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Abstract

This article studies the matrix representation of the quasi-centroids of Heisenberg superalgebras. Based
on the definition of Heisenberg superalgebras and quasi-centroids, a matrix representation of quasi-
centroids of Heisenberg superalgebras with even center is studied by using the method of solving system
of linear equations and supersymmetry operation of Lie superalgebras. Finally, a matrix representation
of the quasi centroids of a Heisenberg superalgebra with an odd center is obtained through similar calculations.
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1 Introduction

Lie superalgebras are closely linked to Lie algebras, which are highly significant in physics and other areas
of mathematics ([1]). In 1967, physicist Stawraki proposed the concept of Lie superalgebras as a natural
extension of Lie algebras. These originated from supersymmetry in mathematical physics, and with the support
of physical background, the study of Lie superalgebra theory received increasing attention from researchers. A
Lie superalgebra is a specific type of Z2-graded algebra, with its even part being a Lie algebra and its odd part
being an adjoint module of the even part ([2]). Similar to the study of Lie groups, Lie superalgebras are linear
objects of Lie supergroups. As a generalization of Lie algebras, the theory of Lie superalgebras is an essential
part of Lie theory, with numerous applications in other related branches of mathematics ([3]).

The field of Lie superalgebras has seen significant progress in terms of structure and representation. In
reference [4], the derivation superalgebra and local derivation superalgebra definitions, along with the modular
Lie superalgebra structure, are used to determine the specific forms of the derivation superalgebra and local
derivation superalgebra of the model linear Lie superalgebra. Key elements are calculated to arrive at this
conclusion. Additionally, some outer superderivations of the modular Lie superalgebras are presented, and it is
established that these are all of their outer superderivations. It is also proven that the local superderivations of
the linear Lie superalgebras are all superderivations.

Lie superalgebras are essential in theoretical Physics and Mathematics. Depending on the base field’s unique
characteristics, Lie superalgebras can be categorized into modular and non-modular Lie superalgebras. When it
comes to modular Lie superalgebras, analyzing the related theories directly can be changed. Hence, it becomes
crucial to establish a constraint structure on the studied Lie superalgebras and employ the related theories of
restricted Lie superalgebras for further research ([5]).

This article explores the relationship between linear transformations on Heisenberg superalgebras and matrices to
find the quasi-centroid matrices of (2n+3)-dimensional Heisenberg superalgebras. Section 1 is the introduction.
Section 2 contains important definitions and symbols needed for the calculations. The main part of the paper is
in section 3, where we determine the block matrix representations of the quasi-centroids of (2n+ 3)-dimensional
Heisenberg superalgebra using the method of solving systems of linear equations, as defined in the quasi-centroid
of Heisenberg superalgebra.

2 Preliminaries

All Heisenberg Lie superalgebras are categorized based on the number of centers they have. They are divided
into two types - even and odd Heisenberg Lie superalgebras.[6]

Definition 2.1. ([1]) Definition of Lie superalgebra: Let L = L0 ⊕ L1 be a Z2− order linear space, if any Z2−
homogeneous element satisfies super antisymmetry,

[x, y] = −(−1)d(x)d(y)[y, x],

and Jacobi superidentity

(−1)d(z)d(x)[x, [y, z]] + (−1)d(x)d(y)[y, [z, x]] + (−1)d(y)d(z)[z, [x, y]] = 0,

It is called a Lie superalgebra. The x,y,z are homogeneous elements in Lie superalgebra, which are the degree
of order.

Definition 2.2. ([1]) If L is a complex Lie superalgebra, then

Γθ(L) =
{
f ∈ Endθ(L)| f [x, y] = [f(x), y] = (−1)d(x)d(f)[x, f(y)], x, y ∈ L, θ ∈ Z2

}
is the Z2− order centroid on L;

QΓθ(L) =
{
f ∈ Endθ(L)| f [x, y] = (−1)d(x)d(f)[x, f(y)], x, y ∈ L, θ ∈ Z2

}
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is called the Z2−order quasi centroid on L, where Endθ(L) represents the set of all Z2−-order linear transformations
in L.

Note: For any f ∈ Endθ(L), if θ = 0, then f is called an even transformation, that is d(f) = 0; If θ = 1, f is
called an odd transformation, that is d(f) = 1.

