levenberg–Marquardt, the regression accuracy dropped
significantly (R < 1).

To verify the accuracy of the trained ANN, a comparison of
the output data of the ANN is compared against the experimental
data and the data obtained from the conventional empirical
model, as shown in Figure 7. First of all, it can be seen that
although the empirical model (Burhan et al., 2017b) is trying to
follow the efficiency trend of the experimental data, there is still a
significant contradiction between actual and calculated values.
Although the empirical model is within the 2% error range of the
experimental data, the efficiency points obtained through the
trained ANN are showing a perfect agreement with the
experimental data at various conditions of the concentration
and temperature. The ANN prediction is 99.9%, matching the
targeted experimental value, as depicted by the regression
coefficient “R” in Figure 6. This shows that the ANN is not
only simplifying the conventional approach of empirical models
but the accuracy of the predicted data is also increased
significantly, even when compared with ANN–CPV-based
models available in the literature with 2.91% (Rivera et al.,
2013) and 3.3% (Almonacid et al., 2013) error ranges,
respectively. This will not only simplify the problems but also
reduce the computational time. One of the key points of the high
accuracy of the ANN is identifying and selecting the key input
parameters, which are directly impacting the system
performance.

To utilize the trained ANN in the real-field performance
prediction of the CPV system performance, the power output of
the CPV module consisting a single MJC is presented in Figure 8,
against the actual direct normal irradiance (DNI) profile, measured
using a pyrheliometer mounted on a two-axis solar tracker, along
with the ambient temperature. It is important to mention here that
the CPV power output shown here is based on the performance of
MJCs obtained through the trained ANN. The DNI is defining the
irradiance concentration at the area of MJCs with a concentrator
area of 12 cm × 12 cm and an optical efficiency of 75%. On the other
hand, the ambient temperature is defining the cell temperature,
which is approximated at 40°C higher than the ambient temperature
(Burhan et al., 2016d). This shows that with the proposed trained
ANN ofMJCs, one can easily predict the real production potential of
the CPV system if the solar potential and weather conditions are
known, which are mostly available through data centers of weather
stations. Therefore, instead of relying on the maximum rated
performance of the photovoltaic system, the real energy/power
output of the CPV system can be easily predicted with ANN-

based techniques, with a need for complex non-linear expressions
and correlations.

4 Conclusion

An artificial neural network-based performance model is
successfully trained and tested for the performance prediction of
the multi-junction solar cell. In comparison to the conventional
empirical model, with a 2% error range, the ANN-based model
showed a high level of 99.9% accuracy in the solar cell efficiency
prediction by knowing the cell temperature and the concentration at
the cell area. The use of the Bayesian regularization algorithm for the
ANN training increased the regression factor R from 0.97 to 1, as
compared to conjugate gradient and Levenberg–Marquardt
algorithms. The trained ANN model was extended to predict the
real-field performance prediction of a full-scale CPV system of any
size capacity, instead of just a single MJC. Due to the complex and
non-linear behavior of MJCs, especially in the concentrated
photovoltaic (CPV) configuration, the ANN-based approach has
simplified the link between input and output parameters. Instead of
going through time-extensive evaluations of thermal gradients for
different irradiance concentration levels, the ANN model can
simplify the prediction with the use of raw input values of the
irradiance concentration and cell temperature. By knowing the solar
potential and weather data of a certain location, the long-term field
production of the CPV system can be easily predicted with the
proposed ANN model.
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Nomenclature

AC Solar cell area (m2)

DNI Direct normal irradiance

PMJC Power output of multi-junction solar cells (W)

Imppt Solar cell maximum power point current (A)

ηCPV Efficiency of the CPV module (%)

PCPV CPV power output (W)

PInput Solar energy input in the solar cell area (W)

Alens Effective area of the solar concentrator (m2)

CC Solar concentration at the solar cell area (Sun)

NC Number of solar cells in one panel

Vmppt Solar cell maximum power point voltage (V)

ηOP Optical efficiency of the concentrating assembly (%)

ηMJC Efficiency of MJCs (%)

TC Solar cell temperature (oC)
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Appendix

TABLE A1 Experimental dataset.

