Article

Single-cell analysis of chromatin accessibility
inthe adult mouse brain

https://doi.org/10.1038/s41586-023-06824-9

Received: 31 March 2023

Accepted: 1 November 2023

Songpeng Zu"'°, Yang Eric Li**'°, Kangli Wang""°, Ethan J. Armand’, Sainath Mamde',

Maria Luisa Amaral’, Yuelai Wang', Andre Chu', Yang Xie', Michael Miller?, Jie Xu',

Zhaoning Wang', Kai Zhang', Bojing Jia', Xiaomeng Hou?, Lin Lin®, Qian Yang®, Seoyeon Lee',
Bin Li', Samantha Kuan', Hanging Liu?, Jingtian Zhou®, Antonio Pinto-Duarte®, Jacinta Lucero®,
Julia Osteen®, Michael Nunn®, Kimberly A. Smith’, Bosiljka Tasic’, Zizhen Yao’, Hongkui Zeng’,

Published online: 13 December 2023

Open access

M Check for updates

Zihan Wang?, Jingbo Shang®, M. Margarita Behrens®, Joseph R. Ecker®, Allen Wang?®,
Sebastian Preissl*° & Bing Ren**™

Recent advances in single-cell technologies have led to the discovery of thousands of
brain cell types; however, our understanding of the gene regulatory programsin these
celltypes is far from complete'*. Here we report a comprehensive atlas of candidate
cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing
chromatin accessibility in 2.3 million individual brain cells from 117 anatomical
dissections. The atlas includes approximately 1 million cCREs and their chromatin
accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs
to the most recent such annotationin the mouse genome. The mouse brain cCREs are
moderately conserved in the human brain. The mouse-specific cCCREs—specifically,
those identified from a subset of cortical excitatory neurons—are strongly enriched
for transposable elements, suggesting a potential role for transposable elements in
the emergence of new regulatory programs and neuronal diversity. Finally, we infer
the generegulatory networks in over 260 subclasses of mouse brain cells and develop
deep-learning models to predict the activities of gene regulatory elements in different
brain cell types from the DNA sequence alone. Our results provide aresource for the
analysis of cell-type-specific gene regulation programs in both mouse and human

brains.

TheBrainInitiative Cell Census Network aims to achieve acomprehen-
sive understanding of the cellular and molecular composition of the
mammalian brain'. As an experimental model, the laboratory mouse has
acriticalrolein theinvestigation of gene functioninvivoaswell asin the
development and safety evaluation of various therapeutics. A detailed
catalogue of cell types in the mouse brain along with their spatial distri-
butionand functional connections would therefore greatly facilitate the
study of the complex neurocircuits and gene pathways aswellas helpin
the development of treatments for neurological disorders. Single-cell
transcriptomics studies*” have identified hundreds of subclasses and
thousands of cell types across the brain. This considerable cellular and
spatial complexity underscores the need for abetter understanding of
the cis-regulatory elements (CREs) that are responsible for the identity
and gene expression patterns in each cell type.

CREs control spatiotemporal gene expression through the binding
of sequence-specific transcription factors (TFs) and the recruitment
of chromatin remodeller proteins and/or transcription machinery to
their target genes® '°. These elements, including promoters, enhancers,

insulators, silencers and other less-well-characterized regulatory
sequences work together to drive cell-type-specific gene expressionin
development™?, differentiation and disease™"*. Comprehensive map-
ping of CREsin mouse brain cells will provide mechanisticinsights into
generegulationand functionindifferent brain cell types and advance
our understanding of brain development and neurological disorders.

Previous catalogues of cCREs in mouse brain cells were derived
through epigenomic profiling of a limited number of brain regions
and are therefore incomplete*"22, To more comprehensively delin-
eate the cCREs in the mouse brain cells, we used the single-nucleus
assay for transposase-accessible chromatin followed by sequencing
(snATAC-seq) to profile chromatin accessibility at the single-cell reso-
lution across the entire adult mouse brain. In a previous study® that
focused on the mouse cerebrum, we reported the delineation of 160
cell types comprising approximately 800,000 brain cells across 45
anatomic dissections, and the annotation of 491,818 cCREs that are
probably deployed in one or more of these cell types. Here we report
theanalysis of an additional 1.5 million brain cells from the rest of mouse
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brainregions, including 72 new anatomical dissections. Through inte-
grative analysis of a total of 2.3 million mouse brain cells, we provide
a comprehensive map of cCREs representing 1,482 brain cell types.
Our results not only provide independent evidence to support the
complexity and diversity of cell types across brain regions, but also
double the annotated mouse brain cCREs to 1 million.

A large fraction of the mouse brain cCREs has sequence homology
in the human genome, and displays chromatin accessibility in the
human brain cells?, suggesting conserved gene regulatory functions.
Consistent with previous reports'®*?, mouse-specific brain cCREs,
especially those found in the subclasses of excitatory neurons, are
strongly enriched for transposable elements (TEs) including LINE-1
and endogenous retrotransposons, highlighting a potential role of
TEsinthe evolution of neuronal functions in the mammalian brain. We
also predict gene regulatory networks (GRNs) in over 260 subclasses
ofbraincell types and develop deep-learning-based models to predict
cell-type-specific use of cCREs from DNA sequence information.

Single-cell analysis of the mouse brain

We dissected 117 brain regions from the isocortex, olfactory bulb
(OLF), hippocampal formation (HPF), striatum (STR), pallidum (PAL),
amygdala (AMY), thalamus (TH), hypothalamus (HY), midbrain (MB),
pons (P), medulla (MY) and cerebellum (CB) in 8-week-old male mice
(Fig.1a, Extended Data Fig. 1 and Supplementary Table 1), including
45 dissections from the isocortex, OLF, HPF, STR and PAL reported
previously”. The dissections were performed on 600-um-thick coronal
brain slices according to the Allen Brain Reference Atlas® (Extended
DataFig.1) with tworeplicates obtained from pools of the same region
dissected fromat least two brains (Fig. 1aand Methods). We performed
snATAC-seq for all of the 234 samples using an automated single-cell
combinatorial indexing ATAC-seq” protocol. The sequencing reads
corresponding to each nucleus were then deconvoluted on the basis
of nucleus-specific DNA barcode combinations (Extended Data
Fig. 2a-e). High correlations between biological replicates (median,
0.99; range, 0.96-1.0) and between datasets from similar brain regions
(ranges: 0.97-0.99 (AMY); 0.94-0.98 (CB); 0.89-0.99 (HPF); 0.97-
0.99 (HY); 0.93-0.99 (isocortex); 0.94-0.99 (MB); 0.98-0.99 (MY);
0.89-0.99 (OLF); 0.95-0.99 (PAL); 0.94-0.99 (P); 0.83-0.98 (STR);
and 0.92-0.99 (TH)) support the high reliability and robustness of the
assays (Extended Data Fig. 2f). We confirmed the high quality of all of
the datasets (n=234:117 dissections with 2 replicates) using a set of
quality-control metrics (Methods and Extended Data Fig. 2a-f). For
the subsequent analyses, we focused on the nuclei with atleast 1,000
sequenced fragments and the transcriptional start site (TSS) enrich-
ment above 10 (Extended Data Fig. 3a). We next removed potential
doublets in each dataset based on a modified Scrublet® procedure
using SnapATAC2%. As Scrublet was originally designed for single-cell
RNA-sequencing (scRNA-seq) doublet removal, we compared it using
another method, AMULET?, which was recently published for dou-
blet detection and removal in snATAC-seq data. We found that it
achieved similar results for our data based on a simulation study, in
whichthe doublets were simulated from several samples fromour data
(Extended DataFig.3b). After removing 7% of nuclei that were deemed
to be potential doublets (Extended Data Fig. 3c,d), we retained the
chromatin accessibility profiles from 2,355,842 nuclei, with a median
4,368 DNA fragments per nucleus (Supplementary Table 2). Among
them, 817,655 were from the isocortex (including 370,841 from previ-
ous study), 201,113 from the OLF (including 137,209 from previous
study), 155,952 from the STR (including 114,743 from previous study),
81,834 from the PAL (including 38,960 from previous study), 271,933
from the HPF (including 164,568 from previous study), 65,958 from
the AMY, 142,890 from the TH, 83,321 from the HY, 243,137 from the
MB, 82,488 from the MY, 103,147 from the pons and 106,414 from the
CB (Fig.1a,b and Extended Data Fig. 3e,f). This dataset represents a

considerable number of single-cell chromatin accessibility profiles
for the mammalian brain.

