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Abstract: We report, for the first time, the full-field 3D strain distribution of the muscle-tendon
junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of
injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution
of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume
correlation (DVC) with the aim of understanding the mechanical behavior of the junction under
tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was
harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT
combined with DVC was used to image and compute strain distribution at the MTJ under a tensile
load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain
(εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these
values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ,
which is at risk of being damaged in activities associated with excessive physical activity.

Keywords: strain; 3D strain measurement; muscle–tendon junction (MTJ); X-ray computed tomogra-
phy (XCT); digital volume correlation (DVC); in situ mechanical testing

1. Introduction

The muscle-tendon junction (MTJ) is a specialized interface, which transmits the force
from the muscle to the tendon [1]. Injuries to the junction between the Achilles tendon and
muscle usually occur during sport activities and are due to excessive strain [2] or failure
associated with surgery to repair these tissues [3]. Approximately 44,000 patients per year
in the US require Achilles-related surgery, with the number predicted to increase due to the
aging population [4]. It has been reported that 28% of injuries in the muscle-tendon-bone
unit occur at the MTJ [5] and, therefore, this represents a significant problem. Injuries at the
MTJ limit the ability of the patients to move; therefore, these injuries are important and
affect the quality of life [6,7].

Whilst usually muscle strains and sprains spontaneously heal, surgical intervention
is the only established treatment for a complete tear at the MTJ; however, satisfactory
long-term outcomes after surgery are limited due to adhesions and there is a high risk of
re-rupture due to reduced mechanical properties [8]. A limited number of studies have
been carried out on the MTJ and, therefore, questions associated with injuries and healing
remain unanswered [9,10]. A description of the strain distribution at the MTJ would provide
information on the mechanisms of injuries and requirements for ensuring a satisfactory
repair, which is also associated with the ability of the MTJ to heal during rehabilitation.
It has been demonstrated that the strain at the tendon close to the muscle is five times
higher than in the midsection and the region of the tendon close to the bone [11]. Studies
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have reported that the MTJ exhibits the lowest stiffness in the muscle-tendon unit [12].
These findings indicate that the MTJ is the most susceptible region to strain changes in the
muscle-tendon-bone unit and high stains in this region can lead to injuries. However, the
3D strain pattern at this junction when under a load has not been described.

The strain in the muscle-tendon unit in vivo has been measured; however, there is
a large variation between the studies, potentially due to the size of the tissues [13–17].
Some authors reported that strain in the tendon was lower than that at the aponeurosis
connected to the muscle [14–16], whist others have reported opposite findings [17,18]
(Table 1). Studies have employed different techniques to visualize the tissue in order to
investigate the mechanical behavior. The most common 3D-imaging technique for soft
tissue in vivo strain measurement is ultrasound [19].

Table 1. Strain values of tendons and their aponeurosis connected to muscles from published studies.

Strain in
Tendon

Strain in
Aponeurosis Load Applied Subject Imaging

Technique Reference

0.8 to 2.5% 2.1 to 7%

five series of stimulated
contractions at 20, 40, 60, 80,

and 100% of maximum
isometric

dorsiflexion moment

human tibialis
anterior tendon Ultrasound [14]

4.72 ± 1.85% 5.12 ± 2.07% isometric maximal voluntary
contractions

human Achilles
tendon Ultrasound [15]

1.95 ± 1.49% 7.95 ± 7.47%
passive loading to a tension
equal to maximum tetanic

contraction

frog semitendinosis
tenodn He-Ne laser [16]

2.8% and 4.7%
respectively

1.2% and 2.2%
respectively

20 and 40% of maximal
voluntary contraction

human Achilles
tendon

Magnetic
resonance scanner [17]

8.0 ± 1.2% 1.4 ± 0.4% voluntary isometric
contraction

human Achilles
tendon Ultrasound [18]

Higher resolution of the strain distribution in the muscle and tendon have previously
been evaluated using digital image correlation (DIC) [20,21]. This technique evaluates
strain on the surface of the tissues by analyzing sets of images of the specimen surface in
undeformed and deformed states [22]. DIC has been used to investigate the strain on the
surface of the Achilles tendon [21,23] and associated muscle [20]; however, this technique
can only provide information on the surface strains.