([7]) Heisenberg Lie superalgebras can be divided into Heisenberg Lie superalgebras with even centers Hm,n and
Heisenberg Lie superalgebras with odd centers Hn:

1) Hm,n = (Hm,n)0 ⊕ (Hm,n)1. The standard basis is:

{u1, · · · , um, um+1, · · · , u2m, z|w1, · · · , wn} ,

Nonzero Lie superoperation:

[ui, um+i] = z = [wj , wj ], ∀i = 1, · · · ,m, j = 1, · · · , n.

2) Hn = (Hn)0 ⊕ (Hn)1 The standard basis is: {v1, · · · , vn| z, w1, · · · , wn}, Nonzero Lie superoperation:
[vi, wi] = z, ∀i = 1, · · · , n.

3 Main Conclusion and Proof

If the center c is element of H0, then the matrix representations of quasi-centroid of Heisenberg superalgebra
are as follows. 

Λ A B α
C D E β
F G H γ
0 0 0 k2m+3,2m+3


where Λ = diag(a,−a), a ∈ C, A and B are m × 2 matrices, C and F are 2 × m matrices, and C = BT ,
F = −AT . D, E, G, H are m ×m matrices, H = DT , UT = −U , XT = X, α, β, γ are 2, m, m dimensional
column vectors, respectively.

Proof. Let {s1, t1} be a base ofH1 and {x1, x2, · · ·xm, y1, y2, · · · ym, c} a base ofH0 Then {s1, t1, x1, x2, · · ·xm, y1, y2, · · · ym, c}
is a base of H.
There are linear equations as follows.

Q(s1) = k11s1 + k12t1 +
m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c,

Q(t1) = k21s1 + k22t1 +
m∑
j=1

(k2,j+2xj + k2,j+2+myj) + k2,2m+3c,

Q(x1) = k31s1 + k32t1 +
m∑
j=1

(k3,j+2xj + k3,j+2+myj) + k3,2m+3c,

...

Q(xm) = km+2,1s1 + km+2,2t1 +
m∑
j=1

(km+2,j+2xj + km+2,j+2+myj) + km+2,2m+3c,

Q(y1) = km+3,1s1 + km+3,2t1 +
m∑
j=1

(km+3,j+2xj + km+3,j+2+myj) + km+3,2m+3c,

...
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Q(ym) = k2m+2,1s1 + k2m+2,2t1 +
m∑
j=1

(k2m+2,j+2xj + k2m+2,j+2+myj) + k2m+2,2m+3c,

Q(c) = k2m+3,1s1 + k2m+3,2t1 +
m∑
j=1

(k2m+3,j+2xj + k2m+3,j+2+myj) + k2m+3,2m+3c.

According to algorithms on Heisenberg superalgebra:
i [si, tj ] = [tj , si] = δijc.
ii [xi, yj ] = − [yj , xi] = δijc.
iii [si, sj ] = [ti, tj ] = [xi, xj ] = [yi, yj ] = [si, c] = [ti, c] = [xi, c] = [yi, c] = 0
and Q ∈ EndL = End0L⊕ End1L, we have
1. When Q ∈ End0L, dQ = 0. At this point, the matrix representations of quasi-centroids of Heisenberg
superalgebra are same as that of Heisenberg algebra.
2. When Q ∈ End1L, dQ = 1. Definition of the quasimatrix centroid is [Qx, y] = (−1)dxdQ [x,Qy] . When
replace x with s1, it follows that

[Q(s1), s1] = − [s1, Q(s1)] , [Q(s1), t1] = − [s1, Q(t1)] , [Q(s1), x1] = − [s1, Q(x1)] ,

...

[Q(s1), xm] = − [s1, Q(xm)] , [Q(s1), y1] = − [s1, Q(y1)] ,

...

[Q(s1), ym] = − [s1, Q(ym)] , [Q(s1), c] = − [s1, Q(c)] .

i.e. [
k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, s1

]

= −

[
s1, k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c

]
,[

k11s1 + k12t1 +
m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, t1

]

= −

[
s1, k21s1 + k22t1 +

m∑
j=1

(k2,j+2xj + k2,j+2+myj) + k2,2m+3c

]
,[

k11s1 + k12t1 +
m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, x1

]

= −

[
s1, k31s1 + k32t1 +

m∑
j=1

(k3,j+2xj + k3,j+2+myj) + k3,2m+3c

]
,

...[
k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, xm

]

= −[s1, km+2,1s1 + km+2,2t1 +

m∑
j=1

(km+2,j+2xj + km+2,j+2+myj) + km+2,2m+3c],

[
k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, y1

]
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= −[s1, km+3,1s1 + km+3,2t1 +

m∑
j=1

(km+3,j+2xj + km+3,j+2+myj) + km+3,2m+3c],

...