Clustering and cell type annotation

We performed iterative clustering using SnapATAC2% to classify the
2.3 millionnucleiinto distinct cell groups on the basis of their pairwise
similarity of chromatinaccessibility profiles (Methods, Extended Data
Figs. 4 and 5 and Supplementary Table 3). Before clustering, we first
visualized the data using uniform manifold approximation and projec-
tion (UMAP; Fig. 1c) with a 5 kb resolution for genomic bin features in
SnapATAC? for a global view. In the UMAP, we marked the nuclei into
three major divisions, including 998,000 nuclei predominantly com-
prising glutamatergic (Glut) neurons (based on the neurotransmitter
genes Sicl7a7,Slc17a6,Slc17a8); 384,000 nuclei predominantly com-
prising GABAergic neurons (GABA, based on the neurotransmitter
gene Slc32al) and 959,000 nuclei consisting of primarily non-neuronal
cell types. We performed four rounds of iterative clustering to fur-
ther classify the cellsinto subclasses and cell subtypes (Extended Data
Fig. 4a). During clustering, we used a 500 bp resolution for genomic
bin features. After the first iteration (hereafter, L1-level clustering),
we divided the 2.3 million nucleiinto 37 groups for L2-level clustering,
using over 4 million chromatin features. For each group, we then per-
formed asecond and a third round of clustering (L2-level and L3-level
clustering) sequentially with the top 500,000 genomic bin features
andidentified atotal of248 subgroups and 899 subtypes of brain cells,
respectively (Extended Data Fig. 4a). A total of 291 out 0of 899 L3-level
subtypes consisted of more than 400 cells per subtype and, in total,
they captured 1.8 million cells. For these 291 L3-level subtypes, we also
performedafourth round of clustering (L4-level clustering) to further
classify them into a total of 874 clusters. In summary, we identified a
total of 1,482 cell clusters (874 L4-level clusters and 608 L3-level clus-
ters without L4-level clustering). The number of nucleiin each cluster
ranges from 34 to 48,694, with a median number of 484 nuclei per
cluster (Supplementary Tables 3 and 4). We used the term subtypes to
represent the 1,482 clusters in the latter part of this Article.
Toannotatethe celltypeidentity of the 1,482 subtypes, we performed
integration analysis using the datareportedinacompanionsingle-cell
RNA-seq study of 2 million cells (over 5,300 clusters) from adult male
mouse brains’. We first calculated the gene expression scores in each
nucleus using SnapATAC2 with the fragments mapped to the gene
promoter (up to2 kbto TSSs) and gene body regions as described previ-
ously®*, We next performed integration analysis using the Seurat®>*
separately for neuronal cells and non-neuronal cells (Methods). The
co-embedding of both the scRNA-seq and the snATAC-seq neuronal
cells showed excellent overlap between the two modalities (Fig. 1d)
and the mouse brain major regions (Extended Data Fig. 6a,b). We
also observed the same result for non-neuronal cells (Extended Data
Fig. 6¢c-e). The consensus matrix calculated on the basis of the ratio
oftransferred labels from the scRNA-seq datato our snATAC-seq data
showed excellent correspondence between the two datasets, suggest-
ing the robustness of the cell type identification based on either tran-
scriptome or chromatin accessibility (Fig. 1e, Extended DataFig. 6f-h
and Supplementary Table 5). For each snATAC-seq-based subtype, we
used thetop-ranked cluster label transferred from the scRNA-seq data
torepresentits SCRNA-seq cluster-level annotation. Intotal, 1,267 neu-
ronal subtypesinthe snATAC-seq datawere mapped to 965 scRNA-seq
clusters. In the scRNA-seq data, the 5,300 clusters were grouped into
338 cellsubclasses, the most representative layer for cell type analysis.
To annotate our datamore robustly, we next mapped our cell subtypes
into this layer using the hierarchical relationship between cell cluster
and cell subclass defined in the scRNA-seq data. The heat map of the
consensus matrix between our subtypes and the scRNA-seq subclasses
showed excellent correspondence (Fig. 1e and Supplementary Table 5).
Toreduce the potential annotation bias induced by different numbers
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Fig.1|Single-cell analysis of chromatin accessibility inthe adult whole
mousebrain. a, Schematic of the sample dissection strategy. The brain map was
generated using coordinates from the Allen Mouse Brain Common Coordinate
Framework (CCF) v.3 (ref.26). b, The number of nuclei for 117 dissections after
quality controland doublet removal. The dot size is proportional to the size of
cellsand the dissections that were not covered by our previous study' are shown
ingrey. AtoLontheleft were used as the dissection region labels on each
slice (details are provided in Extended Data Fig.1). The number of dissections
represents the number of dissections covered by our previous study (last) and
updatedinthecurrentstudy (new). The total number of cells represents the
number of cells covered by our previous study (last) and updated in the current
study (new). ¢, UMAP® embedding and clustering analysis of snATAC-seq data.
Thelight colours denote major cell classes. NN, non-neuronal cells. Cells are
coloured on the basis of major regions asinb.d, The co-embedding UMAP
embedding of the neuronal cells from scRNA-seq data® and the snATAC-seq
dataonthe same space coloured by the two modalities. e, The consensus score
between neuronal subclasses from the scRNA-seq data above and L4-level
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of clusters and number of nuclei. Detailed information about class,
neurotransmitter type and subclassisreported in the companion paper®. Alist
of fullnames of the subclasses is provided in Supplementary Table 3. CTX,
cerebral cortex; HYa, anterior hypothalamus; L6b, layer 6b; LSX, lateral septal
complex; IT, intratelencephalic; ET, extratelencephalic; NP, near-projecting;
CT, corticothalamic; OB, olfactory bulb; CR, Cajal-Retzius; DG, dentate gyrus;
IMN, immature neurons; CGE, caudal ganglionic eminence; MGE, medial
ganglioniceminence; CNU, cerebral nuclei; LGE, lateral ganglioniceminence;
MH, medial habenula; LH, lateral habenula; Chol, cholinergic neurons; Dopa,
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of cells in the clusters, for each of our 1,482 subtypes, we manually
checked the major regions of the top three cluster-related subclasses,
and the gene markers for some subclasses using the bigwig data and
gene expression scores (Extended Data Fig. 7) generated using Sna-
PATAC2. Finally, 275 out of 338 subclasses were annotated to the 1,482
subtypes. This includes 253 out of 315 neuronal subclasses, covering
28 neuronal classes and 7 neurotransmitter types, as well as 22 out of
23 non-neuronal subclasses, covering 5 non-neuronal classes (Sup-
plementary Table 4). We confirmed that the matched subclassesin our
snATAC-seq data were robust to variations in the sequencing depth,
signal-to-noise ratio between brain regions and replicates (Extended
Data Fig. 4b,c) by performing the k-nearest-neighbour batch effect
test** and local inverse Simpson’s index analysis®* (Extended Data
Fig. 4d,e) and by comparing the ratio of biological replicates across
multiple subclasses (Extended Data Fig. 5). The unmatched 63 sub-
classes correspond mainly to rare cell populations, accounting for a
total of 1.7% of the scRNA-seq data. For example, the only unmatched
non-neuronal subclass is monocytes, with 21 cells. Other unmatched
subclasses correspond to rare cell subclasses mainly from the MB,
pons and MY regions, in which the subtle differences between cell
types may hinder their identification using chromatin accessibility
profiles alone®. Nevertheless, the general agreement between the
open-chromatin-based clustering and transcriptomics-based clus-
tering laid the foundation for integrative analysis of cell-type-specific
generegulatory programs in the mouse brain, as for the mouse cerebral
region®. In the text below, we focus on the snATAC-seq subclasses
and the subtypes within each subclass based onthe above integrative
analysis.

Most neuronal cell types and some non-neuronal cell types showed
strong regional specificity (Fig. 1fand Extended Data Fig. 8). For exam-
ple, in the CB region, we identified 15 subtypes consisting of 97,000
nuclei that were annotated as CB granule Glut neurons; and two
Bergmannglial subtypesincluding about1,600 nuclei.Inthe HY region,
one subtype with 297 nuclei specifically showed the imputed gene
expression of the neuropeptide gene Pmch, which integrated well with
the lateral hypothalamic area Pmch-positive Glut neurons from the
scRNA-seq data. Aseries of astrocyte-related cells were identified with
region specificity, such asastrocytesin the telencephalonregion, astro-
cytesinnon-telencephalonregions, choroid plexus cellsand tanycytes,
which were integrated well with the corresponding subclasses in the
scRNA-seq data (Extended Data Fig. 6i).

Identification and annotation of cCREs

Toidentify the cCREsin each of the 1,482 subtypes, we aggregated the
DNA-sequencereads fromcellsin the subtype and determined peaks of
open chromatin signals using MACS23¢ (Extended Data Fig. 9a). When
the number of cells of a subtype was fewer than 200, we combined it
with other subtypes that were within the same L3-level subtype and
mapped to the same cluster in the scRNA-seq data. Only 19 subtypes
were affected by this step. Finally, we performed the peak calling on
theresulting1,463 clusters. We selected the genomic regions mapped
as accessible chromatin in both biological replicates. To account for
potential biases introduced by factors such as sequencing depth and/
or number of nucleiinindividual clusters, we retained only the repro-
ducible peaks based on a modified MACS2 score (hereafter, score
per million (SPM))* (Methods and Extended Data Fig. 9a). The peaks
with SPM > 5 were retained. For each subtype, we retained the peaks
that were determined to be open chromatin regions in a significant
fraction of the cells (false-discovery rate (FDR) < 0.01, zero-inflated
p-model; Extended Data Fig. 9b). In total, we identified a union of
1,053,811 open chromatinregions (500 bp extension surrounding the
peak summit) or cCREs (Supplementary Table 6), which together make
up 19% of the mouse genome (Supplementary Tables 7 and 8). This
list includes 98% of the cCREs reported in our previous study on the

mouse cerebral regions” (Extended DataFig. 9c), and further expands
it by an additional 446,606 cCREs. They are also enriched for active
chromatin states or potential insulator-protein-binding sites mapped
in bulk mouse brain tissues (Extended Data Fig. 9d). Nearly all of the
frequently interacting regions previously identified from the mouse
cortexregion® (3,158 out of 3,169) overlap with our cCREs (Methods and
Extended DataFig. 9e,f). Only 2.3% were in promoter regions (defined as
1.5 kbupstreamand 500 bp downstream of the TSS) of protein-coding
and long non-coding RNA genes, while 34.2% were in intron regions,
35.9% in intergenic regions and 22.8% in TEs, including long terminal
repeats (LTRs), longinterspersed nuclear elements (LINEs), short inter-
spersed nuclear element (SINEs) and other repeats (Fig. 2a). We found
anaverage of 45,303 (range, between 4,947 and 177,906) peaks (501 bp
inlength) in each cell cluster (Extended Data Fig. 9g).

The list of cCREs greatly expands the previous catalogue of mouse
cCREs defined by bulk chromatin accessibility data. Importantly,
44% of the mouse brain cCREs (Supplementary Table 9) did not over-
lap with the DNase-hypersensitive sites (DHSs) mapped in a broad
spectrum of mouse tissues (not limited to brain) and multiple devel-
opmental stages**° (Fig. 2b). Several lines of evidence indicate that
these cCREs probably participate in regulatory functions. First, they
display higher levels of sequence conservation compared with ran-
dom genomic regions with similar GC content (Fig. 2¢). Second, they
feature cell-type-restricted accessibility, a potential factor in their
lack of detection in previous bulk tissue assays. More than 62% of the
cCREsare active in less than ten subtypes, and more than19% of them
are accessible in only one cell subtype (Fig. 2d,e and Extended Data
Fig. 9h). Third, the cell-type-specific chromatin accessibility profiles
of these cCREs strongly correlate with DNA hypomethylation* (Fig. 2f,
Methods and Extended Data Fig. 9i). The cCREs were organized on the
basis of the non-negative matrix factorization (NMF)** using the matrix
of normalized chromatin accessibility of the cCREs (all of the cCREs
and the cCREs with no overlaps with the DHSs separately) across the
275 cell subclasses (Methods and Supplementary Tables 10 and 11).
Notably, two subclasses show DNA hypomethylation across most of
the cCREs (Extended Data Fig. 9j).

Inferring GRNs

Tofurther dissect the gene regulatory programsin each of the 275 sub-
classes onthe basis of the subtype-specific cCREs identified previously,
we first assessed the relationship between the chromatin accessibility
at the cCREs with transcription levels of putative target genes across
the cell subclasses, and we then constructed cell-subclass-specific
GRNs*. We performed the analysis at the subclass level because cell
clusters are sufficiently resolved and the open-chromatinlandscapes
align strongly with scRNA-seq dataset.

Webegan with detecting pairs of co-accessible cCCREs within 500 kb
foreach cell subclass using Cicero* and inferred candidate target pro-
moters for each distal cCRE located more than1kb away from the anno-
tated TSSsinthe mouse genome (Fig. 3aand Methods). We determined
hundreds of thousands of cCRE-cCRE pairs within 500 kb of each other
in 274 out of 275 cell subclasses (Supplementary Table 12). This set
included the promoter-distal cCCRE combinations between 502,704 dis-
tal cCREs and 24,414 promoters of protein-coding and long non-coding
RNA genes (Extended DataFig.10a,b). The median distance betweenall
of the promoter-distal cCREs pairs is 156 kb (Extended Data Fig.10c).

Tolink potential enhancers to their putative target genes, we looked
for the subsets of distal cCREs showing positive correlations between
their chromatin accessibility and RNA expression of the putative target
genesacross the 275 cell subclasses. We computed Pearson correlation
coefficients (PCCs) between the normalized chromatin accessibil-
ity signals and the RNA expression for each pair of distal cCRE and
the corresponding genes of the proximal cCRE (Fig. 3a). As a control,
we randomly shuffled the cCREs and the putative target genes, then
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Fig.2|Identificationand characterization of cCREs across mouse braincell
types.a, Thefraction of cCREs that overlaps with annotated sequencesin the
mouse genome was determined using HOMER*®. TTS, transcription termination
site; UTR, untranslated region. b, The overlaps between the cCREs in this study
(red) and the representative DHSs (rDHSs; blue) from the SCREEN database'.

