
Citation: Luo, H.; Zhang, J.; Liu, X.;

Zhang, L.; Liu, J. Large-Scale 3D

Reconstruction from Multi-View

Imagery: A Comprehensive Review.

Remote Sens. 2024, 16, 773. https://

doi.org/10.3390/rs16050773

Academic Editors: Jie Shan and

Riccardo Roncella

Received: 21 November 2023

Revised: 14 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

Large-Scale 3D Reconstruction from Multi-View Imagery:
A Comprehensive Review
Haitao Luo 1,2,3,4,5 , Jinming Zhang 1,2,3,* , Xiongfei Liu 1,2,3, Lili Zhang 1,2,3 and Junyi Liu 1,2,3

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
luohaitao21@mails.ucas.ac.cn (H.L.); liuxf004327@aircas.ac.cn (X.L.); zhanglili86@126.com (L.Z.);
liujy004735@aircas.ac.cn (J.L.)

2 Key Laboratory of Target Cognition and Application Technology (TCAT), Beijing 100190, China
3 Key Laboratory of Network Information System Technology (NIST), Beijing 100190, China
4 University of Chinese Academy of Sciences, Beijing 100190, China
5 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,

Beijing 100190, China
* Correspondence: nicnyzjm@whu.edu.cn

Abstract: Three-dimensional reconstruction is a key technology employed to represent virtual reality
in the real world, which is valuable in computer vision. Large-scale 3D models have broad application
prospects in the fields of smart cities, navigation, virtual tourism, disaster warning, and search-and-
rescue missions. Unfortunately, most image-based studies currently prioritize the speed and accuracy
of 3D reconstruction in indoor scenes. While there are some studies that address large-scale scenes,
there has been a lack of systematic comprehensive efforts to bring together the advancements made
in the field of 3D reconstruction in large-scale scenes. Hence, this paper presents a comprehensive
overview of a 3D reconstruction technique that utilizes multi-view imagery from large-scale scenes.
In this article, a comprehensive summary and analysis of vision-based 3D reconstruction technology
for large-scale scenes are presented. The 3D reconstruction algorithms are extensively categorized
into traditional and learning-based methods. Furthermore, these methods can be categorized based
on whether the sensor actively illuminates objects with light sources, resulting in two categories:
active and passive methods. Two active methods, namely, structured light and laser scanning, are
briefly introduced. The focus then shifts to structure from motion (SfM), stereo matching, and multi-
view stereo (MVS), encompassing both traditional and learning-based approaches. Additionally, a
novel approach of neural-radiance-field-based 3D reconstruction is introduced. The workflow and
improvements in large-scale scenes are elaborated upon. Subsequently, some well-known datasets
and evaluation metrics for various 3D reconstruction tasks are introduced. Lastly, a summary of the
challenges encountered in the application of 3D reconstruction technology in large-scale outdoor
scenes is provided, along with predictions for future trends in development.

Keywords: 3D reconstruction; large-scale scene; remote sensing; review

1. Introduction

Three-dimensional reconstruction is a way to represent and process 3D objects by
generating a digital model in a computer, which is the basis for visualizing, editing, and
researching their properties. It is also a critical technology for generating a virtual world
and combining reality with virtuality to express the real world. With the popularity of
image-acquisition equipment and the development of computer vision in recent years, ob-
taining information from 2D images is no longer sufficient to meet the demands of various
applications. Obtaining more accurate 3D reconstruction models through massive 2D im-
ages has become a research hot spot. At the same time, modern remote sensing technology
is continuously improving. Furthermore, the high-resolution images obtained through
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remote sensing have demonstrated significant utility in areas such as urban planning and
management, ground observation, and related fields.

There is significant practical and theoretical research value in applying satellite images
obtained in remote sensing scenarios and outdoor scene images obtained in aviation and
UAV scenarios to 3D reconstruction technology. This approach offers an efficient means
of generating precise large-scale scene models (Figure 1), which are applicable in smart
city development, navigation, virtual tourism, disaster monitoring, early warning systems,
and various other domains [1]. Additionally, for cultural heritage, 3D reconstruction
techniques can be employed to reconstruct the original appearance of cultural heritage
sites. By scanning and modeling ancient buildings, urban remains, or archaeological
sites, researchers can recreate visual representations of historical periods, facilitating a
better understanding and preservation of cultural heritage [2]. Most image-based studies
currently prioritize the speed and accuracy of 3D reconstruction in indoor scenes. While
there are some studies that address large-scale scenes, there are no systematic research
reviews on this topic. Therefore, a comprehensive overview of 3D reconstruction techniques
utilizing multi-view imagery from large-scale scenes is presented in this paper. It should
be explicitly stated that the 3D reconstruction mentioned in this article solely pertains to
generating point clouds of a scene and does not involve subsequent mesh models.

Figure 1. An example of 3D reconstruction: (left) real image, (right) 3D model: point clouds.

Three-dimensional reconstruction methods are categorically divided into traditional
and learning-based types, in which classification is based on the utilization of neural
networks. Furthermore, based on their approach to acquiring scene information, they
can be further categorized into active and passive reconstruction methods [3]. An active
3D reconstruction method scans a target through a 3D scanning device, followed by
calculating the depth information of the object and obtaining point cloud data, which
are used to restore the 3D model of the target. The main steps are data registration,
point cloud data pre-processing, segmentation, and triangle meshing [4]. At present,
widely adopted active methods encompass structured light-based 3D reconstruction [5,6],
reconstruction from 3D laser scanning data [7], shadow detection [8,9], time of flight
(TOF) [10,11], photometric stereo [12–15], and Kinect methods [16]. Structured light-based
reconstruction methods emit specific light waves through the corresponding equipment
and obtain information about the changes in light on the surface of an object. The data are
then employed to calculate the 3D information, such as the surface depth of the object, so
that a 3D model of the object can be reconstructed. Laser-scanning reconstruction uses the
time difference between an emitted and returned laser to calculate the distance from an
object’s surface to the scanner in order to reconstruct a 3D model. Passive 3D reconstruction
is used to reconstruct a 3D model of an object through images collected using cameras.
Since the images do not contain depth information about the object, 3D reconstruction
can only be completed by predicting the surface depth of the object through geometric
principles (Figure 2).
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Figure 2. Classification of 3D reconstruction technology.

Active methods, such as laser scanning, while capable of obtaining the precise depth
information of objects, have their limitations. Firstly, their scanning equipment is typically
expensive, bulky, and not affordable for the average research facility. Secondly, these
scanning devices often rely on emitting and receiving light waves to calculate distances,
making them susceptible to uncontrollable factors, such as lighting conditions in the
environment. Consequently, they are usually more suitable for the 3D reconstruction of
small objects and may not be ideal for large-scale scenes. Therefore, the focus has shifted
toward passive methods that are reliant on camera images.

The remainder of this article is organized as follows: Section 2 introduces 3D recon-
struction methods based on traditional methods. In Section 3, 3D reconstruction methods
based on deep learning are presented. Section 4 provides a list of datasets and evaluation
metrics for large-scale scenes. Finally, the challenges and outlook are provided in Section 5,
and conclusions are drawn in Section 6.

2. Traditional Methods

In traditional passive reconstruction methods, the initial stage involves detecting and
matching feature points in images, followed by associating corresponding points across
multiple images for subsequent camera pose estimation and point cloud reconstruction.
A typical pipeline of 3D reconstruction is shown in Figure 3. It is worth noting that, in
Figure 3, the final step shows a mesh reconstruction. However, this article exclusively
focuses on the generation of point clouds, and therefore, mesh reconstruction will not
be introduced. This section presents an overview of the advancements in point cloud
reconstruction techniques, including structure from motion (SfM) for sparse reconstruction,
stereo matching, and multi-view stereo (MVS) for dense reconstruction.
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Figure 3. A typical pipeline of 3D reconstruction. Step 1: Input multi-view images. Step 2: Use
SfM to compute camera poses and reconstruct sparse point clouds. Step 3: Estimate depth using
MVS. Step 4: Obtain a dense point cloud via depth fusion. Finally, obtain the mesh through mesh
reconstruction.

2.1. Sparse Reconstruction: SfM

Structure from motion (SfM) is a technique that automatically recovers camera pa-
rameters and a 3D scene’s structure from multiple images or video sequences. SfM uses
cameras’ motion trajectories to estimate camera parameters. By capturing images from dif-
ferent viewpoints, the camera’s position information and motion trajectory are computed.
Subsequently, a 3D point cloud is generated in the spatial coordinate system. Existing SfM
methods can be categorized into incremental, distributed, and global approaches according
to the different methods for estimating the initial values of unknown parameters.

2.1.1. Incremental SfM

Incremental SfM [17], which involves selecting image pairs and reconstructing sparse
point clouds, is currently the most widely used method. Photo Tourism, which was
proposed by Snavley et al. [18], is the earliest incremental SfM system. It first selects
a pair of images to compute the camera poses and reconstruct a partial scene. Then, it
gradually adds new images and adjusts the previously computed camera poses and a scene
model to obtain camera poses and scene information (Figure 4). Recently, a significant
number of incremental SfM methods have been introduced, such as [19], EC-SfM [20],
and AdaSfM [21].