Strain measurements of the muscle and tendon in 3D have been studied using finite
element analysis (FEA) to predict deformation behavior [1,24–27]. Rehorn et al. reported
that the stretch of the fiber in proximal MTJ before breaking was 1.64 times, which was
higher than in muscle tissue (0.95 times) [25] Blemker et al. showed that shear strain was
concentrated near the aponeurosis in human biceps brachii, which reached 2.4 ε, whereas
some parts of muscles showed zero ε during low-load elbow flexion. In this study, the
tissue was modeled as a fiber-reinforced composite with transversely isotropic material
symmetry [27]. Cine phase contrast magnetic resonance imaging (MRI) has been used to
investigate volumetric 3D strain of the human tibialis anterior during ankle plantarflexion–
inversion [28].

Digital volume correlation (DVC) is a three-dimensional technique where the full-field
strain distribution is derived from the measured displacement field, which is computed
based on the differential variation in grey level intensity for 3D images of the material [29].
This technique is becoming widely used for biological tissues such as bone [29–31], ten-
don [32], and cartilage [33]. It has been combined with various imaging techniques such as
X-ray computed tomography (XCT) [34], synchrotron tomography [35], and MRI [36].
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Synchrotron imaging provides high beam spatial coherence and flux to image soft
tissues with higher contrast and shorter imaging time than XCT [35,37]. The high flux of
synchrotron allows for the capture of the images with high signal-to-noise ratio and high
spatial resolution [38]. Phase contrast is often combined with synchrotron imaging due to
its ability to image soft tissues without using contrast agents [39,40]. Synchrotron imaging
has been reported to be an appropriate technique for phase contrast in order to achieve
high accuracy soft tissue imaging [41] as well as DVC analysis [35]. However, the high flux
of synchrotron imaging can cause radiation damage on soft tissues and therefore affect the
accuracy of DVC [35].

High-resolution XCT has been previously combined with DVC to investigate the 3D
full-field strain distribution on soft tissues [42]. One of the advantages of XCT is that
it offers insights into the internal composite structure [43]. Soft tissues have low X-ray
attenuation; therefore, to achieve sufficient contrast in the microstructure, techniques such
as phase contrast and the use of staining agents have been employed [44]. XCT is often used
to image the microstructure of soft tissues due to its ability to measure fiber alignment and
volume fraction [45], and obtain morphological information such as shape, porosity, and
roughness [46]. XCT can image specimens in both micro- and macro-level resolution, which
is higher than the resolution of other techniques such as MRI (1–2 mm) and ultrasound
(0.5 mm) [43,47,48]. Compared to MRI, XCT is more cost-effective and has shorter scan
time [49]. Synchrotron has higher resolution and shorter image acquisition times than
lab-based CT; however, it also has a higher beam current and flux of radiation, which
can cause damage to soft tissues [37,50,51]. Phase contrast XCT is useful for soft tissue
imaging [52], however, it requires a longer scan time than XCT without phase contrast to
acquire sufficient number of projections [53], which can also damage specimens. A previous
study on trabecular bone showed that 9-h XCT imaging did not cause any radiation damage
on specimens [54]. Therefore, XCT was chosen as an imaging technique to be used for the
strain measurement in this study.

The aim of this study is to utilize XCT imaging and DVC analysis to better understand
the mechanical behavior of the MTJ related to the tissue microstructure. In this study,
mouse Achilles MTJs were treated with phosphotungstic acid (PTA) to enhance the tissue
contrast, and DVC was performed on these datasets to evaluate the mechanical behavior of
the junction under a tensile load.

2. Materials and Methods
2.1. Specimen Preparation and Phosphotungstic Acid (PTA) Staining

Achilles tendons and gastrocnemius muscles were harvested from the right legs of
adult wild-type male mice (10–12 weeks old, 31.2 ± 0.7 g). Six specimens were immersed
in an increasing ethanol concentration of 25, 50, and 70% ethanol for 90 min each followed
by 1% PTA (79690, Sigma-Aldrich, Burlington, MA, USA) in 70% ethanol for 72 h. They
were then washed twice and immersed in phosphate-buffered saline (PBS) (P4417, Sigma-
Aldrich, Burlington, MA, USA) for 1 h prior to mechanical testing or XCT scanning. Three
of these specimens underwent mechanical testing and three specimens (referred to as S1,
S2 and S3) were used for the XCT scanning and DVC analysis.