¢, Theaverage PhastCons conservation scores of cCREs (red) overlapping (ovip)
with rDHSs, cCREs (blue) with no overlaps with rDHSs, and random genomic
background (grey) were determined using deepTools®?.d, The fraction of cCREs
captured by different cell subtypes for peak calling. Left, the cCREs with no
overlaps with rDHSs. Right, the cCREs with overlaps with rDHSs. e, Genome

computed the PCCs of the shuffled cCRE-gene pairs (Fig. 3b and Meth-
ods). This analysis revealed a total of 613,485 positively correlated
distal cCRE (putative enhancer)-gene pairs and 107,413 negatively
correlated distal cCRE-gene pairs atanempirically defined significance
threshold of FDR < 0.01 (Extended Data Fig. 10d and Supplementary
Table13). The median distance between the potential enhancers and the
target promoters was 133 kb (Extended Data Fig. 10e). Each promoter
region was assigned to a median of 24 putative enhancers (Extended
Data Fig. 10f). The top proximal-distal cCRE pairs and positive pairs
showed enrichment signals using the chromatin conformation data
from the companion study* (Methods and Extended Data Fig.10g,h).
For the subsequent analysis, we focused mainly on the positively
correlated pairs, including 281,200 potential enhancers and 20,703
putative target genes. To investigate how the putative enhancer may
regulate cell-type-specific gene expression, we further classified them
into 54 modules using the NMF** on the matrix of normalized chro-
matin accessibility across the cell subclasses based on the integra-
tion analysis with the scRNA-seq data, and organized the distal cCREs
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browser tracks of the two types of cCREs. Left, cCREs with no overlaps with
rDHSs. Right, the cCREs with overlaps with rDHSs. The subclass names were
the same as for the scRNA-seq data in the companion paper®.f, The chromatin
accessibility at 150 cis-regulatory modules across the 244 shared cell subclasses
inthe snATAC-seq data for all of the 1 million cCREs (top left). Rows represent
subclasses, and columns are representative cCREs sampled from each module.
Right, heat map showing the snDNA-methylation signals from the snmC-seq*
analysis atthe genomiclocations of the corresponding cCREs for the same
subclasses. Bottom, heat maps similar to those above but for only the 460,000
cCREswith no overlaps withthe ENCODE rDHSs.

based on the modules (Fig. 3c and Supplementary Tables 14 and 15).
The putative enhancersin each module showed cell-subclass-specific
chromatin accessibility profiles co-occurring with the RNA expres-
sion of their putative target genes (Fig. 3c). We next performed the
motif-enrichment analysis for each module using HOMER* with a
threshold of P <107 (Fig. 3cand Supplementary Table 16). The known
motifs showed asimilar cell-subclass-specific pattern, which indicated
cell-subclass-specific regulatory programs. For example, EBF transcrip-
tion factor 1 (EBF1), which is important for B cell development, was
expressed in the pericytes from human brain tissues*®. We found that
EBF1motifs are enrichedin the cCREs from pericytes in the mouse brain
(Fig. 3c). For example, motifs for both the TF PU.1and interferon regula-
tory factor 8 (IRF8) were enriched inborder-associated macrophages
(BAMs) and microglia (Fig.3cand Supplementary Tables15and 16). IRF8
is critical to transform microgliainto a reactive phenotype**8, PU.1is
especially expressed in microglia and can regulate genes associated
with Alzheimer’s disease in primary human microglia*. PU.1and IRF8
also have essential roles in macrophages>®*.
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Fig.3|Integrative analysis to identify the potential enhancer-gene
connections across the whole mouse brain. a, Schematic of the computational
strategy used to identify cCREs that are positively correlated with the mRNA
expression of the target genes; PCCs were calculated across 275 cell subclasses
between the snATAC-seqand scRNA-seq data. Co-accessible cis-regulatory DNA
interactions were predicted using Cicero** for each cell subclass. b, In total,
613,485 pairs (red) of positively correlated cCRE-gene pairs were identified

We next applied CellOracle®? to the snATAC-seq and scRNA-seq data
(Methods and Extended Data Fig. 11a,b) for GRN analysis. To achieve
this, the subclass-specific distal cCREs detected using Cicero above
were first mapped to mouse TFs based on TF-binding motifs using the
tool gimmemotifs®. A regularized linear regression model was then
used to predict the gene expression at the single-cell level on the basis
of the mapped TF-motif instances surrounding each gene promoter
and generate GRNs for each subclass. The 3,000 most variable genes
across all of the subclasses from the scRNA-seq data using Seurat and
499 TFsreported to have essential rolesin defining cell subclassesin the
scRNA-seq data’were included for this analysis. Finally, we successfully
inferred GRNSs for 267 out of 275 cell subclasses (one example of GRN
fromthesubclass ASC-TE_NN, that s, astrocytes from the telencephalon
region, isshowninFig.4a). The resulting GRNs contained atotal of 403
TFs and 2,628 non-TF genes (Methods and Supplementary Table 17).
As expected, the connectivity of the nodes follows a power-law dis-
tribution® (Fig. 4b) in 266 of 267 of them (Extended Data Fig.11c). On
average, each GRN owned 312 TFs and 681 genes (Fig. 4c).

Recurring network motifs are a common feature of GRNs>. We
compared the 17 common network motifs* in each of the above GRNs
(Methods and Supplementary Table 18) across different cell classes
definedinthe scRNA-seq data (Extended Data Figs.11d,e and 12a) and
across different brain regions (Methods, Extended Data Fig. 12b and
Supplementary Table 19). We first mapped the 267 subclasses to five
main regions, that is, the telencephalon (isocortex, OLF, AMY, STR,
PAL), diencephalon (TH, HY), hindbrain (pons, MY), MB and CB, only
ifatleast 60% (248 subclasses left) of the cellsin the subclass could be
mapped to these regions, and identified regulated double-positive
motifs (TF Aincreases the expression of both TF Band TF C,and TF B
and TF C can positively regulate each other) (Fig.4d and Supplementary
Table 20). The GRN from BAMs (BAM_NN; Fig. 4e) includes aregulated

(FDR < 0.01). The grey-filled curve shows the distribution of PCCs for randomly
shuffled cCRE-gene pairs. ¢, The chromatin accessibility of putative enhancers
(left); mRNA expression of the linked genesin the 275 cell subclasses across the
whole mouse brain (middle); and the enrichment of known TF motifs in distinct
enhancer gene modules (right). A total of 428 out of 440 known motifs from
HOMER* with enrichment P<107°is shown. The unadjusted Pvalues were
calculated using two-sided Fisher’s exact tests.

double-positive motif composed of activating transcription factor 3
(ATF3),KLF4 and TAL1, indicating that the three factors may positively
regulate each otherinthe BAM subclass. ATF3is aninflammatory medi-
atorand akey regulator ofinterferonresponse in macrophages”. KLF4
from the Kruppel-like family of factors has an essential role in mono-
cytedifferentiation®®, and is a mediator of proinflammatory signalsin
macrophages®. The Tall gene, which encodes abasic helix-loop-helix
TF, is expressed during monocyte-macrophage lineage differentiation
and has animportant role in cell cycle progression and proliferation
during monocytopoiesis®®®, Using the Cistrome Data Browser®?as a
resource for chromatin immunoprecipitation followed by sequenc-
ing data, we noticed that ATF3 binds to putative enhancers near both
Tall and Klf4inbone-marrow-derived macrophages (Gene Expression
Omnibus: GSE99895; Extended Data Fig.12c,d). Overall, non-neuronal
cells showed higher numbers on several network motifs (such as the
regulated double-positive motif) compared with Glut neurons and
GABAergic neurons (Fig. 4e and Extended Data Figs. 11d and 12a).

Furthermore, we highlighted theimportance of key TFs within these
networks by calculating their eigenvector centrality scores using
CellOracle. In Fig. 4f, the 267 subclasses and 226 TFs were ordered in
the same manner as described in the companion paper® (Supplemen-
tary Table 21). Notably, we observed a similar pattern of importance
scores for the TFs as seen in the scRNA-seq data, where normalized
gene expression was shown. This consistency of the TF signatures
across modalities reinforced the fidelity of our GRN inferences. It also
demonstrated how regulatory codes of TFs across the whole mouse
brain could be revealed through integrated analysis of snATAC-seq
and scRNA-seq data.

TFssuchas JUN,JUNB and FOS have high importance scores across
multiple neuronal and non-neuronal subclasses. TFs of the bHLH
family such as NEUROD1, NEUROD2, NEUROD6 and BHLHE22 have
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Fig. 4 |Inference of subclass-specific GRNs across the whole mousebrain.
a, Example of the GRNinferred in telencephalon-region astrocyte (ASC-TE_NN)
using CellOracle®. Edges are weighted and directed toreflect the putative
regulation strength and mode (inhibition or activation). b, The degree
distribution of the GRNin a. P(k), the probability of anode having kdegree in
the GRN. The degree of onenodeis the number of other nodes with links toiit.
¢, Thenumber of TFs, the number of genes, the number of regulated TFs per
geneand the number of genes regulated by the TFsamong the GRNs for each of
267 cellsubclasses. The numbers of dotsin each box plot from left torightare
asfollows: 267,267,185,000 and 82,000. For the latter two plots, treat TFs and
genes from different subclasses as different ones. For the box plotsin ¢, the box
limits span the first to third quartiles, the centre line denotes the median and

high importance scores for many types of neurons such as the Glut
neuronsintheisocortex region. Our analysis also indicated potential
regulation of gene expression in GABAergic neurons by TFs such as
ARX, SP8 and SP9 in the telencephalon regions, whereas TFs such as
GATA2, TAL1and GATA3 showed highimportance scores for GABAergic
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the whiskersshow 1.5x the interquartile range. d, Normalized histograms of
the number of the regulated double-positive* network motifs for each main
cellclass. Thelines are the kernel-based density curvesfitted for different
histograms. e, Histograms of the two network motifs for five mouse brain
regions: telencephalon (isocortex, OLF, HPF, STR, PALand AMY), diencephalon
(THand HY), MB, hindbrain (MY and pons) and CB. f, Heat map of eigenvector-
based centralities orimportance scores of TFsin each of the subclass-specific
GRNs.Eachrow representsaTF,and each columnasubclass. The orders of the
TFsand subclasses are based on the companion paper® for the similar heat map
butusing the scRNA-seq data. The names of the rows and columns are listed in
Supplementary Table 18.

neurons in the MB and pons regions. TCF7L2, SHOX2 and EBF1 had
high importance scores associated with Glut neurons specifically in
the THregion. Moreover, TCF7L2 exhibited high importanceinthe MB
region. Next, we observed that the TFs FOXAland FOXA2 had a specific
association with the Glut neurons in the MB region. HOX-family TFs
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Fig.5|Analyses of chromatin accessibility at TEs of cCREs. a, Schematic of
mouse-specificand orthologous cCREs. The bar plot shows the numbers of
mouse-specificand orthologous cCREs. b, The fraction of the genomic
distribution of mouse-specificand orthologous cCREs. ¢, The fraction of cCREs
overlapping with TEsin each subclass of Glut neurons, GABAergic neurons,
dopaminergic neurons, cholinergic neurons, serotonergic neurons, glycinergic
neurons and non-neurons. The two curves show the Gaussian distribution from
the mixture model. highTE-Glut refers to the Glut neuron subclasses with a high
percentage of their cCREs overlapping with TEs. d, Gene Ontology (GO) analysis
revealingan enrichment of neuronal-specific functionsamong genes that
exhibited positive correlations with TE-cCREs (TE-related cCREs) in highTE-
Glutsubclasses, compared with genes positively correlated with TE-cCREs in
all subclasses. e, GO analysis revealing an enrichment of neuronal-specific

displayed highimportance scoresinboth GABAergic and Glut neurons
inthe MY region. Last, MAF and MAFB showed high importance scores
in GABAergic neurons in the cortex region.