In 2012, Moulon et al. [22] proposed Adaptive SfM (ASFM), an adaptive threshold
estimation method that eliminates the need for manually setting hyperparameters. Due
to the presence of noise and drift in pose and 3D point estimation, it is necessary to
optimize the camera poses using the bundle adjustment (BA) algorithm after incorporating
a certain number of new image pairs. In 2013, Wu et al. introduced VisualSFM [23],
which improved the matching speed through a preemptive feature matching strategy
and accelerated sparse reconstruction using a local–global bundle-adjustment technique.
When the number of cameras increases, optimization is performed only on local images,
and when the overall model reaches a certain scale, optimization is applied to all images,
thus improving the reconstruction speed. In 2016, Schönberger et al. [24] integrated the
classical SfM methods and made individual improvements to several key steps, such as
geometric rectification, view selection, triangulation, and bundle adjustment, which were
consolidated into COLMAP.
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Figure 4. An overview of incremental SfM. First, an initial image pair is selected to compute the
camera poses and reconstruct a partial scene; then, gradually new images are gradually added to
compute the complete point cloud.

When reconstructing large-scale scenes using incremental SfM, errors accumulate as
the number of images increases, leading to scene drift and time-consuming and repetitive
bundle adjustments. Therefore, the initial incremental SfM approach is not ideal for large-
scale outdoor scene reconstruction. In 2017, Zhu et al. [25] proposed a camera-clustering
algorithm that divided the original SfM problem into sub-SfM problems for multiple
clusters. For each cluster, a local incremental SfM algorithm was applied to obtain local
camera poses, which were then incorporated into a global motion-averaging framework.
Finally, the corresponding partial reconstructions were merged to improve the accuracy
of large-scale incremental SfM, particularly in camera registration. In 2018, Qu et al. [26]
proposed a fast outdoor-scene-reconstruction algorithm for drone images. They first used
principal component analysis to select key drone images and create an image queue.
Incremental SfM was then applied to compute the queue images, and new key images were
selected and added to the queue. This enabled the use of incremental SfM for large-scale
outdoor scene reconstruction. In 2019, Duan et al. [27] combined the graph optimization
theory with incremental SfM. When constructing the graph optimization model, they used
the sum of the squared reprojection errors as the cost function for optimization, aiming to
reduce errors. Liu et al. [28] proposed a linear incremental SfM system for the large-scale 3D
reconstruction of oblique photography scenes. They addressed the presence of many pure
rotational image pairs in oblique photography data using bundle adjustment and outlier
filtering to develop a new strategy for selecting initial image pairs. They also reduced
cumulative errors by combining local bundle adjustment, local outlier filtering, and local
re-triangulation methods. Additionally, the conjugate gradient method was employed
to achieve a reconstruction speed that was close to linear speed. In 2020, Cui et al. [29]
introduced a new SfM system. This system used track selection and camera prioritization
to improve the robustness and efficiency of incremental SfM and make the datasets of
large-scale scenes useful in SfM.

The main drawbacks of incremental SfM are as follows:

• Sensitivity to the selection of initial image pairs, which limits the quality of reconstruc-
tion to the initial pairs chosen.

• The accumulation of errors as new images are added, resulting in the scene-drift
phenomenon.

• Incremental SfM is an iterative process where each image undergoes bundle adjust-
ment optimization, leading to a significant number of redundant computations and
lower reconstruction efficiency.
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2.1.2. Global SfM

Global SfM encompasses the estimation of global camera rotations, positions, and
point cloud generation. In contrast to incremental SfM, which processes images one by one,
global SfM takes all of the images as input and performs bundle adjustment optimization
only once, significantly improving the reconstruction speed. It evenly distributes errors
and avoids error accumulation, resulting in higher reconstruction accuracy. It was first
proposed by Sturm et al. [30]. In 2011, Crandall et al. [31] introduced a global approach
based on Markov random fields. Hartley et al. [32] proposed the Weiszfeld algorithm
based on the L1 norm to estimate camera rotations in the global SfM pipeline, achieving
fast and robust results. In 2014, Wilson et al. [33] presented a 1D SfM method, which
mapped the translation problem to a one-dimensional space, removed outliers, and then
estimated global positions using non-convex optimization equations to reduce scene graph
mismatches and improve the accuracy of position estimation. In 2015, Sweeney et al. [34]
utilized the cycle-consistent optimization of a scene graph’s fundamental matrix to enhance
the accuracy of camera pose estimation for image pairs. Cui et al. [35] proposed a novel
global SfM method that optimized the solution process with auxiliary information, enabling
it to handle various types of data.

However, global SfM may not yield satisfactory results for large-scale scenes due to
the varying inter-camera correlations. In 2018, Zhu et al. [36] introduced a distributed
framework for global SfM based on nested decomposition. They segmented the initial
camera distribution map and iteratively optimized multiple segmented maps to improve
local motion averages. Then, they optimized the connections between the sub-distribution
maps to enhance global motion averaging, thereby improving global SfM reconstruction in
large-scale scenes. In 2022, Pang [37] proposed a segmented SfM algorithm based on global
SfM for the UAV-based reconstruction of outdoor scenes. The algorithm grouped UAV
images based on latitude and longitude, extracted and matched features while removing
mismatches, performed global SfM for each image group to obtain camera poses and
sparse point clouds, merged point clouds, optimized scene spatial points and camera poses
according to the grouping order, and finally performed global SfM on the merged data to
obtain the point cloud of the entire large scene. Yu et al. [38] presented a robust global SfM
algorithm for UAV-based 3D reconstruction. They combined rotation averaging from Lie
algebra, the L1 norm, and least-squares principles to propose the L1-IRLS algorithm for
computing the rotation parameters of UAV images, and they also incorporated GPS data
into bundle adjustment to obtain high-precision point cloud data.

The main advantages of global SfM are as follows:

• Global SfM aims to optimize the camera poses and 3D scene structure simultaneously,
ensuring that the entire reconstruction is globally consistent. This results in more
accurate and reliable reconstructions.

• Global SfM typically employs optimization techniques such as global bundle adjust-
ment, allowing it to provide high-precision estimates of camera parameters and 3D
point clouds.

• Global SfM is typically suitable for large-scale scenes.

The main disadvantages of global SfM are as follows:

• Global SfM methods are computationally intensive and may require significant
amounts of time and computational resources, especially for large datasets with
many images and 3D points.

• The global camera position estimation results are unstable.
• Global SfM can be sensitive to outliers in the data. If there are incorrect correspon-

dences or noisy measurements, they can have a significant impact on the global
optimization process.
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2.1.3. Distributed SfM

Although incremental SfM has advantages in robustness and accuracy, its efficiency
is not high enough. Additionally, with the accumulation of errors, the scene structure
is likely to exhibit drift in large-scale scene reconstruction. Global SfM is more efficient
than the incremental approach; however, it is sensitive to outliers. In 2017, Cui et al. [39]
proposed a distributed SfM method that combined incremental and global approaches.
It used the incremental SfM method to compute camera positions for each additional
image, and the camera rotation matrices were computed using the global SfM method.
Finally, a local bundle adjustment algorithm was applied to optimize the camera’s center
positions and scene 3D coordinates, thereby improving the reconstruction speed while
ensuring robustness. In 2021, Wang et al. [40] introduced a hybrid global SfM method for
estimating global rotations and translations at the same time. Distributed SfM combines
the advantages of both methods to some extent.

2.2. Dense Reconstruction: Stereo Matching and MVS
2.2.1. Stereo Matching

Derived from the human binocular vision system [41], binocular vision imitates the
principles of human vision to obtain a vast amount of three-dimensional data. It captures
left and right images from different perspectives using two identical cameras at the same
location. By utilizing the disparity formed from the two images, the depth of each pixel can
be obtained. The process can be divided into four main steps: camera calibration, image
rectification, stereo matching, and 3D reconstruction calculation [42]. Stereo matching, in
particular, is the foundational and crucial step in binocular vision reconstruction.

Stereo matching aims to find corresponding pixels between two images captured using
left and right cameras, calculates the corresponding disparity values, and then uses the
principles of triangle similarity to obtain the depth information between objects and the
cameras. However, challenges in improving the matching accuracy arise due to factors such
as uneven illumination, occlusion, blurring, and noise [43]. The matching process mainly
consists of four steps: matching cost calculation, matching cost aggregation, disparity
calculation, and disparity refinement [44] (Figure 5). Additionally, to enhance accuracy,
constraints such as the epipolar, uniqueness, disparity–continuity, ordering–consistency,
and similarity constraints are employed to simplify the search process [45]. Based on these
constraint methods, stereo matching algorithms can be classified into global, local, and
semi-global matching methods (SGMs) [46].

Figure 5. Workflow of stereo matching. First, the noise is reduced through image filtering, images
are normalized, and image features are extracted. Then, the cost is computed, such as through the
absolute differences in pixels between the images in an image pair. Finally, the disparity maps are
computed, and the disparity map is refined.