2.2. Tensile Testing Using Bose ElectroForce

In order to identify the elastic region of the tissues, mouse MTJs (n = 3) were tested
under a tensile load using Bose ElectroForce 3200 (Bose ElectroForce, Framingham, MN,
USA), which has a maximum load of 225 N. The load was measured as the specimens
were loaded at a constant rate of 2 mm/min until the specimens failed. The tendon, bone,
and MTJ were aligned so that the tensile force was applied along the length of the tendon-
muscle unit. The specimens were prepared in the same way (stained using 1% PTA in
70% ethanol) as the in situ tensile testing described in Section 2.3 in order to determine the
setting for in situ tensile testing. Specimens did not fail or undergo plastic deformation at
2.4 N load.
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2.3. In Situ X-ray Computed Tomography (XCT) Mechanical Testing

In situ XCT imaging was achieved using the Versa 610 (Carl Zeiss Microscopy,
Oberkochen, Germany) at 40 kV/3 W, with a 0.4× objective and 4 s exposure. One dataset
took 3 h to obtain. In situ tensile testing was performed using the CT500 loading stage
(Deben, Suffolk, UK), securing the top part of the muscle and the calcaneus part of the
Achilles. To avoid slipping during mechanical testing the muscle was wrapped in sandpa-
per and glued with Loctite Superglue Precision (Loctite, Rocky Hill, CT, USA). To maintain
tissue hydration during scanning, specimens were wrapped in gauze soaked in PBS and
then wrapped in Parafilm (11762644, ThermoFisher Scientific, Waltham, MA, USA). The
tendon, bone, and MTJ were aligned so that the tensile force was applied along the length
of the tendon-muscle unit.

During running, the load transmitted through the human Achilles tendon is between
6 and 8 times body weight (BW) [55–57]. In this study, the average weight of the male mice
was 31 g, which translates into 2.4 N load (8 BW), which was applied to the specimens
during in situ testing. In this study, an initial preload of 0.2 N was applied and two
consecutive tomograms were acquired to calculate DVC strain uncertainties [58]. The
specimens were then subjected to tensile deformation at a rate of 0.1 mm/min until 2.4 N
load was achieved. All tests were carried out at room temperature. Following the initial
tensile load, the specimens were then unloaded for 30 min, allowing stress relaxation before
acquiring the last XCT dataset at 2.4 N using the same loading conditions.

2.4. Image Postprocessing

The 3D datasets obtained by XCT after reconstruction (16-bit) were rigidly registered
with a correlative metric in Avizo (Avizo 9.7, ThermoFisher Scientific, Waltham, MA, USA)
against the 1st preload dataset. The volume was then cropped at 400 × 500 × 480 voxels
(0.48 mm3) with the MTJ in the region of interest (ROI). Non-MTJ tissues were given a
zero-intensity value in the grey scale by applying a mask to each dataset. The mask was
applied by using an arithmetic operation between the original dataset and the binarized
volume. This was followed by a median and unsharp filters to improve the tissue contrast
and to remove the noise [59].

2.5. Digital Volume Correlation and Statistical Analysis

DVC (DaVis v10.0.5, LaVision Ltd., Gottingen, Germany) was performed between
the first preload and loaded dataset to compute the 1st principal (εp1), shear (γ), and von
Mises strains (εVM); a multi-pass scheme from 100 to 30 sub-volume voxel size with a 0%
overlap was used, followed by a vector postprocessing, where the correlation coefficient
was given a threshold of 0.6 [30,60]. Further details of the operating principles of DVC have
been reported previously [34,61]. Error analysis with the 3 different specimens showed an
average error value ± SD of 1519.11 ± 175.93 µε. The average value of strain in the ROI
was obtained by the histogram function in Avizo. Tendon diameter and the volume loss
between two preload scans were measured using Avizo. Two-way ANOVA was performed
to calculate strain value and volume differences (p < 0.05) between the specimens. All
statistical analysis was performed using GraphPad Prism 8.0.2 (La Jolla, Irvine, CA, USA).