Conservation of the mouse brain cCREs

To investigate the conservation of the gene regulatory landscapes in
mouse brain cells, we compared the mouse brain cCREs defined in

functionsamong genes that exhibited positive correlations with TE-cCREs in
highTE-Glutsubclasses, compared with genes positively correlated with all
cCREsin highTE-Glutsubclasses. f, DCA at TE-cCREs in highTE-Glut subclasses
compared with other subclasses. The top ten DCA TE-cCREs correlating with
synaptic-related genes are shown. Thetop ten DCA TE-cCRE-gene pairs (such
as LIMB8-CdklS5) areindicated by red boxes. The super family of the top ten
DCATE-cCREsareindicated by different shapes. g, The top three motif families
enrichedinthe DCATE-cCREsin highTE-Glut neurons. The unadjusted Pvalues
were calculated using two-sided Fisher’s exact tests. h, Genome browser tracks
of aggregate chromatin accessibility profiles for NN, GABA, highTE-Glut and
other Glut subclasses at selected DCA TE-cCREs and gene pairs. RNA signals
shown here were collected from the previous study?®. PDC, proximal-distal
connections.

this study with a separate study of single-cell chromatin accessibility
in42 human brainregions®. We firstidentified orthologues of mouse
cCREs in the human genome by performing reciprocal homology
searches and found 613,073 cCREs (58% of total mouse cCREs) defined
inmouse brains to have orthologous sequencesinthe human genome
(more than 50% of bases lifted over to the mouse genomes) (Fig. 5a
and Extended Data Fig. 13a). The percentage of orthologous cCREs is
significantly higher than the random expectation (32% orthologous
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for randomly shuffled cCREs). Among these orthologous cCREs,
39% (22% of total mouse cCREs) were identified as open chromatin
regions in one or more cell types in the human brains (Extended Data
Fig.13a,b). We therefore defined the 22% of mouse cCREs withboth DNA
sequence similarity and open chromatin in the human brain cells as
chromatin-accessibility-conserved cCREs. This modest rate of conser-
vation may reflect the stillincomplete annotation of cCREs in the human
brain.Indeed, nearly 33% of the human brain cCREs defined inthe other
study have ahomologous sequence in the mouse genome that also dis-
plays chromatin accessibility in one or more mouse brain cell types®.
Nevertheless, the chromatin-accessibility-conserved cCREs appear to
have constraints during evolution, and probably haveimportant regula-
tory rolesinmammalianbrain cells. Consistent with arecent report®,
the fraction of cCREs that are classified as chromatin-accessibility
conserved in the human brain vary significantly among different brain
celltypes. Furthermore, the chromatin-accessibility-conserved cCREs
tend to be at promoter regions (Extended Data Fig.13c) and accessible
inabroader spectrum of cell types (Extended Data Fig. 13d-f).

Mouse-specific cCREs are enriched for TEs

Notably, 42% of mouse cCREs defined in mouse brain cells lack
orthologous genome sequencesinthe humangenome (Fig.5a). These
mouse-specific CCREs show strong enrichment of TEs, especially the
LINEs, SINEs and LTRs (Fig. 5b and Extended Data Fig. 14a). Notably,
cCREs definedin 22 subclasses of excitatory neurons display an unusu-
ally high rate of overlap with TEs, and we refer to them as highTE-Glut
subclasses (Fig. 5c and Extended DataFig.14b-e).Intotal, 20 out of 22
highTE-Glut subclasses were specifically found in the isocortex, OLF
and HPF. Notably, the genes near the 115,772 TE-overlapping cCREs,
including both mouse-specificand orthologous cCREs, and expressed
inatleast one of the highTE-Glut neuron subclasses were enriched for
those involvedin synaptic-related functions (Extended Data Fig. 14f-h).
Wefound 14,619 genes whose expression was positively correlated with
chromatin accessibility at 31,137 TE-overlapping cCREs (hereafter,
TE-cCREs) across the different subclasses of brain cells, and found that
they were also significantly enriched for synapse-related functions
(Fig. 5d,e, Extended Data Fig. 14i and Supplementary Table 22). The
large number of genes with nearby accessible TE-cCREsis unexpected.
Tofurtherinvestigate the genes potentially subject to TE-derived regu-
latory cCREs, we performed differential chromatin accessibility (DCA)
analysis between highTE-Glut and other cell subclasses, and uncov-
ered 1,331 such TE-cCREs. Among them, accessibility profiles at 228
DCATE-cCREs, including LIMBS8, L2 and ORRIE, were correlated with
expression of synaptic-related genes (Fig. 5f, Extended Data Fig. 14j
and Supplementary Table 23). Motif analysis of these DCA TE-cCREs
showed enrichment of many bHLH-family and bZIP-family TFs, such as
NeuroG2, TCF4 and FRALI (Fig. 5g and Supplementary Table 24).
Examples of positively correlated TE-cCRE and synaptic-related gene
pairs are shown in Fig. 5Sh and Extended Data Fig. 14k. Furthermore,
we examined the superfamilies and families of the DCA TE-cCREs in
highTE-Glut, comparing them to all TE-cCREs in highTE-Glut as the
background. We observed a significant enrichment of DCA TE-cCREs
in the LINE superfamily (FDR = 8.05 x 107¢) and the L1 subfamily
(FDR =1.27 x107%%), L1, an actively retrotransposon in both mouse
and human, has accumulated in mammalian genomes. It can serve
asasource of evolutionary novelties by providing essential motifs®*.
On the basis of the analysis of variability of chromatin accessibility
of TEs, we found 90 TEs that display variable patterns of chromatin
accessibility across brain cell subclasses (Extended Data Fig. 15a,b).
Most of them showed strong negative correlation with DNA CpG meth-
ylation signals in the matched cell subclasses. Many of them, such as
LTR64,X2_LINEand MamTip1, also showed positive correlations with
RNA expression signals in the matched cell subclasses, suggesting a
potential role for these TEs in regulating gene expression. We further
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performed motif analysis on those variable TEs that may have aregula-
toryrole. We found that distal variable TEs in positive proximal-distal
cCRE connections were enriched for many binding sites of TFs, includ-
ing HF1-halfsite, RORyt and HNF1 (Extended Data Fig. 15¢). In addi-
tiontothe above variable TE families, agreater number of TEs showed
invariable chromatin accessibility across brain cell types (Extended
DataFig.15d).

Deep-learning models for brain cCREs

Deep-learning models have shown great promise in the dissection
of gene regulatory mechanisms® %, Sequence-based predictors of
gene expression or epigenetic features have been developed for large
mammalian genomes using cell-type-specific epigenetic and tran-
scriptional profiles as training data®*”’°, These models can help to
annotate sequence motifs that drive regulatory element function,
and to predict the influence of DNA variants on gene regulation.
To develop sequence-based predictors of chromatin accessibility
in different brain cell types (Fig. 6a and Methods), we adapted the
deep-learning model architecture Basenji, which uses densely con-
nected dilated convolution neural networks that are used in natural
language processing tasks®. We generated training, validation and
testing datasets (Methods) from the 275 subclasses (also referred to
as cell types in this section) and evaluated the model on the 221 sub-
classes withatleast 500 cellsincluding 93 GABAergic and 111 Glut cell
subtypes, and 17 non-neuronal types (Fig. 6b). The resulting model
successfully predicted open chromatin regions across these cell types,
with an average PCC of 0.825 between the predicted signals and true
chromatin accessibility signals across cell types (Fig. 6¢c). To further
improve the model performance in under-represented cell types, we
introduced aweighted loss function to enable the model to better learn
the cell-type-specific signals during training (Methods). To compare
the peaksidentified from experimental signals to the peaks called from
predicted signals, we calculated the area under the receiver operating
characteristic (AUROC) and demonstrated that the model can predict
the open chromatin regions very well (from 0.72to 0.94, and 0.85 on
average) for different cell types (Fig. 6d and Supplementary Table 25).
This high performance was comparable to the prediction of chromatin
accessibility signals from the most advanced deep-learning model®.
We further evaluated the model’s ability to predict cell-type-specific
chromatinaccessibility at each cCRE across the diverse cell subclasses,
achieving amedian PCC of 0.59 for the variable cCREs (coefficient of
variation > 1) in the testing set (Fig. 6e). To demonstrate the perfor-
mance of our model, we visualized predictions in unseen test regions
among 12 cell types representing diverse brain regions, cell classes
and neurotransmitters (Fig. 6f). Our model not only recapitulated
signals that were common across subclasses (Nr4a2), but also showed
subclass-specific predictions. For example, signals around Apoe were
specific in astrocytes (Astro-TE-NN and Bergmann-NN) and signals
around Ecell were specific in neurons.

While still poorly characterized, the grammar and syntax of gene
regulatory elements are believed to be evolutionarily conserved”. We
therefore tested how well the above-described deep-learning model
trained using mouse single-cell chromatin accessibility data can predict
cCREs in the matched human brain cell types with human sequences
asinputs? (Fig. 6g and Extended Data Fig. 16). Satisfyingly, we found
thatthe mouse deep-learning model can predict chromatin accessibil-
ity profiles in the matching human brain cell types fairly accurately
(AUROC, 0.75 on average) (Fig. 6h). It achieves modest accuracy in
predicting cell type specificity among cCREs (median PCC = 0.41)
(Fig. 6i). The cell-type-specific distal cCREs, such as the ones close
to marker genes CUX2, GAD2, DRD1 and OLIG1, were well predicted
(Fig. 6j). These results open a window to evaluate the influence of risk
variants on regulatory activities across corresponding cell types in
the human brain.
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Fig. 6 |Deep-learning models predict chromatin accessibility in different
braincelltypesfromthe DNAsequence. a, Schematic of the deep-learning
(DL) model Basenyji for predicting chromatin accessibly. b, The number of
subclasses of each cell classin the training dataset. ¢, Theaccuracy (Pearson
correlation) of each class.n=93 (GABA), n=111(Glut) and n=17 (NN) subclasses.
d, The AUROC was calculated for representative subclasses by comparing the
peaks called from predicted genomic signals with the peaks called from real
experimentalsignals. e, The model’s ability to predict cell-type-specific patterns
of open chromatin. The coefficient of variance (variance/mean) across cell
types was compared with the Pearsonrcalculated between true signals and

the predicted signals across cell subclasses. Each dot represents one cCRE in
the testing set. f, True signals from ATAC-seq datain mouse cell subclasses
were compared with the predicted chromatin accessibility in the test set.

Discussion

Here we describe acomprehensive cCRE catalogue of the mouse brain,
through single-cell chromatin accessibility analysis of more than
2.3 million cells from 117 anatomical dissections in the adult mouse
brain. This catalogue represents a comprehensive annotation of can-
didate gene regulatory elements of the mammalian brain. It greatly
expands on the previous cCRE annotation of the mouse brain cells,
adding more than 460,000 cCREs. This additionis enabled by the use
of single-cell-resolution chromatin profiling, which enables the iden-
tification of chromatin accessibility in rare brain cell types that are
under-represented in previous bulk assays and brain regions that were
notsurveyed in previous studies. Indeed, more than two-thirds of the
new cCREs are detected in ten or fewer brain cell subtypes (Fig. 2d),
with amedian of six cell subtypes. By comparison, the cCREs reported
in the previous catalogues®*° based on bulk tissue studies are typi-
cally detected as accessible in ten or more cell types, with a median
of 28 cell subtypes. It is possible that additional mouse brain cCREs

Representative locinear Nr4a2, Pou4f2, Ecell, Hopx, Apoe and Pf4 are shown.

g, Schematic of predicting potential chromatin accessibility signals using
human DNA sequence asinputs. h, The AUROC was calculated for matched
human celltypes.n=26 celltypes for the human brain dataset. i, The Pearsonr
oftrue signals and the predicted signalsacross cell types for all tested cCREs,
tested distal cCREs and tested proximal cCREs. The numbers of overall, distal
and proximal cCREs are 452,531, 437,207 and 15,324, respectively.j, True signals
captured from ATAC-seq analysisinhuman cell types and predicted chromatin
accessibilities are shown at representative genomic locinear the genes CUX2,
GAD2,DRDI and OLIGI. Cell-type-specific cCREs are highlighted ingrey. For the
box plots, the box limits span the firstto third quartiles, the centre line denotes
themedian and the whiskersshow1.5x the interquartile range.

remain to be discovered because many cell types defined by scRNA-seq
or other molecular modalities are not currently represented in the
snATAC-based cell clusters. Furthermore, the current catalogue was
at the resolution of cell subclasses, and may not reflect subtle differ-
ences between celltypes, subtypes and states defined inthe companion
single-cell transcriptomics or single-cell methylome studies>**.