Local Matching Method

Local matching methods in stereo vision rely on local constraints, such as windows,
features, and phases, to perform matching, and they primarily utilize grayscale informa-
tion from images. These methods determine disparities by establishing correspondences
between the grayscale values of a given pixel and a small neighborhood of pixels. Cur-
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rently, fixed-window [47], adaptive-window [48], and multi-window [49] algorithms are
the main focus of research in window-based matching. While local matching algorithms
can rapidly generate disparity maps, their accuracy is limited, particularly in regions with
low texture and discontinuous disparities. In 2006, Yoon et al. [50] introduced the adaptive
support weight (ASW) approach, which assigns different support weights to each pixel
based on color differences and pixel distances. This technique improves matching accuracy
in low-texture regions. In 2008, Wang et al. [51] proposed cooperative competition be-
tween regions to minimize the matching costs through collaborative optimization. In 2011,
Liu et al. [52] introduced a new similarity measurement function to replace the traditional
sum of absolute differences (SAD) function. They also employed different window sizes
for matching in various regions and developed a new matching algorithm based on SIFT
features and Harris corner points, improving both matching accuracy and speed. In 2014,
Zhong et al. [53] introduced smoothness constraints and performed image segmentation us-
ing color images. They used a large window to match initial seed points and then expanded
them using a small window to obtain a disparity map, effectively reducing matching errors
in discontinuous disparity regions. In 2016, Hamzah et al. [45] addressed the limitations of
single cost metrics by combining the absolute difference (AD), gradient matching (GM), and
census transform (CN) into an iterative guided filter (GF) that enhanced edge information
in images. Additionally, they introduced graph-cut algorithms to enhance robustness in
low-texture regions and discontinuous disparity regions.

Local matching methods are efficient and flexible, yet they lack a holistic understand-
ing of the scene, which makes them prone to local optima.

Global Matching Method

Global stereo matching algorithms primarily utilize the complete pixel information
in images and the disparity information of neighboring pixels to perform matching. They
employ constraint conditions to create an energy function that integrates all of the pixels
in the image, aiming to obtain as much global information as possible. Global stereo
matching algorithms can optimize the energy function through methods such as dynamic
programming, belief propagation, and graph cuts [54].

Dynamic programming matching algorithms have been established under the con-
straint of epipolar lines. Optimal point searching and matching along each epipolar line
are performed using dynamic programming with the aim of minimizing the global energy
function and obtaining a disparity map. However, since only the pixels along the horizontal
epipolar lines are scanned, the resulting disparity map often exhibits noticeable striping
artifacts [54]. In 2006, Sung et al. [55] proposed a multi-path dynamic programming match-
ing algorithm, which introduced a new energy function that considered the correlation
between epipolar lines and utilized edge information in the images to address the discon-
tinuity caused by occlusion, resulting in more accurate disparity estimation at boundary
positions and reducing striping artifacts. In 2009, Li et al. [56] utilized the scale-invariant
feature transform (SIFT) to extract feature points from images and performed feature point
matching using a nearest-neighbor search, effectively alleviating striping artifacts. In 2012,
Hu et al. [57] proposed a single-directional four-connected tree search algorithm and im-
proved the dynamic programming algorithm for disparity estimation in boundary regions,
enhancing both the accuracy and the efficiency of disparity estimation in boundary areas.

Stereo matching algorithms based on confidence propagation are commonly formu-
lated as Markov random fields. In these algorithms, each pixel acts as a network node
containing two types of information: data information, which stores the disparity value,
and message information, which represents the node’s information to be propagated. Confi-
dence propagation occurs among four neighboring pixels, enabling messages to propagate
effectively in low-texture regions and ensuring accurate disparity estimation [58]. This
approach achieves high matching accuracy by individually matching pixels throughout the
entire image. However, it is characterized by a low matching efficiency and a long compu-
tation time. To address this issue, Zhou et al. [59] proposed a parallel algorithm in 2011.
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This algorithm divides the image into distinct regions for parallel matching, and the results
from each region are subsequently combined to enhance the overall matching efficiency.

In stereo matching, the estimation of a disparity map can be formulated as minimizing
a global energy function. Graph-cut-based matching algorithms construct a network
graph of an image, where the problem of minimizing the energy function is equivalent to
finding the minimum cut of the graph. By identifying the optimal image segmentation
set, the algorithm achieves a globally optimal disparity map [60]. However, graph-cut
algorithms often suffer from inaccurate initial matching in low-texture regions and require
the computation of template parameters for all segmentation regions, leading to poor
matching results in low-texture and occluded areas, as well as long computation times. In
2007, Bleyer et al. [61] proposed an improved approach that aggregated initial disparity
segments into a set of disparity layers. By minimizing a global cost function, the algorithm
selected the optimal disparity layer, resulting in improved matching performance in large
textureless regions. Lempitsky et al. [62] achieved significant improvements in speed
by parallelizing the computation of optimal segmentation and subsequently fusing the
results. In 2014, He et al. [63] addressed the issues of blurry boundaries and prone-to-
error matching in low-texture regions. They employed a mean-shift algorithm for image
segmentation, performed singular value decomposition to fit disparity planes, and applied
clustering and merging to neighboring segmented regions, leading to enhanced matching
efficiency and accuracy in low-texture and occluded areas.

Global matching methods incorporate the advantages of local matching methods
and adopt the cost aggregation approach used in local optimal dense matching methods.
They introduce regularization constraints to obtain more robust matching results, but they
consume more computational time and memory resources. Additionally, compared to local
matching methods, global matching methods more readily incorporate additional prior
information as constraints, such as the prevalent planar structural information in urban
scenes, thus further enhancing the refinement of reconstruction results.

Semi-Global Matching Method

Semi-global matching (SGM) [64] also adopts the concept of energy function minimiza-
tion. However, unlike global matching methods, SGM transforms the optimization problem
of two-dimensional images into one-dimensional optimization along multiple paths (i.e.,
scanline optimization). It aggregates costs along paths from multiple directions and uses
the Winner Takes All (WTA) algorithm to calculate disparities, achieving a good balance
between matching accuracy and computational cost. The census transform proposed by
Zabih [65] is widely used in matching cost computation. This method has a simple structure
but is heavily reliant on the central pixel of the local window and is sensitive to noise. In
2012, Hermann et al. [66] introduced a hierarchical iterative semi-global stereo matching
algorithm, resulting in a significant improvement in speed. Rothermel et al. [67] proposed
a method for adjusting the disparity search range based on an image pyramid matching
strategy called tSGM. They utilized the previous disparity to derive the dynamic disparity
search range for each current pixel. This further reduced memory consumption while
enhancing computational accuracy. In 2016, Tao [68] proposed a multi-measure semi-global
matching method, building upon previous research. This method improved and expanded
aspects such as the choice of penalty coefficients, similarity measures, and disparity range
adjustments in classic semi-global matching algorithms. Compared to the method in [67],
it offered enhancements in terms of reconstruction completeness and accuracy. In 2017,
Li et al. [69] used mutual information combined with grayscale and gradient information as
the matching cost function to calculate the cost values. They employed multiple adaptive
path aggregations to optimize the initial cost values. Finally, they applied methods such as a
left–right consistency check to complete the optimization. Additionally, they further refined
the matching results using peak filters. In 2018, Chai et al. [70] introduced a semi-global
matching method based on a minimum spanning tree. This approach calculated the cost
values between pixels along four planned paths and aggregated the costs in both the leaf
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node and root node directions. The algorithm resulted in fewer mismatched points near the
image edges and provided a more accurate disparity map. In 2020, Wang et al. [71] used
SURF to detect potential matching points in remote sensing stereo image pairs. This was
performed to modify the path weights in different aggregation directions, improving the
matching accuracy in areas with weak texture and discontinuous disparities. However, the
SURF step introduced additional computational burdens. Shrivastava et al. [72] extended
the traditional semi-global matching (SGM) pipeline architecture by processing multiple
pixels in parallel with relaxed dependency constraints, which improved the algorithm’s ef-
ficiency. However, it led to significant accuracy losses. In 2021, Huang et al. [73] introduced
weights during the census transform phase, enabling the accurate selection of reference
pixel values for the central point. They also used a multi-scale aggregation strategy with
guided filtering as the cost aggregation kernel, resulting in improved matching accuracy.
However, this significantly increased the algorithm’s complexity, making it less suitable for
parallel implementation. Zhao et al. [74] replaced the central pixel with the surrounding
pixels of the census window during the transformation process, making it more robust
and achieving good disparity results. In 2022, Lu et al. [75] employed a strategy involving
downsampling and disparity skipping. They also introduced horizontal path weighting
during aggregation. However, this approach introduced a new path weight parameter,
increasing the computational complexity of cost aggregation.

The current semi-global stereo matching algorithms have made significant advance-
ments in both accuracy and efficiency. However, they have not achieved a well-balanced
trade-off between accuracy and efficiency.

2.2.2. Multi-View Stereo

When using SfM for scene reconstruction, the sparsity of feature matching points often
leads to a sparse point cloud and unsatisfactory reconstruction results. To overcome this
limitation, multi-view stereo (MVS) techniques are employed to enhance the reconstruction.
MVS leverages the camera pose parameters from SfM in a scene to capture richer infor-
mation. Moreover, the image rectification and stereo matching mentioned in Section 2.2
are used in MVS. The primary goal is to identify the most effective method of matching
corresponding points across different images, thereby improving the density of the scene
and enhancing the quality of the reconstruction (Figure 6). MVS can be implemented
through three main methods: voxel-based reconstruction, feature propagation, and depth
map fusion [76].

Figure 6. Dense reconstruction based on MVS.

The voxel-based algorithm defines a spatial range—typically a cube—that encapsu-
lates the entire scene to be reconstructed. This cube is then subdivided into smaller cubes,
which are known as voxels. By assigning occupancy values to the voxels based on scene
characteristics, such as filling voxels in occupied regions and leaving others unfilled in unoc-
cupied regions, a 3D model of the object can be obtained [77]. However, this algorithm has
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limitations. Firstly, it requires an initial determination of a fixed spatial range, which limits
its ability to reconstruct objects beyond that range. Secondly, the algorithm’s complexity
restricts the number of subdivisions, resulting in relatively lower object resolution.