2.6. Histology

Following testing, the MTJ was processed for histology. The specimens used for
histology were (i) unstained MTJ without XCT imaging with a tensile load; (ii) PTA-stained
MTJ without XCT imaging with a tensile load; (iii) PTA-stained MTJ with XCT imaging
and without a tensile load; (iv) the PTA-stained MTJ specimens which were used for
XCT imaging and DVC analysis (S1, S2 and S3). Specimens were fixed overnight using
4% paraformaldehyde (158127, Sigma-Aldrich, Burlington, MA, USA) and washed with
PBS and then were dehydrated in 70%, 90%, and absolute ethanol for 30 min in each
solution. They were then cleared in 3 changes of xylene (28973.328, VWR, PA, USA) for 9 h,
before being transferred into paraffin wax (327204, Sigma-Aldrich, Burlington, MA, USA)
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overnight at 60 ◦C. They were embedded in paraffin wax. Eight-micrometer-thick sections
were made using a Leica RM2235 rotary microtome (Leica Biosystems, Nussloch, Germany).
The sections were stained with Harris hematoxylin (HHS32-1L, Sigma-Aldrich, Burlington,
MA, USA) and eosin (HT110116, Sigma-Aldrich, Burlington, MA, USA) (H&E) before being
mounted with DPX (#06522; Sigma-Aldrich, Burlington, MA, USA) and imaged using a
Leica DMi1 microscope equipped with a Leica MC170 HD camera (Leica Microsystems,
Wetzlar, Germany). After embedding, the specimens used for the DVC analysis were
reimaged in the XCT so that the XCT dataset could be correlated to the histology. The area
of the gap between the muscle fibers and tendon fascicles were measured using ImageJ in
order to determine the level of damage in the tissues.

3. Results
3.1. Tensile Testing

Tensile testing of mouse MTJs was performed in order to determine the appropriate
load to apply to the specimens for strain distribution analysis. The average ultimate tensile
force of the three mouse specimens tested was 4.05 ± 0.45 N, with failure initiated by
tearing, which was through the MTJ, and started at approximately 3 N.

For the samples in the XTC, three sets of preload and loaded scans up to 2.4 N were
acquired and a load displacement curve for each specimen was obtained (Figure 1). The
average elongation of the specimens ± SD was 0.58 ± 0.18 mm. Notably, S1 exhibited less
elongation compared to S2 and S3. Furthermore, S1 presented the widest tendon diameter
(0.92 mm) in contrast to S2 and S3 (0.79 mm and 0.80 mm, respectively). This result showed
that the tendon of S1 was stiffer than S2 and S3.
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Figure 1. Load displacement curves of the three specimens under tensile loading in the elastic region.
S1: blue, S2: orange, and S3: grey.

3.2. Strain Maps

The XCT datasets showed the morphology of the mouse MTJ (Figure 2a). The first
principal strain (εp1), shear strain (γ), and von Mises strain (εVM) maps were shown in
the lateral view and in cross-section in Figure 2. High strain concentration was observed
at the MTJ of each specimen for εp1 (Figure 2b), γ (Figure 2c), and εVM (Figure 2d). All
specimens showed similar strain distribution, with the highest strain concentration at the
junction. The strain values in all specimens reached 120,000 µε, 160,000 µε, and 120,000 µε