We have attempted to reconstruct the GRNs in over 260 different
brain cell subclasses by applying CellOracle® to the single-cell ATAC-seq
and RNA-seq datasets collected from the adult mouse brain. The GRNs
that weinferred for brain cells would be the first such GRNs character-
ized for the mammalian brain cells. We characterized the common
network motifsinthese cell types. Indeed, the GRN-based eigenvector
centralities of TFs across the subclass (Fig. 4f) showed similar pattern
inthe scRNA-seqstudy®. Thereis alimitation to the GRNsinferred using
the CellOracle strategy. For example, owing to the use of a regression
model, CellOracle cannot infer autoregulatory loops. Besides, the
double-negative network motif (A inhibits Band Binhibits A) was seldom
predicted, potentially also due to the limitation of using a regression
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model. Inour opinion, instead of treating all of the cellsin one popula-
tioninsuchastatic way, the pseudotime reconstruction models’ 7 from
thesingle-cell datacanbeusedtoorganizethe cellsinadynamic manner,
whichwould enable time-series-related models™”” to be used to predict
the autoregulatoryloops and the double-negative-network-motif-like
structures. Indeed, a recent method, Dictys™, uses stochastic process
modellingtoinfer the feedback loops. Furthermore, to have more con-
fident GRNSs, from the computational view, multiple methods from
different aspects can be combined to provide diverse evidence®.

Weinvestigated the sequence conservation of gene regulatory ele-
ments in the whole mouse brain by comparing the cCRE atlas in the
mouse brain defined inthe present study to acCRE atlas obtained from
a separate snATAC-seq analysis of 42 adult human brain regions in
three adult male donors. We found that around 22% of cCREs defined
inthe current study are conserved inboth sequence and inchromatin
accessibility in the human brain. This modest number of conserved
cCREs is probably due to the stillincomplete cataloguing of cCREs in
the human brain cells. Nevertheless, the cCREs showing conserved
chromatin accessibility and sequence in both the mouse and human
brains are clearly under evolutionary constraints and, therefore, prob-
ably possess functionalimportance. Consistent with previous reports,
the chromatin-accessibility-conserved cCREs tend to be promoters
or distal elements (probable enhancers) that display accessibility in
abroader spectrum of cell types?*®. By contrast, the mouse-specific
cCREs are strongly enriched for TEs, implicating a potential role of
TEsin cell-type-specific gene expression patterns in the mouse brain.
The finding is consistent with previous observations of TE reactiva-
tion in development and in various tissues”. Note that the strongest
enrichment of TE in cCREs is observed especially in 20 Glut (excita-
tory) neurons from the isocortex, OLF and HPF. We speculate that TEs
may contribute positively to transcriptional regulation and chroma-
tin structure in these cells. In support of this possibility, nearly 1,300
TE-overlapping cCREs display positive correlation between chroma-
tin accessibility and mRNA levels from potential target genes. Their
putative target genes include those involved in synaptic function and
synapse organization. Our results raise the interesting possibility that
neural circuit diversity could be influenced by TEs during evolution.

By extracting the context information from DNA sequence, deep-
learning methods have recently been used for the prediction of
various genomic functional features, such as epigenetic modifications,
3Dinteractions and gene expression® . We adapted thisapproachto
develop sequence-based modelsto predict the chromatin accessibility
in275mouse brain cell subclasses. We achieved excellent performance
comparableto the prediction of ATAC-seq signals from the most recent
attention-based model architecture®. Although previous efforts have
attempted to train deep-learning models simultaneously on multiple
genomes®, evaluation of how well the sequence-based predictors
trained in one species can be applied to a different species is lacking
for matched cell types between species. Our results demonstrate that
deep-learning models trained using open chromatin landscapesinthe
mouse brain cell types generalize well in the corresponding human
brain cell types.
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Methods

Tissue preparation and nucleusisolation

Allexperimental procedures using live animals were approved by the
SALK Institute Animal Care and Use Committee under protocol number
18-00006. Adult C57BL/6) male mice were purchased from Jackson
Laboratories. Brains were extracted from 56-63-day-old mice and sec-
tioned into 600 um coronal sections along the anterior-posterior axis
inice-cold dissection medium?®®. Specific brainregions were dissected
according to the Allen Brain Reference Atlas* (Extended Data Fig. 1)
and nucleiwereisolated as described previously®. For each region, dis-
sected braintissues were pooled from 2-31 (only 2 dissections from the
mouse CBregion had 2 animals for snATAC-seq library construction, all
ofthe other samples had 4-31animals) of the same sex to obtainenough
nuclei for snATAC-seq for each biological replica, and two biological
replicas were performed. We shared the same fluorescence-activated
cell sorting (FACS) sequential gating/sorting strategy and the Sony
SH800S software with our previous study®.

SCATAC-seq analysis

snATAC-seq libraries were generated as described using version 2
indexing'. PCR amplification was performed for 11 or 12 cycles. A
step-by-step-protocolfor library preparationis available online (https://
doi.org/10.17504/protocols.io.4zzgx76). Libraries were sequenced
using the HiSeq 2500 (Illumina), a HiSeq 4000 (lllumina) or NovaSeq
6000 (Illumina) system with the following settings: 50 + 10 +12 + 50
(readl + index1 + index2 + read2).

Processing and alignment of sequencing reads

Paired-end sequencing reads were demultiplexed and the cell index
was transferred to the read name. Sequencing reads were aligned to
the mm10 reference genome using bwa®*. After alignment, we checked
the fragmentlength contribution, whichis characteristic for ATAC-seq
libraries (Extended Data Fig. 2e) for each of the 234 samples. We then
combined the sequencing reads to fragments using the make_frag-
ment file function of SnapATAC2% and, for each fragment, we applied
the following quality control criteria: (1) retain only fragments with
quality scores MAPQ > 30; (2) remove PCR duplicates. Reads were also
sorted on the basis of cell barcodes in read names, and shifted +4 bp
for positive strand and =5 bp for negative strand to correct the 9 bp
duplication induced from Tn5 transposase® during processing.

TSSe calculation

Enrichment of ATAC-seq accessibility at TSSs was used to quantify data
quality without the need for a defined peak set. We followed a previously
described procedure®, and used the function filter_cellsin SnapATAC2
to calculate TSS enrichment (TSSe). TSS positions were obtained from
the GENCODE® database v.16. In brief, Tn5-corrected insertions (reads
aligned to the positive strand were shifted +4 bp and reads aligned to
the negative strand were shifted -5 bp) were aggregated +2,000 bp
relative (TSS-strand-corrected) to each unique TSS genome wide. This
profile was then normalized to the mean accessibility +1,900-2,000 bp
fromthe TSS and smoothed every 11 bp. The maximum of the smoothed
profile was taken as the TSSe.

Nucleus filtering by quality control

Nuclei with 21,000 uniquely mapped fragments and TSSe > 10 were
filtered for each of 234 samples according to the ENCODE ATAC-seq
datastandards and process pipeline (https://www.encodeproject.org/
atac-seq/). We used the filter_cells function of SnapATAC2 to achieve
this.

Doublet removal
We used amodified version of Scrublet® to remove potential doublets
for every sample independently using SnapATAC2. First, we used the

add_tile_matrix function to add the 500 bp genomicbin features, then
used the select_features functiontofilter out the features with frequen-
ciesalong the samples of lower than 0.5% or higher than 99.5%. We then
applied the scrublet function of SnapATAC2 to get the doublet scores.
The parameter expected_doublet_rate was set to 0.08, whichisbased on
our previous experiment on the snATAC-seq pipeline'. Barcodes with
scrublet scores of greater than 0.5 were treated as potential doublets
and removed from our analysis.

We compared Scrublet with another recently published method
named AMULET?’, which is used for doublet detection and removal
in snATAC-seq data. We simulated datasets containing singlets and
artificial doublets from eight samples in the primary motor area and
evaluated the performances of the two methods using precision-recall
curve (PRC) and area under PRC (AUPRC).

Iterative cell clustering

After nucleus filtering by quantity control and doublet removal, we
adapted afourth-rounditerative clustering using SnapATAC2 for later
identification of cell-type-specific cCREs (Extended Data Fig.4a). The
following basic procedure was used. For the first round of clustering
(L1-level clustering), we used all of the 2.3 million nuclei to perform
thestandard clustering. At the second round (L2-level), for each of the
37 clusters above, we performed independent clustering. At the third
round (L3-level), for each of the 248 clusters above, we performedinde-
pendent clustering again. At the fourth round of clustering (L4-level
clustering), we performed only clustering for the L3-level clusters with
number of cells no less than 400. The details are as follows.

Feature selection. We applied the function add_tlle_matrix from
SnapATAC2to extract the cell by genomic bin count matrix. The size of
aconsecutive genomic region was chosenas 500 bp. Wefiltered out any
bins overlapping with the ENCODE blacklist and removed the top 0.5%
and tail 0.5% bins based on the read coverage from the count matrix.
Only chromosomes 1-19, X and Y were considered. For our L1-level
clustering, we used all of the bin features (over 4 million) that passed
the criteriaabove as non-neuronal cells and diverse neuronal cells were
all included. For clustering of other levels, we chose the default top
500,000 features using the function select_features of SnapATAC2.

Dimensionality reduction. We applied the function of spectral from
SnapATAC2 to convert the high-dimension sparse 500 bp genomic
binfeatures per cellinto low dimensional representations, which used
spectralembedding of the normalized graph Laplacian defined by the
cell-to-cell similarity matrix using cosine distance. For L1-level and
L2-level clustering, we chose 50 as the dimension of the low-dimensional
representation space as usually alarge number of cells and potentially
diversecelltypeswasinvolvedinthe twolevels. We used ‘elbow plot’ to
rank all of the principal components to make sure that the top 50 com-
ponents were sufficient for our analysis. For later analysis, we chose 30
instead. The parameter ‘weighted_by sd’inthe functionspectral was set
tobetrueforall dimensional reduction. We did not use the parameter
‘sample_size’ in the function spectral, so no approximation method
was used for the spectral embedding. For 2.3 million cells, it took about
300 GB memory in our high-performance computing system®®,

Graph-based clustering. We then applied the function knn from
SnapATAC2 to construct the k-nearest neighbour graph using the
parameter n_neighbors =50 and the parameter method was set to
‘kdtree’. We next used the function leiden of SnapATAC2 for clustering
with the parameter object_function set as modularity. The parameter
resolution, which affected the number of clusters a lot, was selected
from 0.1to 2 with a step size 0.1 based on the silhouette coefficient®
using the Python package Scikit-learn®. We also manually checked
the UMAP® for each clustering result to make sure that the resolution
was suitable corresponding to the top silhouette coefficient. UMAP
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projections were calculated using the Python package umap with the
parametersaas1.8956,bas 0.8005 and init as spectral. All of the reso-
lution parameters during clustering are provided in Supplementary
Table 3. In our later analysis, we used the term subtypes to represent
all of the final clusters from L3-level clustering and L4-level clustering.