The feature propagation method involves generating surface slices and an initial point
cloud based on initial feature points. These feature points are projected onto images and
propagated to the surrounding areas. Finally, surface slices are used to cover the scene
surface for 3D reconstruction. Each surface slice can be visualized as a rectangle with
information such as its center and surface normal vector. By estimating surface slices and
ensuring the complete coverage of the scene, an accurate and dense point cloud structure
can be obtained [78]. In 2010, Furukawa proposed a popular feature-propagation-based
MVS algorithm called PMVS [79].

The depth map fusion method is the most commonly used and effective approach in
multi-view stereo vision. It typically involves four steps: reference image selection, depth
map estimation, depth map refinement, and depth map fusion [80]. Estimating depth
maps is a critical step in multi-view stereo reconstruction, where an appropriate depth
value is assigned to each pixel in the image. This estimation is achieved by maximizing the
photometric consistency between an image and a corresponding window in the reference
image centered at that pixel (Figure 7). Common metrics for photometric consistency
include the mean absolute difference (MAD), the sum of squared differences (SSD), the
sum of absolute differences (SAD), and normalized cross-correlation (NCC) [52].

Figure 7. Flowchart of depth estimation. The cost volume of selecting a candidate set is generated
using certain criteria, such as variance. All cost volumes are aggregated, and the depth is estimated
using the cost volume. Finally, depth maps are obtained after optimization.

3. Learning-Based Methods

Traditional 3D reconstruction methods have been widely applied in various industries
and in daily life. While traditional 3D reconstruction methods still dominate the research
field, an increasing number of researchers are starting to focus on using deep learning
to explore 3D reconstruction, or in other words, the intersection and fusion of the two
approaches. With the development of deep learning, convolutional neural networks (CNNs)
have been extensively used in computer vision. CNNs have significant advantages in image
processing, as they can directly take images as inputs, avoiding the complex processes
of feature extraction and data reconstruction in traditional image processing algorithms.
Although deep-learning-based 3D reconstruction methods have been developed relatively
recently, they have progressed rapidly. Deep learning has made significant advancements in
the research of 3D reconstruction. What roles can deep learning play in 3D reconstruction?
Initially, deep learning can provide new insights into the optimization of the performance
of traditional reconstruction methods, such as Code SLAM [81]. This approach employs
deep learning methods to extract multiple basis functions from a single image, using
neural networks to represent the depth of a scene. These representations can greatly
simplify the optimization problems present in traditional geometric methods. Secondly, the
fusion of deep-learning-based reconstruction algorithms with traditional 3D reconstruction
algorithms leverages the complementary strengths of both approaches. Furthermore, deep
learning can be used to mimic human vision and directly reconstruct 3D models. Since
humans can perform 3D reconstruction based on their brains rather than strict geometric
calculations, it is theoretically feasible to use deep learning methods directly. It is essential
to note that, in some research, certain methods aim to perform 3D reconstruction directly
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from a single image. In theory, a single image lacks the 3D information of an object and
is, thus, unable to recover depth information. However, humans can make reasonable
estimates of an object’s distance based on experience, which adds some plausibility to
such methods.

This section will introduce the applications of deep learning in traditional methods
such as structure from motion, stereo matching, and multi-view stereo vision, as well as in
the novel approach of neural-radiance-field-based 3D reconstruction.

3.1. SfM with Deep Learning

The combination of deep learning and SfM enables the efficient estimation of cam-
era poses and scene depth due to the high accuracy and efficiency of feature extraction
and matching in CNNs [82]. In 2017, Zhou et al. [83] achieved good results by utilizing
unsupervised photometric error minimization. They employed two jointly trained CNNs
to predict depth maps and camera motion. Ummenhofer et al. [84] utilized optical flow
features to estimate scene depth and camera motion, improving the generalization capabil-
ities in unfamiliar scenes. In 2018, Wang et al. [85] incorporated a multi-view geometry
constraint between depth and motion. They used a CNN to estimate the scene depth and
a differentiable module to compute camera motion. In 2019, Tang et al. [86] proposed a
deep learning framework called BA-Net (Bundle Adjustment Network). The core of the
network was a differentiable bundle adjustment layer that predicted both the scene depth
and camera motion based on CNN features. It emphasized the incorporation of multi-view
geometric constraints, enabling the reconstruction of an arbitrary number of images.

3.2. Stereo Matching with Deep Learning

In 2015, LeCun et al. [87] introduced the use of convolutional neural networks (CNNs)
for extracting image features in cost computation. Furthermore, they presented cost aggre-
gation with a cross-cost consistency check. This approach eliminated erroneous matching
areas, marking the emergence of deep learning as a significant technique in stereo matching.

3.2.1. Non-End-to-End Methods

The image networks used for stereo matching can be categorized into three main
types: pyramid networks [88], Siamese networks [89], and generative adversarial networks
(GANs) [90].

In 2018, Chang et al. [91] incorporated a pyramid pooling module during the feature
extraction stage. They utilized multi-scale analysis and a 3D-CNN structure to effectively
address issues such as vanishing and exploding gradients, achieving favorable outcomes
even under challenging conditions, such as weak textures, occlusion, and non-uniform illu-
mination. There are also some other related works, such as CREStereo [92], ACVNet [93],
and NIG [94].

Siamese networks, pioneered by Bromley et al. [89], consist of two weight-sharing
CNNs that take the left and right images as inputs. Feature vectors are extracted from
these images, and the L1 distance between the feature vectors is measured to estimate the
similarity between the images (Figure 8). MC-CNN [87] is a classic example of a network
based on Siamese networks. Zagoruyko et al. [95] enhanced the original Siamese network
by incorporating the ReLU function and smaller convolutional kernels, thereby deepening
the convolutional layers and improving the matching accuracy. In 2018, Khamis [96] utilized
a Siamese network to extract features from left and right images. They first computed a
disparity map using low-resolution cost convolution and then introduced a hierarchical
refinement network to capture high-frequency details. The guidance of a color input
facilitated the generation of high-quality boundaries.

Generative adversarial networks (GANs), which were proposed by Luo et al. [90],
consist of a generator model and a discriminator model. The generator model learns
the features of input data and generates images similar to the input images, while the
discriminator model continuously distinguishes between the generated images and the
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original images until a Nash equilibrium is reached (Figure 9). In 2018, Pilzer et al. [97]
presented a GAN framework based on binocular vision. It comprised two generator
sub-networks and one discriminator network. The two generator networks were used
in adversarial learning to train the reconstruction of disparity maps. Through mutual
constraints and supervision, they generated disparity maps from two different viewpoints,
which were then fused to produce the final data. Experiments demonstrated that this
unsupervised model achieved good results under non-uniform lighting conditions. Lore
et al. [98] proposed a deep convolutional generative model that obtained multiple depth
maps from neighboring frames, further enhancing the quality of depth maps in occluded
areas. In 2019, Matias et al. [99] used a generative model to handle occluded areas and
achieved satisfactory disparity results.

Figure 8. Architecture of Siamese networks. Two CNNs with shared weights are used to extract
image features.

Figure 9. Architecture of a GAN: generator: generates fake samples using noise and image features;
discriminator: distinguishes true samples and fake samples generated by the generator.

3.2.2. End-to-End Methods

The deep-learning-based non-end-to-end stereo matching methods mentioned in
Section 3.2.1 essentially do not deviate from the framework of traditional methods. In
general, they still require the addition of hand-designed regularization functions or post-
disparity processing steps. This means that non-end-to-end stereo matching methods have
the drawbacks of high computational complexity and low time efficiency, and they have
not resolved the issues present in traditional stereo matching methods, such as limited
receptive fields and a lack of image contextual information. In 2016, Mayer et al. [100]
successfully introduced an end-to-end network structure into the stereo matching task for
the first time and achieved good results. The design of more efficient end-to-end stereo
matching networks has gradually become a research trend in stereo matching.
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Current end-to-end stereo matching networks take left and right views as inputs. After
feature extraction using convolutional modules with shared weights, they construct a cost
volume using either correlation or concatenation operations. Finally, different convolution
operations are applied based on the dimensions of the cost volume to regress the disparity
map. End-to-end stereo matching networks can be categorized into two approaches: those
based on 3D cost volumes and those based on 4D cost volumes according to the dimensions
of the cost volume. In this article, the focus is on 4D cost volumes.

In contrast to architectures inspired by traditional neural network models, end-to-
end stereo matching network architectures based on 4D cost volumes are specifically
designed for the stereo matching task. In this architecture, the network no longer performs
dimension reduction on the features, allowing the cost volume to retain more image
geometry and contextual information. In 2017, Kendall et al. [101] proposed a novel deep
disparity learning network named GCNet, which creatively introduced a 4D cost volume
and, for the first time, utilized 3D convolutions in the regularization module to integrate
contextual information from the 4D cost volume. This pioneering approach established
a 3D network structure that was specifically designed for stereo matching (Figure 10). It
first used weight-sharing 2D convolutional layers to separately extract high-dimensional
features from the left and right images. At this stage, downsampling was performed to
reduce the original resolution by half, which helped reduce the memory requirements.
Then, the left feature map and the corresponding channel of the right feature map were
combined pixel-wise along the disparity dimension to create a 4D cost volume. After that,
it utilized an encoding–decoding module consisting of multi-scale 3D convolutions and
deconvolutions to regularize the cost volume, resulting in a cost volume tensor. Finally, the
cost volume was regressed with a differentiable Soft ArgMax to obtain the disparity map.
GC-Net was considered state of the art due to its 4D (height, width, disparity, and feature
channels) volume. In 2018, Chang et al. [91] proposed the pyramid stereo matching network
(PSMNet). It was primarily composed of a spatial pyramid pooling (SPP) module and a
stack of hourglass-shaped 3D CNN modules. The pyramid pooling module was responsible
for extracting multi-scale features to make full use of global contextual information, while
the stacked hourglass 3D encoder–decoder structure regularized the 4D cost volume to
provide disparity predictions. However, due to the inherent information loss in the pooling
operations at different scales within the SPP module, PSMNet exhibited lower matching
accuracy in image regions that contained a significant amount of fine detail information,
such as object edges.