for εp1, γ, and εVM, respectively. DVC error analysis between two preload datasets showed
that the average error value ± SD was 1519.11 ± 175.93 µε. The error values were less
than 10% of the calculated strain, which showed that the level of error was acceptable. The
peak strains of εp1 and γ were observed in S3 and the peak strain of εVM was observed in
S2. Muscle fascicles were not evenly strained, with some of the fascicles showing higher
strain concentration (50,000 µε, 80,000 µε, and 60,000 µε for εp1, γ, and εVM, respectively),
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shown in red in the strain maps, whereas others showed low strain concentration, shown
in purple or dark blue in Figure 2b–d. Notably, εp1 showed elevated strain values at the
MTJ, especially on the muscle side of the MTJ in S1 and S2, whereas, for S3, elevated values
were also present in the tendon (Figure 2b). The shear strain demonstrated similar patterns
to εp1 (Figure 2c), reaching higher values of 40,000 µε. Von Mises strain patterns resembled
the other strains in the sense that the highest concentration was located at the junction;
however, the absolute strain values varied among specimens (Figure 2d). S1 showed lower
strain values throughout the tissue, where the strain value at the interface (35,000 µε) was
2–3 times lower than S2 and 3 (85,000 µε and 120,000 µε, respectively).
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Figure 2. XCT-scanned mouse MTJs. (a) Proximal view; the muscle was in the top and the black
arrows identified the MTJs in the middle of the images; (b) 1st principal strain; (c) shear strain; (d) von
Mises strain for S1, S2 and S3 on the surface and in cross-sections of the MTJs. The cross-section
through the MTJ was shown in the boxed region below the surface strains. The strain varied between
0 and 40,000 µε in (a,c) and 0 and 60,000 µε in (b) throughout the volume. The red area showed high
strain and the purple/blue area showed low strain.

The interfaces between individual tendon fascicles and associated muscle were iden-
tified and the strain distribution in two different fascicles of the tendon was measured
for each specimen. The anterior tendon fascicle within medial gastrocnemius muscle was
named as region 1 (R1) and the posterior tendon fascicle within the lateral gastrocnemius
muscle was named as region 2 (R2) (Figure 3a). The average value for each type of strain in
each tendon fascicle was obtained (Figure 3b) and showed no significant difference between
the two selected regions, although the mean strain value was 24.7 ± 3.7% lower in R2 than
in R1 in each case (n = 3).
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Figure 3. (a) Region selection from the overall scans of S2. R1 was selected from the medial part of
the overall scans and R2 was selected from the lateral part of the images. (b) Average strain values of
each type of strain in each region; red: 1st principal strain (µε), blue: shear strain (µε), and orange:
von Mises strain (µε). Data were presented as average ± SD (n = 3). Two-way ANOVA was used to
calculate the significance between the regions. No significance was detected.

The muscle and tendon at R1 and R2 from all the specimens were separated in order
to measure the strain value of each tissue individually (Figure 4a). The relative value of
muscle strain compared to tendon strain (εmuscle/εtendon) was obtained at each interface
and the average values of all three specimens were shown in Figure 4b. The εmuscle/εtendon
ratio was above 1.8 in every specimen and region for all three strains, indicating that the
strain concentration in the muscle was higher than in the tendon. No significant difference
was detected between the regions.
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3.3. Volume Strain Correlation

The volume of muscle and tendon fascicle of all specimens at R1 and 2 were obtained.
Figure 5 showed the volume strain correlation at the muscle (Figure 5a) and the tendon
(Figure 5b). R-squared values were calculated for each strain type. The average R-squared
values ± SD of three strain types of the MTJ were 0.458 ± 0.165 and 0.562 ± 0.150, re-
spectively. This result showed that there was moderate correlation between the volume of
tissues and the strain values.
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3.4. Histology

Histology was performed on unstained mouse MTJ, PTA-stained mouse MTJ with and
without XCT imaging, as well as XCT-imaged MTJ with and without tensile loading. This
allowed for evaluation of the effects of the PTA staining, XCT imaging, and a tensile load
on the tissues. The muscle tissues were stained a darker pink than the tendon tissues due
to the low cell population in the tendon. Compared to the unstained specimen (Figure 6c),
PTA-stained specimens (Figure 6a, d–f) showed a number of artefacts caused by staining
with PTA and/or exposure in the XCT (identified by black arrows in Figure 6c–f). H&E
staining was performed on S3 after it had been stained with PTA, scanned, and loaded
under tension in the XCT (Figure 6a). Figure 6b showed the distribution of each type of
strain (εp1, γ, and εVM) in the corresponding area of the histological section in Figure 6a.
The highest value for each of the different strains was observed at the interface between
the muscle and the tendon (110,000 µε, 150,000 µε, and 80,000 µε for εp1, γ, and εVM,
respectively).