Tc = 25°C Tc = 35°C Tc = 45°C Tc = 60°C Tc = 70°C Tc = 80°C Tc = 90°C

CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC

10 36.3 15 35.5 16 34.8 10 33.4 18 32.3 10 31.4 10 30.8

15 36.5 25 35.9 20 35.0 20 33.7 28 32.7 15 31.6 20 31.2

19 36.6 35 36.2 25 35.1 30 34.1 61 33.9 19 31.8 30 31.6

26 36.9 59 36.8 32 35.4 40 34.4 75 34.2 26 32.1 40 32.0

30 37.0 75 37.2 42 35.7 67 35.2 87 34.5 30 32.2 67 32.8

33 37.1 81 37.3 56 36.1 86 35.6 105 34.9 33 32.3 86 33.3

39 37.2 100 37.7 64 36.3 96 35.8 110 35.0 39 32.5 96 33.5

47 37.4 111 37.9 76 36.5 110 36.0 119 35.2 59 33.2 110 33.8

55 37.6 120 38.0 86 36.7 123 36.2 130 35.3 75 33.6 123 34.0

60 37.7 138 38.2 95 36.9 135 36.4 140 35.5 81 33.8 145 34.3

77 38.1 159 38.4 104 37.1 150 36.5 155 35.6 100 34.2 162 34.4

86 38.2 170 38.5 110 37.2 155 36.6 175 35.8 111 34.4 175 34.6

95 38.4 180 38.6 130 37.5 163 36.7 193 35.9 120 34.5 180 34.6

100 38.5 195 38.6 145 37.6 175 36.8 200 36.0 138 34.8 195 34.7

112 38.6 205 38.7 162 37.8 185 36.8 210 36.0 159 35.0 218 34.8

119 38.7 215 38.7 175 37.9 190 36.9 215 36.1 170 35.1 225 34.8

134 38.9 220 38.7 180 38.0 200 36.9 225 36.1 180 35.2 240 34.9

145 39.0 229 38.8 195 38.1 205 36.9 240 36.2 195 35.3 255 34.9

160 39.1 237 38.8 218 38.2 210 37.0 250 36.2 218 35.4 260 34.9

164 39.1 250 38.8 225 38.2 220 37.0 260 36.2 225 35.4 270 35.0

179 39.2 254 38.8 240 38.3 230 37.0 275 36.2 240 35.5 279 35.0

200 39.3 265 38.9 255 38.3 240 37.1 295 36.3 255 35.5 299 35.0

209 39.4 273 38.9 260 38.3 253 37.1 310 36.3 260 35.5 310 35.0

215 39.4 285 38.9 270 38.4 288 37.2 324 36.3 270 35.6 324 35.0

231 39.4 290 38.9 279 38.4 305 37.2 340 36.3 279 35.6 340 35.0

240 39.4 300 38.9 299 38.4 325 37.2 350 36.3 299 35.6 350 35.0

271 39.5 315 38.9 310 38.4 350 37.2 361 36.3 310 35.6 361 35.0

288 39.5 330 38.9 319 38.4 360 37.2 369 36.3 319 35.6 369 35.1

295 39.5 335 38.9 325 38.4 378 37.3 373 36.4 325 35.6 373 35.1

305 39.5 343 38.9 335 38.4 385 37.3 386 36.4 350 35.6 386 35.1

316 39.5 360 38.9 350 38.4 394 37.3 392 36.4 360 35.6 392 35.1

330 39.5 367 38.9 355 38.4 410 37.3 400 36.4 378 35.6 400 35.1

345 39.5 375 38.9 361 38.4 424 37.3 415 36.4 385 35.6 415 35.1

350 39.5 382 38.9 369 38.4 431 37.3 430 36.4 394 35.6 430 35.1

368 39.5 395 38.9 387 38.4 447 37.3 445 36.4 410 35.6 445 35.1

(Continued on following page)
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TABLE A1 (Continued) Experimental dataset.

Tc = 25°C Tc = 35°C Tc = 45°C Tc = 60°C Tc = 70°C Tc = 80°C Tc = 90°C

CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC CC ηMJC

385 39.5 410 38.9 405 38.4 464 37.3 457 36.4 424 35.7 457 35.2

390 39.5 425 38.9 425 38.4 470 37.3 475 36.4 431 35.7 475 35.2

400 39.5 434 38.9 440 38.4 480 37.3 490 36.4 447 35.7 480 35.2

420 39.5 448 38.9 452 38.4 488 37.3 500 36.4 464 35.7 488 35.2

445 39.5 464 38.9 475 38.4 499 37.3 515 36.4 470 35.7 499 35.2

475 39.5 470 38.9 490 38.4 510 37.3 522 36.4 480 35.7 510 35.2

500 39.5 484 38.9 500 38.4 525 37.3 530 36.4 488 35.7 525 35.2

510 39.5 500 38.9 520 38.4 530 37.3 540 36.3 499 35.7 530 35.2

520 39.5 525 38.9 530 38.4 540 37.2 543 36.3 525 35.7 540 35.2

550 39.4 545 38.8 550 38.3 550 37.2 549 36.3 545 35.7 550 35.2
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