Although end-to-end networks based on 4D cost volumes achieve good matching
results, the computational complexity of the 3D convolutional structure itself results in high
costs in terms of both storage resources and computation time. In 2019, Wang et al. [102]
introduced a three-stage disparity estimation network called AnyNet, which used a coarse-
to-fine strategy. Firstly, the network constructed a low-resolution 4D cost volume using
low-resolution feature maps as input. Then, it searched within a smaller disparity range
using 3D convolutions to obtain a low-resolution disparity map. Finally, it upsampled
the low-resolution disparity map to obtain a high-resolution disparity map. This method
was progressive, allowing for stopping at any time to obtain a coarser disparity map,
thereby trading matching speed for accuracy. Zhang et al. [103] proposed GA-Net, which
replaced many 3D convolutional layers in the regularization module with semi-global
aggregation (SGA) layers and local guided aggregation (LGA) layers. SGA is a differentiable
approximation of cost aggregation methods used in SGM, and the penalty coefficient is
learned by the network instead of being determined by prior knowledge. This provides
better adaptability and flexibility for different regions of an image. The LGA layer is
appended at the end of the network to aggregate local costs with the aim of refining
disparity near thin structures and object edges.
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Figure 10. Architecture of GC-Net [101]. Step 1: Weight-sharing 2D convolution is used to extract
image features and downsample. Step 2: The 4D cost volume is created by combining left and right
images’ feature maps. Step 3: The cost volume is regularized through multi-scale 3D convolution
and 3D deconvolution. Step 4: The cost volume is regressed with a differentiable Soft ArgMax, and a
disparity map is obtained.

3.3. MVS with Deep Learning

In 2018, Yao et al. pioneered the combination of convolutional neural networks
and MVS, resulting in the development of MVSNet [104]. They extracted image features
using a CNN, utilized a differentiable homography matrix to construct a cost volume,
and regularized the cost volume using 3D U-Net, enabling multi-view depth estimation
(Figure 11). Building upon this work, Yao et al. [105] introduced RMVSNet (recurrent
MVSNet) in 2019. By replacing the 3D CNN convolution in MVSNet with gated units, they
achieved reduced memory consumption. Chen et al. [106] proposed PointMVSNet, which
employed graph convolutional networks to refine the point cloud generated by MVSNet.
Luo et al. [107] introduced P-MVSNet (Patchwise MVSNet), which significantly improved
the accuracy and completeness of depth maps and reconstructed a point cloud through
the application of the Patchwise approach. Xue et al. [108] proposed MVSCRF (MVS
Conditional Random Field), which incorporated a conditional random field (CRF) module
to enforce smoothness constraints on the depth map. This approach resulted in enhanced
depth estimation. Yi et al. [109] presented PVA-MVSNet (Pixel View Adaptive MVSNet),
which generated depth estimation with higher confidence by adaptively aggregating views
at both the pixel and voxel levels. Yu et al. [110] introduced Fast-MVSNet, which utilized
sparse cost volume and Gauss–Newton layers to enhance the runtime speed of MVSNet. In
2020, Gu et al. [111] introduced Cascade MVSNet, a redesigned model that encoded features
from different scales using an image feature pyramid in a cascading manner. This approach
not only saved memory resources but also improved MVS speed and accuracy. Yang
et al. [112] proposed CVP-MVSNet (Cost–Volume Pyramid MVSNet), which employed
a pyramid-like cost–volume structure to adjust the depth map at different scales, from
coarse to fine. Cheng et al. [113] developed a network that automatically adjusted the
depth interval to avoid dense sampling and achieved high-precision depth estimation.
Yan et al. [114] introduced D2HC-RMVSNet (Dense Hybrid RMVSNet), a high-density
hybrid recursive multi-view stereo network that incorporated dynamic consistency checks,
yielding excellent results while significantly reducing memory consumption. Liu et al. [115]
proposed RED-Net. It introduced a recurrent encoder–decoder (RED) architecture for
sequential regularization of cost volume, achieving higher efficiency and accuracy while
maintaining resolution, which was beneficial for large-scale reconstruction. In 2022, a
significant number of works based on some helpful modules in computer vision, such as
attention and transformers, were introduced [116–120]. In 2023, Zhang et al. [121] proposed
DSC-MVSNet, which used separable convolution based on depth and attention modules
to regularize the cost volume. Zhang et al. [122] proposed vis-MVSNet, which estimated
matching uncertainty and integrated pixel-level occlusion information within the network
to enhance depth estimation accuracy in scenes with severe occlusions. There were also
more studies on MVSNet (Figure 12), such as MS-REDNet [123], AACVP-MVSNet [124],
Sat-MVSF [125], RA-MVSNet [126], M3VSNet [127], and Epp-MVSNet [128].
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Figure 11. Overview of MVSNet [104]. Image features are extracted by multiple CNNs that share
weights. Then, a differentiable homography matrix and variance metric are utilized to generate the
cost volume, and a 3D U-Net is used to regularize the cost volume. Finally, depth maps are estimated
and refined with the regularized probability volume and a reference image.

Figure 12. Chronological overview of MVSNet methods [104–128].

3.4. Neural Radiance Fields

In 2020, a groundbreaking scene-rendering technique called Neural Radiance Fields
(NeRF) was introduced by Ben et al. [129]. NeRF is an end-to-end learning framework that
leverages the spatial coordinates of objects and camera poses as input, and a multi-layer
perceptron (MLP) network is utilized to simulate a neural field. This neural field represents
a scalar property, such as opacity, of the object in a specific direction. By tracing rays
through the scene and integrating colors based on the rays and opacity, NeRF generates
high-quality images or videos from novel viewpoints (Figure 13). Building upon NeRF,
Zhang et al. [130] proposed NeRF++, which addresses the potential shape–illumination
ambiguity. It acknowledges that, while the geometric representation of space in an NeRF
model trained on a scene’s dataset could be incorrect, it can still render accurate results on
the training samples. However, for unseen views, incorrect shapes may result in imperfect
generalization. NeRF++ tackles this challenge and resolves the parameterization issue when
applying NeRF to unbounded 360° scenes. This enhancement allows for better capturing
of objects in large-scale, unbounded 3D scenes. Although NeRF itself does not possess
inherent 3D object reconstruction capabilities, modifications and variants that incorporate
geometric constraints have been developed. These NeRF-based methods enable the end-to-
end reconstruction of 3D models of objects or scenes by integrating geometric constraints
into the learning framework. There have been a significant number of studies on NeRF in
recent years (Figure 14), such as DeRF [131], depth-supervised NeRF [132], Mip-NeRF [133],
Mip-NeRF 360 [134], Ha-NeRF [135], DynIBaR [136], MRVM-NeRF [137], MVSNeRF [138],
PointNeRF [139], and ManhattanNeRF [140].
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Figure 13. A pipeline of NeRF. The 5D information, including the 3D position of the pixel of the
target scene and the view direction observing the scene, is input into an MLP. Then, the color and
density information about the pixel are output. Finally, the volume is rendered using loss functions.

Figure 14. Chronological overview of NeRF methods [129–159].

When facing large-scale outdoor scenes, the main challenges that need to be addressed
are as follows:

• Accurate six-DoF camera pose estimation;
• Normalization of lighting conditions to avoid overexposed scenes;
• Handling open outdoor scenes and dynamic objects;
• Striking a balance between accuracy and computational efficiency.

To obtain more accurate camera poses, in 2021, Lin et al. [141] proposed I-NeRF, which
inverted the training of NeRF by using a pre-trained model to learn precise camera poses.
Lin et al. [142] introduced BA-NeRF, which could optimize pixel-level loss even with noisy
camera poses by computing the difference between the projected results of rotated camera
poses and the given camera pose. They also incorporated an annealing mechanism in the
position-encoding module, gradually introducing high-frequency components during the
training process, resulting in accurate and stable reconstruction results.

To address the issue of lighting, in 2021, Ricardo et al. [143] introduced two new
encoding layers: appearance embedding, which modeled the static appearance of the
scene, and transient embedding, which modeled transient factors and uncertainties, such
as occlusions. In 2022, by learning these embeddings, they achieved a control mechanism
for adjusting a scene’s lighting. Darius et al. [144] proposed the ADOP (approximate
differentiable one-pixel point) rendering method, which incorporated a camera-processing
pipeline to rasterize a point cloud, and they fed it into a CNN for convolution, resulting in
high-dynamic-range images. They then utilized traditional differentiable image processing
techniques, such as lighting compensation, and trained the network to learn the corre-
sponding weights, achieving fine-grained modeling. Ben et al. [145] discovered the issue of
inconsistent noise between RGB-processed images and the original data. They proposed
training NeRF on the original images before RGB processing and obtaining RGB images
using image processing methods. This approach resulted in more consistent and uniform
lighting. This approach leveraged the implicit alignment capabilities of NeRF and utilized
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the consensus relationships between multiple shots to complement each other’s informa-
tion. Rudnev et al. [146] introduced the NeRF-OSR method, which learned an implicit
neural scene representation by decomposing the scene into spatial occupancy, illumination,
shadow, and diffuse reflectance. This method supported the meaningful editing of scene
lighting and camera viewpoints simultaneously and in conjunction with semantics.