In order to investigate the effects of dehydration on XCT imaging and loaded tissues,
the region between the muscle and tendon fibers in S3, PTA-stained MTJ with XCT imaging
without a tensile load, PTA-stained MTJ without XCT imaging with a tensile load, and PTA-
stained MTJ without XCT imaging with a tensile load was measured (n = 3). The histology
images from S3 were representative and were reported here. The average area values ± SD
were 0.61 ± 0.043 mm2 (PTA stained/XCT), 0.55 ± 0.053 mm2 (PTA stained/XCT/loaded),
0.32 ± 0.024 mm2 (PTA stained/loaded), and 0.32 ± 0.005 mm2 (PTA stained) (Figure 6g).
There was a significant difference in the area when XCT-imaged MTJ and non-imaged
MTJ were compared, indicating that the methods used for XCT imaging created artefacts
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compared to normal MTJ; however, there was no statistical difference between loaded MTJ
and unloaded MTJ.
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Figure 6. (a) A histology image of S3 and XCT image correlated to the histology image; the scale
bar was 500 µm. (b) Cross-section of strain maps that were correlated to the histology image
(I for εp1, II for γ, and III for εVM). (c) A histology image of unstained mouse MTJ. (d) A histology
image of PTA-stained mouse MTJ without XCT imaging and a tensile load. (e) A histology image
of PTA-stained mouse MTJ with XCT imaging and without a tensile load. (f) A histology image of
PTA-stained mouse MTJ without XCT imaging with a tensile load. Black arrows showed gaps in
the tissues created by dehydration. The scale bar was 500 µm. (g) Average area of gaps between
muscle and tendon fibers (n = 3). One-way ANOVA was used to calculate the significance between
the specimens (** p < 0.01 and *** p < 0.001).
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The shrinkage of specimens caused by XCT imaging was detected by calculating the
volume loss between two preload scans. The average percentage ± SD of the lost volume
in the second scan compared to the first scan was 4.93 ± 1.71% (n = 3).

4. Discussion

XCT combined with DVC analysis enabled the 3D strain distribution in the mouse
MTJ to be measured. High strain was observed in the junction (Figure 2), which can
be attributed to the load transfer between the two different tissues (muscle and tendon).
High strain in this region has also been detected in previous studies that investigated the
rat tibialis anterior muscle-tendon-bone unit using an optical force transducer and two
uniaxial servomotors producing a constant tensile load [11]. In our study, DVC allowed
for a full-field analysis of the strain throughout the volume of the tissue as well as on the
surface of the tissue (Figure 2). Strain was concentrated at the MTJ and was 3–12 times and
2–10 times more than that in the adjacent tendon and muscle, respectively. As shown in
this study and reported previously, the strain distribution in muscle fascicles varies and
this has been shown to be dependent on their length and curvature [27,62]. The results
presented in our study help to better understand the 3D MTJ deformation and how strain is
distributed from the muscle to the tendon, predicting the site of failure under tensile load.

The high variability in the strain distribution between the three different samples
was to be expected because of the differences in the morphology, size of the tissues, and
fascicles in specimens. The dependence of strain on tissue volume has been reported
previously [63–65]. The tensile load displacement curves of the three specimens investi-
gated showed shorter elongation of S1 compared to S2 and S3, and this could have been due
to the different thicknesses of the tendons. S1 had the widest tendon diameter (0.92 mm)
compared to S2 and S3 (0.79 mm and 0.80 mm, respectively), and as expected and reported
previously [64], the tissue size and individual variation affected mechanical properties [66].
The load displacement curves indicated that all three specimens were tested in the elastic
region of the muscle-tendon unit. Furthermore, the morphology of specimens with and
without a tensile load were analyzed to demonstrate the effects of loading on the integrity
of the MTJ. The area between the muscle and tendon at the junction showed no signifi-
cant difference between the loaded specimens and unloaded specimens (Figure 6g), again
indicating that the samples were deformed elastically.