Integration analysis with scRNA-seq data

We performed integration analysis of the 1,482 subtypes with all of over
5,300 clusters reported in a companion scRNA-seq study of 4.5 mil-
lion cells for the whole adult mouse brain®. Only cells from male mice
were considered in the scRNA-seq data, which is over 2 million cells.
The scRNA-seq data are mainly from 10x v.2 and 10x v.3 platforms,
and only afew thousand cells are from snRNA-seq. On the basis of our
integration analysis, we did not see significant differences between
using 10x v.3 alone and using all of them. Very few cell clusters were
found using the 10x v.2 but not using the 10x v.3 platform. We therefore
used all of the cells without distinguishing their platforminformation
inthe later analysis.

Wefirstimputed RNA expression levels according to the chromatin
accessibility of the gene promoter (up to 2 kb to TSSs) and gene body
as described previously* using the function make_gene_matrix in
SnapATAC2. We next performed integration analysis using Seurat for
neuronal cellsand non-neuronal cells separately. For neuronal cells, in
the scRNA-seq data, we randomly selected 50 cells for each of over 5,100
clusters, and finally got more than200,000 cells. To have acomparable
number of cellsin our snATAC-seq data, we randomly selected 150 cells
foreachof over1,260 L4-level neuronal subtypes and got over 180,000
nuclei. For non-neuronal cells, we sampled 500 cells per cluster and got
35,000 cells in the scRNA-seq data. For the snATAC-seq, we sampled
300 cells per L4-level subtypes, and got over 57,000 nuclei.

For the variable features, we applied the >8,000 genes from differ-
ential expression analysis in the scRNA-seq study®, and used their data
asthereference. We next applied the canonical component analysis for
integrationusing Seuratv.5. Canonical component analysis was recom-
mended for the cross-modality integration, which indeed showed more
promising results thanreciprocal principal component analysisin our
experiments. Seurat v.5 is specifically designed to handle large-scale
datasets and is especially important for our scenario. We used the
function FindTransferAnchors with the parameter k.anchor as 50 for
single-cell level label transfer. k.anchor is important for large-scale
dataintegration as mentioned in Seurat. The default k.anchor value
is 5 for that function, and we tested k.anchor as 5, 10, 30, 50, 70,100
and120; ak.anchor value of 50 showed more reliable results compared
with others. For UMAP visualization, we used the FindIntegration-
Anchors function of Seurat, and then calculated UMAP based on the
co-embedding space. It was also recommended by Seurat to perform
integration inthis manner. The transfer label scores for agiven L4-level
subtype in our snATAC-seq data is a numeric vector, where each ele-
ment is the number of cells annotated as the corresponding cluster
in the scRNA-seq data divided by the number of cells in that L4-level
subtype. For each L4-level subtype, we used the corresponding top
3 clusters in the scRNA-seq data as the candidate annotations, then
mapped the three clusters to the subclasses defined in the scCRNA-seq
data, and manually checked whether they were consistent on mouse
brain major regions and gene markers.

Identification of reproducible peak sets in each cell cluster

We performed peak calling according to the ENCODE ATAC-seq pipe-
line (https://www.encodeproject.org/atac-seq/) on 1,482 L4-level sub-
types and used the same procedure tofilter the peaks at both the bulk
and single-cell level (Extended Data Fig. 9a) as in our previous study®.
Before calling peaks, we merged clusters with the number of cells less
than 200 if they shared the same cell cluster annotation based on the
integration analysis before and were in the same L3-level cluster. Next,
1,463 subtypes (including merged ones) were used.

For every cell cluster above, we combined all properly paired reads
to generate a pseudobulk ATAC-seq dataset for individual biological
replicates. Moreover, we generated two pseudoreplicates comprising
half of the reads from each biological replicate. We called peaks for
eachofthefour datasetsandapool of bothreplicatesindependently.
Peak calling was performed on the Tn5-corrected single-base insertions
using MACS23¢ with the following parameters: --shift -75 --extsize 150
--nomodel --call-summits --SPMR -q 0.01. Finally, we extended peak
summits by 250 bp on either side to afinal width of 501 bp for merging
and downstream analysis. If the number of cellsin any of the pseudobulk
ATAC-seq from either individual biological replicates or individual
pseudoreplicates is fewer than 200, we did not run MACS2 for it. We
did this toreduce the potential false negatives during the next filtering
step induced by the limited number of cells in the replicates.

To generate a list of reproducible peaks, we retained peaks that
(1) were detected in the pooled dataset and overlapped >50% of peak
length with a peakinbothindividual replicates or (2) were detected in
the pooled dataset and overlapped >50% of peak length with a peakin
both pseudoreplicates.

We found that, when the cell population variedinread depth or num-
berof nuclei,the MACS2 score varied proportionally due to the nature
of the Poisson distribution testin MACS2". Ideally, we should perform
areads-in-peaks normalizationbut, in practice, this type of normaliza-
tion is not possible because we do not know how many peaks we will
get. Toaccount for differences in the performance of MACS2 based on
read depth and/or number of nucleiinindividual clusters, we converted
MACS2 peak scores (-log;,[g]) to SPM*. We filtered reproducible peaks
by choosing a SPM cut-off of 5.

Wethenretained only reproducible peaks on chromosome1-19 and
both sex chromosomes and filtered ENCODE mm10 blacklist regions.
A union peak list for the whole dataset was obtained by merging peak
sets from all of the cell clusters using BEDtools”".

Finally, as snATAC-seq data are very sparse, we selected only ele-
ments that wereidentified as open chromatinin asignificant fraction
ofthe cellsin each cluster. To this end, we first randomly selected the
same number of non-DHS regions from the genome as background
using the shuffleBed function of BEDtools, and calculated the fraction
of nucleifor each cell type that showed a signal at these sites. We next
fitted a zero-inflated f-model, and empirically identified a significance
threshold of FDR < 0.01 to filter potential false positive peaks. Peak
regions with FDR < 0.01in at least one of the clusters were included in
downstreamanalysis. Given one cell subclass, we treat all of the peaks
from the subtypes mapped to this subclass as the peaks for the subclass.

Identification of cis-regulatory modules

We used NMF*to group cCREs into cis-regulatory modules on the basis
of their relative accessibility across major clusters. We adapted NMF
(Python package sklearn®®) to decompose the cell-by-cCRE matrix V
(Nx M, Nrows: cCRE, M columns: cell clusters) into a coefficient matrix
H (R x M, Rrows: number of modules) and abasis matrix W (N x R), with
agivenrank R":

The basis matrix defines module-related accessible cCREs, and
the coefficient matrix defines the cell cluster components and their
weights in each module. The key issue to decompose the occupancy
profile matrix was to find areasonable value for the rank R (that is, the
number of modules). Several criteria have been proposed to decide
whether a given rank R decomposes the occupancy profile matrix
into meaningful clusters. Here we applied two measurements, Sparse-
ness®?and Entropy*, to evaluate the clustering result. Average values
were calculated from five NMF runs at each given rank with arandom
seed, whichensures that the measurements are stable (Extended Data
Fig. 9f).

We next used the coefficient matrix to associate modules with dis-
tinctcell clusters. Inthe coefficient matrix, each row represents amod-
ule,and each columnrepresentsacell cluster. The values in the matrix
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indicate the weights of the clusters in their corresponding module.
The coefficient matrix was then scaled by column (cluster) fromOto 1.
Subsequently, we used a coefficient > 0.1 (~95th percentile of the whole
matrix) as a threshold to associate a cluster with amodule.

Moreover, we associated each module with accessible elements using
the basis matrix. For each element and each module, we derived a basis
coefficient score, which represents the accessible signal contributed
byall clustersinthe defined module. We alsoimplemented and calcu-
lated a basis-specificity score called feature score for each accessible
element using the kim method*. The feature score ranges from 0
to 1. A high feature score means that a distinct element is specifically
associated with a specific module. Only features that fulfil both fol-
lowing criteria were retained as module specific elements: (1) feature
score greater than median + 3s.d.; (2) the maximum contribution to
a basis component is greater than the median of all contributions
(thatis, of all elements of W).

Inference of cis-co-accessible cCREs

Cis-co-accessibility cCREs are predicted for all open regions in each
of the 275 cell subclasses separately using Cicero for Monocle 37%%
with the default parameters and the mouse mm10 genome, scanning
the mouse genome with a window size of 500 kb. For each subclass,
we randomly selected 5,000 nuclei, and used all of the nuclei for cell
clusters with <5,000 nuclei. Only one subclass failed during running
Cicero, which was annotated as ‘Hypendymal_NN’ with 92 nuclei in
total, and showed the smallest number of peaks (less than 5,000) of
all of the subclasses. To find an optimal co-accessibility threshold for
eachsubclass, we randomly shuffled the columns of the cell-by-cCREs
matrix (thatis, the cCREs) in the cells as the background and identified
co-accessibility regions from this shuffled matrix. A normal distribu-
tion is then used to fit the co-accessibility scores from the shuffled
background using the R package fitdistrplus®. Co-accessibility cCREs
werefiltered out onlyif their co-accessibility scores were significantly
larger than the background (FDR < 0.001 using Benjamini-Hochberg
adjustment). CCREs outside of +1 kb of TSSs in GENCODE mm10 ver-
sion 23, were treated as distal cCREs, others as proximal ones. All of
the cis-co-accessibility cCREs were then grouped into three classes:
proximal-to-proximal, distal-to-distal and distal-to-proximal pairs. In
our study, we focused only on distal-to-proximal pairs.

Enrichment analysis of FIREs
We called frequently interacting regions (FIREs) in the mouse cortex
by applying the criteriain our group’s FIRE paper®. The result showed
that most FIREs (3,158 out of 3,169) overlap with cCREs in the mouse
brain, and afraction of the cCREs (71,626 out 0f 1,053,811) overlap with
FIREs (Extended Data Fig. 10e).

We next tested whether cCREs are enriched at FIREs through permu-
tation analysis. In brief, we shuffled the mouse genome 1,000 times,
each time generating 1,053,811 random regions with equivalent sizes
as the cCREs. We then calculated the number of overlaps between
the randomly generated regions and the FIREs during each shuffle.
We found that cCREs are significantly enriched at FIREs (P < 0.001;
Extended Data Fig. 10f), with the actual number of overlaps on FIREs
substantially higher than expected.

Motif enrichment
We performed both de novo and known motif-enrichment analysis
using Homer®,

Enrichment analysis of chromatin conformation

We cross-referenced the dataset from the companion study*, in which
a comprehensive chromatin conformation/methylome joint profile
throughout the adult mouse brainis described, and most of the subclass
annotations (244 subclasses of 275 subclasses in our data) are shared
between these two datasets.

Toevaluate the confidence of identified subclass-specific cCCRE-gene
pairs, we randomly selected 11 major subclasses (Sst. GABA, Pvalb_
GABA, CBX_MLI_Megf11_GABA, Vip_GABA, CA1-ProS_Glut, CB_granule_
Glut,L6_CT_CTX_Glut, L2-3_IT_CTX_Glut, Astro-TE_NN, Microglia_NN,
Bergmann_NN), and calculated the Hi-C signal enrichment (at 1 kb
resolution) at the top 20% subclass-specific cCCRE-gene pair anchors
identified in this study. We found that there is statistically significant
higher enrichment (P=0.004) of chromatin interaction signal at the
corresponding subclass-specific cCCRE-gene pair anchors, compared
withnon-corresponding pair anchors (Extended Data Fig.10g), suggest-
ing that subclass-specific cCRE-gene pairs are more likely to interact
inthe cell typesin which the cCREs are active.