When modeling open scenes and dynamic objects and when modeling outdoor scenes
with NeRF, neglecting the far scene can result in background errors, while modeling it can
lead to a reduced resolution in the foreground due to scale issues. NeRF++, which was
created by Zhang et al. [130], addressed this problem by proposing a simplified inverse
sphere-parameterization method for free viewpoint synthesis. The scene space was divided
into two volumes: an inner unit sphere, representing the foreground and all cameras, and an
outer volume, represented by an inverted sphere that covered the complementary portion
of the inner volume. The inner volume contained the foreground and all cameras, while
the outer volume represented the remaining environment, and both parts were rendered
using separate NeRF models. In 2021, Julian et al. [147] introduced the neural scene graph
(NSG) method for dynamic rigid objects. It treated the background as the root node and the
moving objects as the foreground (neighbor nodes). The relationships between poses and
scaling factors were used to create edges in the associated graph, and intersections between
rays and the 3D bounding boxes of the objects were verified along the edges. If there was
an intersection, the rays were bent, and modeling was performed separately for the inside
and outside of the detection box to achieve consistent foreground–background images.
Paul et al. [148] proposed TransNeRF based on transfer learning, where they first used
a generative adversarial network (GAN) called GLO [149] to learn and model dynamic
objects based on NeRF-W [143]. Then, a pre-trained NeRF++ was used as the MLP module
in the network (Figure 15). In 2022, Abhijit et al. [150] introduced Panoptic NeRF, which
decomposed dynamic 3D scenes into a series of foreground and background elements,
representing each foreground element with a separate NeRF model.

Figure 15. Architecture of TransNeRF [148]. The 3D position is input into a color MLP to obtain
color information and into the GLO module to generate a scene appearance embedding. The color
information, view direction, and appearance embedding go through another density MLP to obtain
the density information. Both of the MLPs come from an NeRF++ model, and the feature weights of
the density MLP guide the training of the next batch of input images.

In terms of large-scale scenes, Haithem et al. [151] proposed Mega-NeRF for drone
scenes, which employed a top-down 2D grid approach to divide the scene into multiple
grids. The training data were then reorganized into each grid based on the intersections
between camera rays and the scene, enabling individual NeRF models to be trained for each
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grid. They also introduced a new guided sampling method that sampled points only near
the object’s surface, improving the rendering speed. In addition, improvements were made
to NeRF++ by dividing the scene into foreground and background regions using ellipsoids.
Taking advantage of the camera height measurements, rays were terminated near the
ground to further refine the sampling range. Derksen et al. [152] introduced S-NeRF, which
was the first application of Neural Radiance Fields to the reconstruction of 3D models from
multi-view satellite images. It directly modeled direct sunlight and a local light field and
learned the diffuse light, such as sky light, as a function of the sun’s position. This approach
leveraged non-correlated effects in satellite images to generate realistic images under
occlusion and changing lighting conditions. In 2022, Xu et al. [153] proposed BungeeNeRF,
which used progressive learning to gradually refine the fitting of large-scale city-level
3D models, starting from the distant view and progressively capturing different levels of
detail. Rematas et al. [154] introduced Urban Radiance Fields (URFs), which incorporated
information from LiDAR point clouds to guide NeRF in reconstructing street-level scenes.
Matthew et al. [155] proposed BlockNeRF, which divided large scenes based on prior
map information. They created circular blocks centered around the projected points of
the map’s blocks and trained a separate NeRF model for each block. By combining the
outputs of multiple NeRF models, they obtained optimal results. Mari et al. [156] extended
the work of S-NeRF by introducing a rational polynomial camera model to improve the
robustness of the network to changing shadows and transient objects in satellite cameras.
Huang et al. [157] took a traditional approach by assuming existing surface hypotheses
for buildings. They introduced a new energy term to encourage roof preference and two
additional hard constraints, explicitly obtaining the correct object topology and detail
recovery based on LiDAR point clouds. In 2023, Zhang et al. [158] proposed GP-NeRF,
which introduced a hybrid feature based on 3D hash grid features and multi-resolution
plane features. They extracted the grid features and plane features separately and then
combined them as inputs into NeRF for density prediction. The plane features were also
separately input into the color-prediction MLP network, improving the reconstruction
speed and accuracy of NeRF in large-scale outdoor scenes. Xu et al. [159] proposed Grid-
NeRF, which combined feature grids and introduced a dual-branch structure with a grid
branch and a NeRF branch trained in two stages. They captured scene information using
a feature plane pyramid and input it into the shallow MLP network (grid branch) for the
feature grid learning. The learned feature grid guided the NeRF branch to sample object
surfaces, and the feature plane was bilinearly interpolated to predict the grid features of
the sampled points. These features, along with positional encoding, were then input into
the NeRF branch for rendering.

4. Datasets and Evaluation Metrics

According to the different types of target tasks, the datasets for 3D reconstruction can
be also divided into different categories (Table 1). The datasets mentioned in this section
are commonly used in corresponding tasks, which mainly include large-scale scenes. These
datasets comprise high-resolution satellite images, low-altitude images captured by UAVs,
and street-view images captured with handheld cameras in urban environments. They
provide rich urban scenes, encompassing diverse architectural structures and land cover
types, which are crucial for this research on large-scale 3D reconstruction. Additionally,
the evaluation metrics depend on the reconstruction methods, which will be introduced in
detail in this section.
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Table 1. Brief introduction to the datasets for the 3D reconstruction of large-scale or outdoor scenes.

Dataset Name
Images

Number of Scenes Task Details of Objects
Type Numbers Resolution

Quad6K [160] Internet 6514 / / SfM Street view,
landmarks

Dubrovnik6K [161] Internet 6844 / / SfM Street view,
landmarks

Rome16K [161] Internet 16,179 / / SfM Street view,
landmarks

The older
NotreDame [18] Internet 715 / 1 SfM Street view,

landmarks

WHU-Stereo [162] Remote
sensing 1757 pairs / 12 Stereo

matching

Buildings and vegetation
scenes of six cities in

China

US3D [163] Remote
sensing 4292 pairs / 2 Stereo

matching

Two satellite urban scenes
from Jacksonville and

Omaha

Satstereo [164] Remote
sensing / / / Stereo

matching
Images from

WorldView-2 and 3

ETH3D [165] Handheld
camera 350 2048 × 1536 7 MVS

Buildings, natural
landscapes,

indoor scenes and
industrial scenes

Tanks and
Temples [166]

Handheld
camera / / 21 MVS

Large outdoor scenes
such as museums, palaces,

and temples;
some indoor scenes and

sculptures

Sensefly [167] UAV / / / MVS Cities, highway, blueberry
field and other scenes

BlendedMVS [168] Created
by Mesh 17,818 768 × 576/

2048 × 1536 113 MVS

29 large scenes, 52 small
scenes,

and 32 scenes of
sculptures

Mill19 [151] UAV 3618 4608 × 3456 2 NeRF
Two scenes around an

industrial
building and nearby ruins

GL3D [168,169] UAV 125,623 High-resolution 543 SfM, MVS

Including urban areas,
rural areas,

scenic spots, and small
objects

UrbanScene3D [170] Cars and UAV 128K High-resolution 16 MVS, NeRF
Urban scenes including

10 virtual and 6 real
scenes

4.1. Structure from Motion
4.1.1. Datasets

The BigSfM project contains a large number of SfM datasets that are mainly used
for the reconstruction of large-scale outdoor scenes. It was proposed by Cornell Univer-
sity. These datasets are usually collected on the Internet, including multiple sets of city
landmark images downloaded from Flickr and Google (Figure 16), such as Quad 6K [160],
Dubrovnik6K [161], Rome16K [161], and the older NotreDame [18].
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Figure 16. Some famous and common datasets of the BigSfM project.

Quad6K: This dataset contains 6514 images of Cornell University’s Arts Quad; the
geographic information from about 5000 images was recorded with the GPS receiver of the
user’s own iPhone 3G, and the geographic information from 348 images was measured
and recorded using high-precision GPS equipment.

Dubrovnik6K: This dataset contains 6844 images of landmarks in the city of Dubrovnik,
and it consists of SIFT features, SfM models, and query images corresponding to SIFT fea-
tures.

Rome 16K: This dataset contains 16,179 images of landmarks in Roman cities, and it
consists of SIFT features, SfM models, and query images corresponding to SIFT features.

The older NotreDame: This dataset contains 715 images of Notre Dame.

4.1.2. Evaluation Metrics

SfM restores the sparse 3D structure in the case of unknown camera poses, and it is
difficult for it to obtain the ground truth of a reconstruction, so indirect evaluation metrics
are generally used to reflect the reconstruction quality. Therefore, the evaluation metrics of
SfM are the number of registered images (Registered), the number of sparse point clouds
(Points), the average length of the trajectory (Track), and the point cloud reprojection error
(Reprojection Error).