The high-resolution lab-based XCT images (5 µm voxel size) in this study showed
the morphology and orientation of the muscle and tendon at the fiber and fascicle level
and showed the strain distribution at the interface was relatively uniform, with decreasing
strain values from the MTJ towards the tendon. The strain distribution at the interface
between an individual tendon fascicle and connected muscle fibers was analyzed and
the average value of each strain was shown to be not statistically different. This result
suggested that the strain distribution at the interface of individual tendon fascicles was
uniform under a tensile load. Similarly, the transfer of strain from the muscle to the tendon
was evenly distributed across the MTJ. Out of the reported strains, shear strain reached
the highest value (160,000 µε) and this may be due to the sliding of the fascicles associated
with their fibrous interconnectivity, which often happens in a plane that is not completely
orthogonal to the direction of the tensile load as suggested previously by others [67,68].
Although the specimens were tested within their apparent elastic region, high von Mises
strain values were present in the MTJ, which could indicate that the tissue was under yield
locally. The human Achilles tendon yield strain has been reported to be between 40,000
and 960,000 µε during running [69], however, information on the yield strain at the MTJ
is limited. The results here showed that, for a load of 2.4 N for the mice Achilles muscle-
tendon unit, which was equivalent to eight times the body weight [57]. The von Mises
strain reached 120,000 µε locally and yield of the MTJ was predicted. S1 had lower von
Mises strain values throughout the tissue compared to S2 and S3. This may be caused by
the thicker tendon diameter (0.92 mm) compared with the thickness of S2 and S3 (0.79 mm
and 0.80 mm, respectively). Boyer et al. analyzed the correlation between tendon size and
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mechanical properties in situ by using pull-through tests of the single double-stranded
transverse suture and reported that there was a positive correlation between the tendon
width and yield strength [70].

Contradicting results of strain measurements of the muscle and tendon in vivo have
been reported in the literature (Table 1), where some reported that the muscle had higher
strain than the tendon under a tensile load, while others showed the opposite [14–18].
Specifically, Maganaris et al. measured strain in human muscle-tendon unit using ultra-
sound under stimulated contraction and reported that strain in the tendon was 0.8 to 2.5%,
which was lower than that in aponeurosis (2.1 to 7%) [14]. Finni et al. also demonstrated
in vivo strain measurement in human muscle-tendon unit using MRI under maximal volun-
tary contraction; however, they reported that the strain in tendon (2.8 to 4.7%) was higher
than in the aponeurosis (1.2 to 2.2%) [17]. In this study, the εmuscle/εtendon values at the
interface between the muscle and tendon were greater than 1.8 for εp1, γ, and εVM. Our
study demonstrated that the mean strain values of the muscle were consistently higher
than those of the tendon under a tensile load, even though the strain distribution in the
muscle fibers was not uniform. Therefore, the variation in previous studies may be due to
the unevenness of the strain distribution in the muscle.

Correlations between tissue volume and strain showed that the R2 values ± SD for
the muscle was 0.458 ± 0.165 and, for the tendon, the average R2 value was 0.562 ± 0.150
(Figure 5), suggesting that the volume of muscle and tendon had moderate correlation with
strain values [71]. It was also reported previously that the bigger skeletal muscle showed
an increase in local strain [66]. This result suggested that one of the reasons for the high
variability in MTJ strain in these specimens can attributed to the differences between the
size of the muscle-tendon unit.

Histology showed micro fracture at the MTJ junction in the images for S3 (Figure 6a),
which could be attributed to the effect the staining and XCT imaging had on the mechanical
properties of biological tissues. However, the strain maps showed that the load was
transferred from the muscle to the tendon despite this discontinuity.