Meanwhile, we selected the two peak modules that show global acces-
sibility across the subclasses based on the NMF analysis (Fig. 2f (top
left)). We then selected all of the proximal-distal connections with
cCREsinthe peak modules above and ranked the proximal-distal con-
nections based onthe highest Cicero scores they have. We treated them
as global proximal-distal connections and performed the Hi-C signals
by aggregating all of the Hi-C data. From the heat maps (Extended Data
Fig.10h), we observed the strong enrichment signals for the global
proximal-distal connections.

Predicting GRNs for each cell subclass

We adapted the recently published Python package CellOracle® on
our data to infer GRNs for each cell subclass across the whole mouse
brainbased on ourintegration analysis between our snATAC-seq data
and the scRNA-seq data’. Three steps were followed. First, we identi-
fied the co-accessibility distal-to-proximal pairs, which was described
previously for each subclass. Second, we mapped the distal cCREs to
TFs. Lastly, we identified the regulatory relationships between TFs
and the potential target genes by fitting a regularized linear regres-
sion model using scRNA-seq data. For the second step, according to
the CellOracle tutorial, we used the Python package gimmemotifs®
for the TF-binding-motif scan with the mouse genome mm10 and the
default motif database provided by CellOracle. The proximal cCREs
were mapped to the genes based on GENCODE mm10 (v.23, the same as
above). We used Seurat® to randomly sample 1,000 cells per subclass
(all of the cells of a cell subclass were used if it had <1,000 cells). To
select the variable features, we performed the FindVariableFeatures
function of Seurat to select the top 3,000 genes, and then we manually
added the 499 TFs (if any of them were missed in the previous 3,000
genes) that were reported inthe scRNA-seq data of ref. 5. For each sub-
class, we performed CellOracle on the scRNA-seq data with the default
parameters. We used P < 0.001 and the top 10,000 edges based on
the absolute values of the weights to filter the predicted interactions
between TFs and genes as suggested by CellOracle. Finally, 267 out of
275 subclasses successfully had the predicted GRNs.

Sequence conserved, chromatin accessibility conserved and
mouse-specific cCCREs

The orthologous cCREs of the mouse brain in the human genome
were identified by performing reciprocal homology searches using
the liftover tool®. The mouse cCREs for which human genome
sequences had high similarity (more than 50% of bases lifted over
to the mouse genome) were defined as orthologous cCREs. We next
compared these orthologous cCREs in the mouse brain with our
previously identified cCREs in the human brain®’. Those ortholo-
gous cCREs, which both were DNA sequence conserved across spe-
cies and had open chromatin in orthologous regions, were defined
as chromatin-accessibility-conserved cCREs. The other orthologous
cCREs, which were only sequence conserved to orthologous regions
but had not been identified as open chromatin regions in other
species, were defined as chromatin-accessibility-divergent cCREs.
Mouse-specific cCCREs were those ones that were not able to find orthol-
ogous regions in the human genome.



TE analysis

The TE annotation of cCREs was annotated using Homer* and UCSC
mm10 refGene and RepeatMasker annotation. To define the high
TE-cCREs fraction of subclasses, we fitted a mixture model for the
TE-cCRE fraction across all subclasses using the R package mixtools®”
(v.2.0.0). The Pvalue was calculated based on the null distribution.

To annotate the TE-cCREs, we used two strategies. One was based
on the genomic regions. We mapped the TE-cCREs to genes within
3 kb flanking regions using the R package ChIPseeker?® (v.1.34.1).
Another method to link the gene to TE-cCREs was based on the cCREs
and gene correlation. For each GO test, we also filtered unexpressed
genesindefined subclasses based on the single-cell RNA-seq data (see
the companion manuscript®). The DCA of TE-cCREs between groups
was calculated using the Wilcoxon rank-sum test. Motif-enrichment
analysis of TE-cCREs was performed using Homer software using the
‘given size’ parameter.

Toanalyse the TE-accessible variability with decreased noise, the TE
signal was aggregated from the TE-cCREs. To calculate the correlation
between chromatin accessibility and mCG methylation in TEs across
subclasses, we averaged and normalized the TE-cCRE mCG signal for
each TE in matched subclasses from the companion paper*. To calcu-
late the correlation between chromatin accessibility and RNA expres-
sion, we aggregated RNA signals at TE-cCREs of each TE in matched
subclasses from a previous study®.

GO enrichment

We performed GO enrichment analysis using R package clusterPro-
filer'®'° The background genes were selected on the basis of the
enrichmentanalysis and described in text. The Pvalue was computed
using the Fisher exact test and adjusted for multiple comparisons using
the Benjamini-Hochberg method.

Deep-learning model

Our model was trained on all 275 subclasses annotated based on the
integration with the scRNA-seq data. We generated aggregated genome
signal tracks in bigwig format by running MACS23¢. The training, val-
idation, and testing datasets have been generated using the script
basenji_data.py from Basenji® with the parameters: “-b mm10.blacklist.
bed-1131072 --local-p16 -t 0.1-v 0.1-w 128"

The modelarchitecture, layers and parameters are adapted from the
mouse model from a previous study®, with modification only in the
last output head layer with parameter: “units”: 275. To encourage the
model to predict cCREs in under-represented cell types, we created
one novel loss function:

W;,i= Cov(ytrue(i,i))
n
w=Y wy/n
i=1

Poissonloss =ypred(i,j) _ytrue(i,j) x IOg(ypred(i,j))

loss function = w - Poisson loss

The i represent the cell type, andj represents genomic bins. The
Yuue Fepresents the genomic bin-by-type matrix calculated from true
signals. They, .4 represents the predicted genomic bin-by-type matrix.
The pairwise covariance w;; was calculated between cell types. We
then sum the scores across rows and normalize the number of cell
types as weights. Last, the weights wwas dot multiplied by the original
poisson loss.

We trained the subclass-level deep-learning model on four NVIDIA
A100 80 GB GPUs using the script basenji_train.py from Basenji®.

For training, we set the parameter batch size to 32, epochs to 150 and
patience to 30.

Toevaluate the model’s ability to identify cell-type-specific patterns
of cCRE, we compared the Spearman correlation of model predictions
totrueaccessibility across cell typesinall peaksin the test set. We fur-
ther compared cross-cell-type correlation to the coefficient of variation
(theratio of s.d. to mean) of each peak.

We also evaluated the model’s accuracy when applied to human
celltypes. We firstidentified matched human cell types from a previ-
ous study??. For each subclass in human and mouse cCREs, we per-
formed spearman correlation across orthologous cCREs (Extended
DataFig.16). We next selected pairs based on correlation and annota-
tion matching. We then used the model to predict chromatin acces-
sibility in the paired human cell types, across all chromosomes.
We further evaluated this prediction accuracy within and across cell
types.

External datasets

External datasets used were as follows: (1) ENCODE rDHS regions for
both hgl9 and mm10 are obtained from SCREEN database (https://
screen.encodeproject.org)®*°, (2) ChromHMM?3#'%2 states for mouse
brain are download from GitHub (https://github.com/gireeshkbogu/
chromatin_states_ chromHMM_mm9) and coordinates are LiftOver
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to mm10 with the
default parameters®. (3) PhastCons'® conserved elements were down-
loaded fromthe UCSC Genome Browser (http://hgdownload.cse.ucsc.
edu/goldenpath/mm10/phastCons60way/). (4) The ENCODE mm10
blacklist file was downloaded from http://mitra.stanford.edu/kundaje/
akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz.
(5) Mouse mm10 genome information was downloaded from GENCODE
(https://www.gencodegenes.org/mouse/).

Statistics

No statistical methods were used to predetermine sample sizes.
There was no randomization of the samples, and investigators were
not blinded to the specimens being investigated. However, cluster-
ing of single nuclei based on chromatin accessibility was performed
inan unbiased manner, and cell types were assigned after clustering.
Low-quality nuclei and potential barcode collisions were excluded
from downstream analysis as described above.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.3| Quality control metrics of the snATAC-seq datasets
atthesingle-celllevel. a, Dot plotillustrating fragments per nucleus and
individual TSS enrichment. Nucleiin the top right quadrant were selected for
analysis (TSS enrichment >10 and >1,000 fragments per nucleus). b, Box plots
showing the AUPRCs of AMULET*® and Scrublet®® on the simulated datasets
fromthe corresponding samples labelled in x axis. Each bar represents the
mean value of 10 random experiments with 1x standard deviation as the error
bar. Two-sided t-tests were used, and *** means P-value < 0.0001. c¢. Box plots
showing the doublet rates across the samples. Samples were grouped based on

theirreplicateinformation.n =117 biologically independent samples for each
replicateland2.d, Number of nucleiretained after each step of quality control.
e, Bar plots showing the numbers of nuclei passing quality control for subregions.
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Extended DataFig. 5| Quality and reproducibility of the cell clusters. a, CDF
plotshowing the consistency of the estimated fraction of each cell subclass
betweenthebiological replicates. Two-sided Kolmogorov-Smirnov test shows
nosignificant difference between the biological replicates. b, Box plots of the
Pvalues of two-sided Kolmogorov-Smirnov tests illustrate consistent results
between the two biological replicates for each subclass across major brain
regions, sub-regions and brain dissections tested. n =12 comparisons for major
regions, n =41 comparisons for sub-regions and n =117 comparisons for
dissectionregions. c, Heat map showing the pairwise Spearman correlation
coefficients of cell subclass composition between each replicate of brain

dissections. The columnand row names consist of two parts: brain region name
andreplicate label. For example, CB-1.1represents the replicate 1 of the first
brain dissection of the cerebellum (CB-1). The embedded box plot shows the
distribution of Spearman correlation coefficients between two biological
replicates, replicates from intra-major brainregions and inter-major brain
regions. Significanceis denoted as ***P <2.2e-16, determined by one-sided
Wilcoxon rank-sum test. n = 22720 pairs for “intra-major regions” group, n = 4424
pairs for “inter-major regions” group, n =117 for “between replicates” group.
Boxes spanthefirstto third quartiles, horizontal line denotes the median, and
whiskersshow1.5x theinterquartile range.
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clusters from the snATAC-seq data. g, Consensus scores between neuronal

clusters from the scRNA-seq data of Allen Institute and L4-level neuronal clusters
fromthe snATAC-seq data. h, Consensusscore between non-neuronal clusters
fromthe scRNA-seq dataand L4-level non-neuronal clusters fromthe snATAC-seq
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scRNA-seq datafor neurons and non-neurons separately. UMAP on the
co-embedding space of neurons from the snATAC-seq data (a) and scRNA-seq
data (b). Colours as major regions. ¢, The co-embedding UMAP embedding of
non-neuronal cells from the scRNA-seq data and the snATAC-seq dataon the
same space coloured by the two modalities. UMAP on the co-embedding space
of non-neurons from snATAC-seq data (d) and scRNA-seq data (e). Colours

as major regions. f, Consensus scores (i.e., transfer-label scores) between
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Slc32a1(GABA), Slc17a6 (Glut-subcortical), Slc17a7 (Glut-cortical), Slc17a8 (Glut),