• Registered: The more registered images there are, the more information is used in SfM
reconstruction, which indirectly indicates the accurate reconstruction of the points
because the reconstruction registration depends on the accuracy of the intermediate
process points.

• Points: The more points there are in the sparse point cloud, the higher the degree of
matching between the poses of the camera and the 2D points because the accuracy of
triangulation depends on both of the above.

• Track: The number of 2D points corresponding to each 3D point. The longer the
trajectory of the point, the more information is used, which indirectly means that the
accuracy is high.

• Reprojection Error: The average distance error between the position of each 3D point
projected to each frame with the poses and the position of the actual detected 2D point.
The smaller the reprojection error, the higher the accuracy of the overall structure.

4.2. Stereo Matching
4.2.1. Datasets

WHU-Stereo [162]: This dataset is based on images of GF-7 and airborne LiDAR
point clouds (Figure 17), including buildings and vegetation scenes in six cities in China:
Shaoguan, Kunming, Yingde, Qichun, Wuhan, and Hengyang. There are 1757 image pairs
with dense disparities.
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Figure 17. Examples from the WHU-Stereo dataset. Areas covered by GF-7 satellite images of the
cities of Yingde and Shaoguan (a) and approximate LiDAR data (b).

US3D [163]: This dataset contains two urban scenes from Jacksonville, Florida and
Omaha, Nebraska. A total of 4292 image pairs with dense disparities were constructed
from 26 panchromatic, visible-light, and near-infrared images of Jacksonville and 43 images
of Omaha, and they were collected using WorldView-3 (Figure 18). However, since many
of the image pairs were captured from the same area and taken at different times, there
may be seasonal differences in the appearance of land cover.

Figure 18. Examples from the US3D dataset. Epipolar rectified images (top) with ground truth left
disparities and semantic labels (bottom).

Satstereo [164]: Most of this dataset uses WorldView-3 images, and a small portion
comes from WorldView-2. In addition to the dense disparity, it also builds masks and
provides metadata for each image, but as with US3D, there are differences in the seasonal
appearance of land cover due to the different acquisition times.

4.2.2. Evaluation Metrics

The main evaluation criteria for stereo matching algorithms are the disparity map’s
accuracy and the time complexity. The evaluation metrics for the disparity map’s accuracy
include the false matching rate, the mean absolute error (MAE), and the root mean square
error (RMSE) [44].
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• The false matching rate is

B =
1
N ∑(x,y) (|dc(x, y)− dGT(x, y)| > σd) (1)

where dc(x, y) and dGT(x, y) are the respective pixel values of the generated disparity
map and the real disparity map. σd is the evaluation threshold that one sets, and when
the difference is greater than σd, the pixel is marked as a mismatched pixel. N is the
total number of pixels in the disparity map.

• MAE:

AVE =
1
N ∑(x,y) |dc(x, y)− dGT(x, y)| (2)

• RMSE:

RMSE =

(
1
N ∑(x,y) |dc(x, y)− dGT(x, y)|2

) 1
2

(3)

4.3. Multi-View Stereo
4.3.1. Datasets

ETH3D [165]: This dataset includes images captured with high-definition cameras and
the ground truth of dense point clouds obtained with industrial laser scanners; it includes
buildings, natural landscapes, indoor scenes, and industrial scenes (Figure 19). The data of
the two modalities are aligned through an optimization algorithm.

Figure 19. Examples from the ETH3D dataset. Some high-resolution images of buildings and
outdoor scenes.
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Tanks and Temples [166]: This dataset involved the use of a high-definition camera
to shoot videos of real scenes (Figure 20). The number of images in each scene is about
400, and the camera poses are unknown. The ground truth of the dense point cloud was
obtained using an industrial laser scanner.

Figure 20. Examples from Tanks and Temples dataset. Some high-resolution images of the
palace scene.

Sensefly [167]: This is an outdoor scene dataset released by Sensefly, a light fixed-
wing UAV company, and it includes schools, parks, cities, and other scenes, with RGB,
multi-spectral, point cloud, and other data types (Figure 21).

Figure 21. Some typical examples from the dataset created by Sensefly, including cities, highways,
blueberry fields, and other scenes.

BlendedMVS [168]: This dataset is a large-scale MVS dataset for generalized multi-
view stereo networks. The dataset has a total of 17,000 MVS training samples, including
113 scenes, with buildings, sculptures, small objects, and so on. Additionally, there are
29 large scenes, 52 small scenes, and 32 scenes of sculptures (Figure 22).
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Figure 22. Examples from the BlendedMVS dataset. High-resolution images of 12 large scenes from a
total of 113 scenes.

4.3.2. Evaluation Metrics

The purpose of multi-view stereo vision is to estimate a dense 3D structure under the
premise of knowing the camera poses. If the camera poses are unknown, it is necessary to
estimate the camera poses first with SfM. The evaluation of the dense structures is generally
based on a point cloud obtained using LiDAR or depth cameras. Some of the correspond-
ing camera poses are directly acquired using a robotic arm during collection, such as in
DTU [171], and some are estimated based on the collected depth, such as in ETH3D or
Tanks and Temples. The evaluation metrics are the accuracy and completeness, as well
as the F1-score, which balances the two. Additionally, some evaluation and visualization
results for typical MVSNet models are shown in Table 2 and Figures 23 and 24.

• Accuracy: For each estimated 3D point, a true 3D point is found within a certain
threshold, and the final matching ratio is the accuracy. It should be noted that, since
the ground truth of the point cloud itself is incomplete, it is necessary to estimate the
unobservable part of the ground truth first and ignore it when estimating the accuracy.

• Completeness: The nearest estimated 3D point is found within a certain threshold for
each true 3D point, and the final matching ratio is the completeness.

• F1-Score (F1-Score): There is a trade-off between the metrics of accuracy and complete-
ness because points can be filled in the entire space to achieve 100% completeness,
or only very few absolutely accurate points can be reserved to obtain a very high
accuracy index. Therefore, the final evaluation metrics need to integrate both of the
above. Assuming that the accuracy is p and the completeness is r, the F1-score is their
harmonic mean, i.e., 2pr

p+r .

Figure 23. Visualization of the error in point cloud models from the Tanks and Temples dataset
reconstructed with DSC-MVSNet methods.
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Table 2. F1 results of different MVSNet models on the Tanks and Temples benchmark.

Methods Mean Family Francis Horse Lighthouse M60 Panther Playground Train

MVSNet [104] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.9 34.69
RMVSNet [105] 48.4 69.96 46.65 32.59 42.95 51.88 48.8 52 42.38

PointMVSNet [106] 48.27 61.79 41.15 34.2 50.79 51.97 50.85 52.38 43.06
P-MVSNet [107] 55.62 70.04 44.64 40.22 65.2 55.08 55.17 60.37 54.29
MVSCRF [108] 45.73 59.83 30.6 29.93 51.15 50.61 51.45 52.6 39.68

PVA-MVSNet [109] 54.46 69.36 46.8 46.01 55.74 57.23 54.75 56.7 49.06
Fast-MVSNet [110] 47.39 65.18 39.59 34.98 47.81 49.16 46.2 53.27 42.91
CasMVSNet [111] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 57.18 49.51

CVP-MVSNet [112] 54.03 76.5 47.74 36.34 55.12 57.28 54.28 57.43 47.54
DSC-MVSNet [121] 53.48 68.06 47.43 41.6 54.96 56.73 53.86 53.46 51.71
vis-MVSNet [122] 60.03 77.4 60.23 47.07 63.44 62.21 57.28 60.54 52.07

AACVP-MVSNet [124] 58.39 78.71 57.85 50.34 52.76 59.73 54.81 57.98 54.94

Bold values means the best values compared to all list values of each column.

Figure 24. Results of point clouds from vis-MVSNet [122] on the intermediate set of Tanks and Temples.

4.4. Neural Radiance Fields
4.4.1. Datasets

Mill 19 [151]: This dataset comprises photos of scenes near abandoned industrial parks
that were taken directly using UAVs, with a resolution of 4608 × 3456. It contains two
main scenes: Mill 19-Building and Mill 19-Rubble (Figure 25). Mill 19-Building consists of
1940 grid photos of an area of 500 × 250 square meters around an industrial building, and
Mill 19-Rubble contains 1678 photos of all nearby ruins.

Figure 25. Examples from the Mill 19 dataset. Ground-truth images of two different scenes called
“building” and “rubble” captured by a drone.

4.4.2. Evaluation Metrics

The evaluation metrics for NeRF refer to the image generation task in computer
vision, and they include the artificially designed and relatively simple SSIM and PSNR, as
well as the LPIPS, which compares the features extracted using a deep learning network.
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Additionally, some evaluation and visualization results from typical NeRF models are
shown in Tables 3 and 4 and Figures 26–28.

Table 3. Results of different NeRF models on a synthetic NeRF benchmark dataset [129].

Metrics NeRF [129] NeRF++ [130] DS-NeRF [132] mip-NeRF [133] MVSNeRF [138] Point-NeRF [139]

PSNR↑ 31.01 31.65 24.9 33.09 27.07 33.31
SSIM↑ 0.947 0.952 0.72 0.961 0.931 0.978
LPIPS↓ 0.081 0.051 0.34 0.043 0.163 0.049

Bold values means the best values compared to all list values of each row.

Table 4. Results of different NeRF models on the Mill19 [151] and Quad6K [160] benchmarks.