A limitation of this study was the use of PTA in 70% ethanol for staining the tissue,
which was required to increase contrast in laboratory XCT. Dehydration caused a significant
change in morphology and mechanical properties in the muscle and tendon [72,73]. There
were two main factors in our methodology that could contribute to inaccurate absolute
values, and these factors were associated with a combination of PTA staining and damage
associated with the radiation of the XCT scan. Histological analysis was performed to
determine the effect of the staining and scanning process had on the tissue structure of the
specimens. The shrinkage observed in Figure 6d compared to that in Figure 6c suggested
that the PTA staining caused the shrinkage, and this was due to the staining process using
PTA dissolved in 70% ethanol. The effect of dehydration on soft tissues using PTA was
an important observation because this would affect the absolute strain values. Although
shrinkage of PTA-stained soft tissues has previously been demonstrated in the literature
and it has been shown to affect tissue mechanical properties, PTA has been reported
to have a more limited effect on tissue dehydration compared to other contrast agents
such as iodine [74]. Using our PTA staining protocol, the results presented illustrated
the mechanical behavior across the MTJ. Even larger gaps between the muscle fibers and
tendon fascicles were detected on the PTA-stained specimens after XCT imaging than on
the stained specimen without XCT imaging (Figure 6g), and this suggested that the imaging
process could have affected the tissue further through dehydration or radiation damage [54].
Even though XCT has this limitation, it has advantages over other imaging techniques
that have been used to analyze strain distribution. For example, MRI is more expensive,
and has longer scan times, and lower resolution [43,49]. Synchrotron has higher resolution
than XCT; however, it also has higher beam current [37] and has been reported to damage
biological macromolecules, which affects the morphology and mechanical properties of
the specimens [75,76]. It has been reported previously that the temperature inside the XCT
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increases by only 2 ◦C after 3-h XCT imaging [54]. Therefore, the damage on the specimens
through the XCT imaging process may be less than the other imaging techniques.

In order to avoid specimen dehydration, a new staining method for the soft tissues
that does not use a dehydrating solvent needs to be developed. It has been reported that
PTA can be prepared in water instead of ethanol to avoid specimen shrinkage [74], however,
our preliminary use of saline did not result in penetration of the PTA throughout the mouse
tissue even after 6 days of incubation at 4 ◦C. Therefore, 70% ethanol was used as the
staining solvent in this study. Imaging the specimens in hydration liquid is another way
to avoid specimen dehydration; however, a liquid cell for in situ tensile testing would
make the distance between the source and the specimen larger, which results in lower
resolution. Therefore, the specimens were covered by gauze immersed in PBS in order to
maintain a wet environment and minimize the dehydration of the specimens. Future work
should include the investigation of tissue staining and using different imaging techniques
to minimize the damage on the tissues.

Phase contrast imaging in the XCT does not require the soft tissues to be stained and
potentially could overcome the staining issue [77]. However, the application of phase con-
trast imaging has been limited due to the restricted number of suitable X-ray sources [78].
In addition, although phase contrast imaging seems to be a promising approach for soft
tissue imaging for lab-based CT machines, it requires a long scan time to acquire a suf-
ficient number of projections, which is limiting and can also cause the dehydration of
the specimens [53]. Synchrotron imaging has a shorter imaging time than XCT [35,37],
therefore, combining phase contrast synchrotron imaging may solve the imaging time
issue and achieve less damage on the specimens. However, synchrotron imaging can
induce more specimen damage due to its high beam current and flux of radiation com-
pared to XCT [37,50,51]. Further investigation is needed to measure specimen damage
using different techniques. Reducing the number of projections also reduces the imaging
time; however, this can cause poor reconstruction quality [79]. Therefore, future work
includes the optimization of imaging protocol such as comparison between XCT imaging
and synchrotron imaging with phase contrast.

Another limitation was the small number of specimens (n = 3) used for DVC analysis.
However, it should be noted that DVC analysis is a technique to qualitatively assess local
strain distribution in 3D [30]. Although the number of the specimens used was small, the
results shown in this study, comparing the strain values across individual samples, showed
that strain distribution between the muscle and tendon was similar in all specimens.

5. Conclusions

This study explored the 3D full-field strain distribution in the MTJ under tensile
loading for the first time. High strain concentration was measured at the junction and
allows for better understanding of MTJ deformation, strain distribution, and injury in this
region. These results may be useful to predict where tears occur, providing information that
would allow more effective treatments of tears at the MTJ. Furthermore, the results showed
that the strain at the muscle was higher than the one at the tendon under a tensile load.
The staining and imaging method should be improved to avoid specimen dehydration by
developing a new staining protocol without a dehydrating solvent.
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