Extended DataFig.7|Marker genesfor the subclasses afterintegrationin
thesnATAC-seq datausing theimputed gene expressions. Dotplot showing

Slc6as (Gly-GABA), Slc6a4 (Glut-Sero), Slc6a3 (Dopa), Slc18a3 (Chol), Hdc (Hist),
Slc6a2 (Nora). The subsequent columns are the most occurring marker gene

the snATAC-seq gene activity scores of the marker genes (columns) used for

reported within each Allen Institute subclass designation corresponding to

each subclass annotation (row) of the snATAC-seq data.

identification of the scRNA-seq dataacross the cell subclasses®. The first 13
columns correspond to major neuronal cell type marker genesincluding

neurotransmitter genes as follows: Snap25 (Neuron), Gadl (GABA), Gad2 (GABA),
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Extended DataFig. 8| Cellular composition of brain dissections for cell dissected regions are shown as different sized dots. The sizes of dots correspond

subclasses. a, Bar plot shows the total number of nucleisampled foreachbrain  tothe percentage and the colours of the dots indicate the brain dissections.
dissectionregion.b, Normalized percentages (pct) of eachsubclassinall the
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Extended DataFig. 9|Statistics of peak calling on snATAC-seq datafor each
cellsubtype. a, Schematic of peak calling and filtering pipeline. b, Density
distribution plot showing the fraction of cells per cell type in which a peak was
accessible and acorresponding background for each cell type. Foreach cell
type, thebackgroundis defined as the non-DHS and non-peak regions randomly
picked fromthe genome. ¢, Venn plot showing the overlapping between the
peaks from the whole mouse brain and the ones from the cerebral regions®.

d, Enrichment analysis of the peak sets with a15-state ChromHMM modelin the
mouse brain chromatin'®2 e, Density map comparing the median and maximum

variation of chromatin accessibility at each cCRE across cell subclasses. The
left density map refers to the cCREs overlapping with the ENCODE DHSs, and
therightonerefersto the cCREs having no overlaps with the ENCODE DHSs.

i, Scatter plot showing entropy (blue) and sparseness (red) trends when
increasing the number of modules used for non-negative matrix factorization.
When the module numberis 150, we cansee asignificantdrop inentropyanda
significantincreasein sparseness.j, The red arrows point to the two subclasses
with lowest number of cellsin the snmC-seq data*.
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Extended DataFig.10|Characterization of predicted cCRE-target gene
pairs. a, Scatter plot showing the number of identified connections between
all the cCREs pairs within 500k bp along with the number of nuclei for each cell
subclassidentified based ontheintegration analysis. b, Scatter plot showing
the number of proximal-distal cCREs along with the number of nuclei for each
cellsubclass. ¢, Histogram showing the distances along the genome for each
proximal-distal cCREs. d, Histogram showing the distances along the genome
for each pair of enhancer and targeted gene’s promoter (positive proximal-distal
cCREs) inferred by the correlation study (Fig.3b). e, Intotal, 613,485 positively
correlated proximal-distal cCREs and 107,413 negatively correlated proximal-
distal cCREs were identified. f, Boxplot showing the identified potential

100 600

enhancers foreach of 20,703 gene in the positively correlated pairs. g, Boxplots
ofthe enrichmentscores (1 kbresolution) of aggregate peak analysis (APA)

for the top 20% positive proximal-distal connections (ppdc) from several
represented subclasses. Match, the subclass’s Hi-C data* used for the same
subclasses. Unmatch, the subclass’s Hi-C data used for other subclassesasa
randombackground. 11data points wereincluded in the match group and 110
pointsintheunmatched groups. P value was calculated by the one-sided
Wilcoxonrank sumtest.Infand g, boxes span the first to third quartiles,
horizontal line denotes the median, and whiskers show 1.5x (f) and 2x (g) the
interquartile ranges. h. Heatmaps of enrichment signals for the top 10% global
proximal-distal connections (pdc) and enrichment signals for the random pairs.
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Extended DataFig.11|Inference of gene regulatory networks (GRNs) at cell
subclasslevel across the whole mousebrain. a, Schematic ofidentifying
co-accessible cCREs for each cell subclass using Cicero**. b, Schematic view of
inference of GRNs from predicting the putative target genes’ expression with the
corresponding transcription factors (TFs) for each cell subclass using CellOracle®2.
¢, Boxplot of267 Pvalues from two-sided Kolmogorov-Smirnov test to check
power-law distributions of the nodes’ degrees from GRNs. Only one cell subclass
(OB_Eomes_Ms4al5_Glut) did not pass this examination with the Pvalues smaller
than 0.05. Thebox spansthe firstto third quartiles, the horizontal line denotes

the median, and whiskers show 1.5x the interquartilerange.d, 15commonly used
network motifs*®usedinour analysis. Eachnodeisa TF oragene, and edges
describetheregulationdirections, i.e., arrows pointed to the ones that were
regulated by the source nodes or TFs. The blue colour means the negative
regulation (TFsinhibit target gene expressions), while the orange colour means
the positiveregulation (TFsupregulate target gene expressions). PFL, positive-
feedback loops; RDP, regulated double-positive; FC, fully connected triad; FFL,
feedforwardloops. SIM, single-input module. e, Stacked bar plots of the ratio of the
network motifs above in eachsubclass. Each columnresponds to one cell subclass.
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Extended DataFig.12|Histograms of the counts of the network motifsin
eachsubclass’s generegulation network (GRN) grouped by main class (a) or
regions (b). The names of the network motifs are the same ones in Extended
DataFig.11d. Only the class with atleast 3 subclasses were shown here. For each
histogram, we added the corresponding density plot. The telencephalon region
includesisocortex, olfactory bulb, hippocampus, striatum, pallidum, and
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amygdala; the diencephalonregionincludes thalamus and hypothalamus; the
hindbrainincludes pons and medulla. ¢, Normalized signals of Atf3 ChIP-seq at
KIf4inbone marrow-derived macrophages (BMM) showing Kif4is likely tobe a
putative target of Atf3.d, Normalized signals of Atf3 ChIP-seqat Tallinbone
marrow-derived macrophages (BMM) showing Tall is likely to be a putative
target of Atf3.
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Extended DataFig.13 | Comparison of chromatin accessibility (CA)
conserved and divergent cCREs between mouse and human. a, A schematic
of CAconserved and divergent cCREs. The CA-conserved cCREs are the cCREs
inour snATAC-seq datathat are conserved across species and have open
chromatininorthologous regions. The CA divergent cCREs are sequence
conservedto orthologous regions but have not beenidentified as open
chromatinregionsinother species. The bar plot shows the numbers of
CA-conserved and CA-divergent cCREs. b, Bar plot showing the relative fraction
of CA conserved and divergent cCREs across subclasses. ¢, Radar chart showing
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the fraction of genomic distribution of CA-conserved and CA-divergent cCREs.
The CA-conserved cCREs show anincrease in percentage in Promoter-TSS
regions. d, Histograms showing the number of CA-conserved and CA-divergent
cCREsinsubclasses. The number of CA-conserved cCREs is higher than
CA-divergent cCREs. e, Histograms showing the CA-conserved cCREs captured
by the number of cell subclasses. A fraction of CA-conserved cCREs are captured
by more than 200 cell subclasses. f, Histograms showing the CA-divergent
cCREs captured by thenumber of cell subclasses. Most CA-divergent cCREs are
captured by lessthan 50 cell subclasses.
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Extended DataFig.14 | Analyses of chromatin accessibility at transposon
elements (TEs) of cCREs. a, Pie charts showing the genomic distribution of
mouse-specific cCREs. b, Histograms showing the fraction of cCCREs overlap
with TEsinsubclasses of glutamatergic neurons (Glut), non-glutamatergic
neurons (nonGlut-Neu), and non-neurons (NN). ¢, Boxplot showing the fraction
of cCREs overlap with TEs in highTE-Glut, other-Glut, nonGlut-Neu, and NN

subclasses. The Pvalues are calculated by the one-sided Wilcoxon rank-sum test.

Boxes span the first to third quartiles, horizontal line denotes the median, and
whiskersshow1.5x theinterquartilerange. Therearen=22subclassesinthe
“highTE-Glut” group, n =108 subclassesin the “other-Glut” group,n =123

subclassesinthe “nonGlut-Neu” group, and n =22 subclasses in the “NN” group.

d, Heatmap showing the fraction of genomic distribution of cCREs ineach cell
subclass. e, Heatmap showing the fraction of TE family distribution of cCREsin
each cellsubclass. f, GO analysis showing genes near TE-cCREs in highTE-Glut

versus genesnear TE-cCREs in all subclasses are enriched for neuronal specific
functions. g, GO analysis showing genes near TE-cCREs in highTE-Glut versus
genesnear all cCREsin highTE-Glut are enriched for neuronal specific functions.
h, Top3 motif families enriched in the TE-cCREs in highTE-Glut. The unadjusted
P-values were calculated using a two-sided Fisher’s exact test. i, Top3 motif
families enriched in the TE-cCREs which showed positively correlated with genes
and occurredin highTE-Glut. The unadjusted P-values were calculated using a
two-sided Fisher’s exact test. j, Volcano plot showing differential chromatin
accessibility (DCA) TE-cCREs in highTE-Glut subclasses compared to other
subclasses. Thered colour labelled all DCA TE-cCREs which correlated with
synapticrelated genes. k, Genome browser tracks of aggregate chromatin
accessibility profiles for NN, GABA, highTE-Glut, and other Glut subclasses at
selected DCATE-cCREs and gene pairs. RNA signals shown here were collected
from previous study®’.
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Extended DataFig.15| Accessible variability at transposon elements
(TEs) across cell subclasses. a, Density scatter plot comparing the averaged
accessibility and coefficient of variation across cell subclasses at each
transposon element. Variable TEs are defined on the upper right side of dash
lines, invariable TEs are defined on the upper left of dash lines. b, Normalized
accessibility at variable TEs in different cell subclasses. The middle bar plot
showing correlation between mCG level and accessibility at variable TEs across
subclasses. Theright bar plot shows correlation between expression level and

accessibility at variable TEs across subclasses. ¢, Top10 motifs enrichin
positively distal cCCREs overlapped with variable TEs. The unadjusted P-values
were calculated using atwo-sided Fisher’sexact test.d, Normalized accessibility
atinvariable TEs in different cell subclasses. The middle bar plot showing
correlation between mCG level and accessibility atinvariable TEs across
subclasses. The right bar plot showing correlation between expression level
and accessibility atinvariable TEs across subclasses.
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Extended DataFig.16 | Spearman correlation across orthologous cCREsbetween all paired human and mouse subclasses (mba: mouse brain atlas; hba:

humanbrainatlas).
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Laboratory animals Adult (P56) C57BL/6J male mice were purchased from Jackson Laboratories at seven weeks of age and maintained in the Salk animal
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euthanasia. The temperature in the animal facility was maintained within the range of20 to 22.2C, while the humidity levels varied
between 35 and 60%.

Wild animals No wild animals were used in this study.
Reporting on sex Only male mice were used.
Field-collected samples  No filed-collected samples were used in this study.

Ethics oversight All experimental procedures using live animals were approved by the SALK Institute Animal Care and Use Committee under protocol
number 18-00006.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Instrument Sony SH800

Software Sony SH800S software




Cell population abundance Cell populations within each sample were determined using SnATAC-seq as described in the manuscript. See Methods and
Supplementary table 2 and 3 for details.

Gating strategy Potential nuclei were first identified using FSC-Area and BSC-Area. Next doublets were removed based on BSC and FSC signal
width. DRAQQ7 postive nuclei with 2n count were sorted.
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