Methods
Mill19-Building Mill19-Rubble Quad 6K

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [129] 19.54 0.525 0.512 21.14 0.522 0.546 16.75 0.559 0.616
NeRF++ [130] 19.48 0.52 0.514 20.9 0.519 0.548 16,73 0.56 0.611

Mega-NeRF [151] 20.93 0.547 0.504 24.06 0.553 0.516 18.13 0.568 0.602
GP-NeRF [158] 20.99 0.565 0.49 24.08 0.563 0.497 17.67 0.521 0.623

Bold values means the best values compared to all list values of each column.

SSIM (structure similarity index measure) [172]: This measure quantifies the structural
similarity between two images, imitating the human visual system’s perception of structural
similarity. It is designed to be sensitive to changes in an image’s local structure. The measure
assesses image attributes based on brightness, contrast, and structure. The brightness is
estimated using the mean, the contrast is measured using the variance, and the structural
similarity is judged using the covariance. The value of the SSIM ranges from 0 to 1. The
larger the value, the more similar the two images are. If the value of SSIM is 1, the two
images are exactly the same. The formulas are as follows:

• Illumination:

l(x, y) =
2µxµy + c1

µx2 + µy2 + c1
(4)

• Contrast:

c(x, y) =
2σxσy + c2

σx2 + σy2 + c2
(5)

• Structural Score:

s(x, y) =
σxy + c3

σxσy + c3
(6)

• SSIM:
SSIM(x, y) = l(x, y)α · c(x, y)βs(x, y)γ (7)

where µx, µy, σx, σy, respectively, represent the mean and standard deviation of images
x and y; σxy is the covariance of images x and y; c1, c2, and c3 are constants to prevent
division by 0; α, β, and γ represent the weights of different features when calculating
the similarity.

PSNR (peak signal-to-noise ratio) [148]: The PSNR, which measures the maximum
image signal and background noise, is used to evaluate image quality. The larger the value,
the less image distortion there is. Generally speaking, a PSNR higher than 40 dB indicates
that the image quality is almost as good as that of the original image, a value between
30 and 40 dB usually indicates that the distortion loss of the image quality is within an
acceptable range, a value between 20 and 30 dB indicates that the image quality is relatively
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poor, and a value lower than 20 dB indicates serious image distortion. Given a grayscale
image I and a noise image K of size m x n, the MSE (mean square error) is as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]
2

(8)

PSNR = 10 · log10

(
MAXI

2

MSE

)
(9)

where MAXI is the maximum pixel value of the image.

Figure 26. Results of Point-NeRF [122] on the Tanks and Temples dataset.

Figure 27. Visualization results of Mega-NeRF [151] and GP-NeRF [158] on the Mill19 and
Quad6K datasets.



Remote Sens. 2024, 16, 773 29 of 38

Figure 28. DSM results of Sat-NeRF [156] on their own dataset: (a) 2D visualization; (b) 3D visualiza-
tion of scene 608.

LPIPS (learned perceptual image patch similarity): This metric was proposed by Zhang
et al. [173] and is also called “perceptual loss”; it is a measurement of the distinction
between two images. A generator employs a method capable of reconstructing authentic
images from fabricated ones. This is achieved by learning the inverse mapping from
generated images to the ground truth. Additionally, it emphasizes the perceptual similarity
between these images. The LPIPS fits the situation of human perception better than
traditional methods do. A low value of the LPIPS represents high similarity between
two images. The specific metric calculates the feature difference between a real sample
and a generated sample in a model. This difference is calculated in each channel, and it is
the weighted average of all channels. Given the ground-truth image reference block and
the noisy image distortion block, the formula for the measure of perceptual similarity is
as follows:

d(x, x0) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl ⊙
(

ŷl
hw − ŷl

0hw

)∥∥∥2

2
(10)

where wl is the weight vector of layer l, ⊙ indicates element-by-element multiplication,
and ŷ is the image feature.

4.5. Comprehensive Datasets

GL3D (Geometric Learning with 3D Reconstruction [168,169]): This is a large-scale
dataset created for 3D reconstruction and geometry-related problems with a total of
125,623 high-resolution images. Most of the images were captured by UAVs at multi-
ple scales and angles, with a large geometric overlap, covering 543 scenes, such as cities,
rural areas, and scenic spots (Figure 29). Each scene’s datapoint contains a complete image
sequence, geometric labels, and reconstruction results. Besides large scenes, GL3D also
includes the reconstruction of small objects to enrich data diversity. For the SfM task,
GL3D provides image and camera parameters after de-distortion; for the MVS task, GL3D
provides rendering fusion maps and depth maps for different viewpoints based on the
Blended MVS dataset.

UrbanScene3D [170]: This is a large-scale outdoor dataset for the perception and
reconstruction of urban scenes, with a total of more than 128,000 high-resolution images,
including 10 virtual scenes and six real scenes (Figure 30). The area is 136 square kilometers,
including three large-scale urban scenes covering an area of more than 24 square kilometers
and two complete real scenes covering an area of more than one square kilometer. In order
to evaluate the reconstruction accuracy and completeness of the reconstructed models of
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real scenes, UrbanScene3D used LiDAR scanners with GPS positioning equipment to scan
entire buildings in the scenes to obtain high-precision scene-scanning point clouds.

Figure 29. Examples from the GL3D dataset. Original images of different scenes, including large
scenes, small objects, and 3D models of the scenes.

Figure 30. A glance of UrbanScene 3D dataset, with 10 virtual scenes (top) and 6 real scenes (bottom).

5. Results and Discussion

With the advancement of deep learning techniques, passive image-based 3D recon-
struction tasks have made significant progress from static indoor scenes to large-scale
outdoor environments. However, several challenges still exist.

• Reconstructing areas with texture repetition or weak textures, such as lakes and walls,
often leads to reconstruction failures and holes in the reconstructed models. The
accuracy of the reconstruction of fine details of objects is still insufficient.

• The construction of datasets for large-scale outdoor scenes is crucial for the devel-
opment of 3D reconstruction techniques. Currently, there is a scarcity of dedicated
datasets for large-scale outdoor scenes, especially city-level real-world scenes.

• The current methods for the 3D reconstruction of large-scale scenes are time-intensive
and unable to facilitate real-time reconstruction. Despite the implementation of strate-
gies such as scene partitioning during training and the utilization of computing clus-
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ters to expedite the process, these methods still fall short of achieving the efficiency
levels required for real-time industrial applications.

• Outdoor scenes contain large numbers of dynamic objects that can significantly impact
processes such as image feature matching and camera pose estimation, leading to a
decrease in the accuracy of the reconstructed models.

Given the aforementioned challenges and the current state of key technologies in
image-based 3D reconstruction, there are several important areas that warrant attention.

• Addressing the issue of regions with weak textures: Previous studies have focused on
incorporating semantic information in indoor scenes to recognize and constrain weak-
texture areas, thereby improving reconstruction accuracy. However, in the context
of the reconstruction of large-scale outdoor scenes, it is crucial to integrate semantic
information not only for areas with weak textures but also for common objects in
outdoor scenes, such as buildings and dynamic objects. This integration of semantic
information represents a significant research direction.

• Building large-scale real-world datasets: Constructing comprehensive datasets for
city scenes using data from satellites, aerial planes, drones, and other sources is of
paramount importance. Additionally, there is a need for more robust evaluation
algorithms for 3D reconstruction. The current metrics, which are largely borrowed
from the 2D image domain, may not fully capture the complexities of 3D reconstruc-
tion. Future research should focus on developing evaluation algorithms that combine
global and local aspects, as well as visual and geometric accuracy, to provide a more
comprehensive assessment of 3D reconstruction results.

• Real-time reconstruction: Image-based 3D reconstruction is computationally intensive,
making real-time reconstruction a significant challenge. Recent studies have explored
methods such as federated learning, where individual drones train using their own
data, to improve efficiency. Therefore, integrating techniques such as federated learn-
ing and scene partitioning to train lightweight network models using large-scale
scene data will be a crucial and challenging research area for achieving the real-time
3D reconstruction of outdoor scenes. This research has significant implications for
applications in areas such as smart cities and search-and-rescue missions.

• Fusion of images with other sensors: Another valuable direction is the exploration
of efficient fusion techniques that combine images with other sensor data, such as
LiDAR data, to address challenges related to some large and complex scenes, including
unconventional architecture, vegetation, and occlusions, during the reconstruction of
outdoor scenes. By effectively integrating multiple sensor modalities, the accuracy of
reconstruction can effectively be improved. This can provide significant enhancements
for the planarity of irregular structures and contribute to the restoration of ground
points in scenes with dense vegetation.

6. Conclusions

Three-dimensional reconstruction is a fundamental task in the field of computer vision,
and its application in outdoor scene reconstruction holds significant importance in real-
world scenarios. This study specifically addresses passive methods that are suitable for
large-scale outdoor scene reconstruction. A concise overview of both traditional and deep-
learning-based approaches to motion recovery, stereo matching, multi-view stereo vision,
and Neural Radiance Fields is presented. The development and advancements in each
approach are discussed in detail. Furthermore, an introduction to datasets specifically
designed for various reconstruction tasks is provided, along with the evaluation metrics
commonly employed for assessing the quality of reconstructed scenes. Additionally, in this
paper, we discuss the challenges in reconstructing areas with weak or repetitive textures,
the scarcity of dedicated datasets for large-scale outdoor scenes, and the need for advanced
real-time reconstruction techniques, as well as sensor fusion methods. These challenges, as
outlined in Section 5, highlight the crucial areas for future research and development in the
field of 3D reconstruction.
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