[
k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, ym

]

= −[s1, k2m+2,1s1 + k2m+2,2t1 +

m∑
j=1

(k2m+2,j+2xj + k2m+2,j+2+myj) + k2m+2,2m+3c],

[
k11s1 + k12t1 +

m∑
j=1

(k1,j+2xj + k1,j+2+myj) + k1,2m+3c, c

]

= −[s1, k2m+3,1s1 + k2m+3,2t1 +

m∑
j=1

(k2m+3,j+2xj + k2m+3,j+2+myj) + k2m+3,2m+3c].

Solving the above system of linear equations yields

k12 = k2m+3,2 = 0, k11 = −k22, k1,m+3 = k32, · · · , k1,2m+2 = km+2,2,

k13 = −km+3,2, · · · , k1,m+2 = −k2m+2,2.

Similarly, when replace x with t1, x1, x2, · · ·xm, y1, y2, · · · ym, c, we obtain that

k21 = k3,m+3 = km+2,2m+2 = km+3,3 = k2m+3,3 = k2m+2,m+2 = k2m+3,1

= · · · = k2m+3,m+2 = k2m+3,m+3 = · · · = k2m+3,2m+2 = 0.

k23 = −km+3,1, · · · , k2,m+2 = −k2m+2,1, k2,m+3 = k31, · · · , k2,2m+2 = km+2,1,

k33 = km+3,m+3, · · · , k3,m+2 = k2m+2,m+3, k3,m+4 = −k4,m+3, · · · , k3,2m+2 = −km+2,m+3,

km+2,3 = km+3,2m+2, · · · , km+2,m+2 = k2m+2,2m+2, km+3,4 = km+4,3, · · · , km+3,m+2 = k2m+2,3.

It follows from above results that the matrix representations of quasi-centroid of the Heisenberg superalgebra
are 

Λ A B α
C D E β
F G H γ
0 0 0 k2m+3,2m+3


where Λ = diag(a,−a), a ∈ C, A and B are m × 2 matrices, C and F are 2 × m matrices, and C = BT ,
F = −AT . D, E, G, H are m ×m matrices, H = DT , UT = −U , XT = X, α, β, γ are 2, m, m dimensional
column vectors, respectively.

If the center c is an element of H1, then the matrix representations of quasi-centroid of the Heisenberg
superalgebra are as follows.
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k11 0 0 0
α Λ A B
β C D E
γ F G H


where α, β, γ are 2, m, m dimensional column vectors, Λ = diag(a,−a),a ∈ C, A, B are 2 ×m matrices, C, F

are m × 2 matrices, C = BT ,A =

(
I
J

)
, F =

(
−JT IT

)
, D, E, G, H are m × m matrices, H = DT ,

GT = −G, ET = −E.

Proof. Let {c, s1, t1} be a base ofH1 and {x1, x2, · · ·xm, y1, y2, · · · ym} a base ofH0, then {c, s1, t1, x1, x2, · · ·xm, y1, y2, · · · ym}
is base of H.
According to linear equations

Q(c) = k11c+ k12s1 + k13t1 +
m∑
j=1

(k1,j+3xj + k1,j+m+3yj) + k1,2m+3ym,

Q(s1) = k21c+ k22s1 + k23t1 +
m∑
j=1

(k2,j+3xj + k2,j+m+3yj) + k2,2m+3ym,

Q(t1) = k31c+ k32s1 + k33t1 +
m∑
j=1

(k3,j+3xj + k3,j+m+3yj) + k3,2m+3ym,

Q(x1) = k41c+ k42s1 + k43t1 +
m∑
j=1

(k4,j+3xj + k4,j+m+3yj) + k4,2m+3ym,

...

Q(xm) = km+3,1c+ km+3,2s1 + km+3,3t1 +
m∑
j=1

(km+3,j+3xj + km+3,j+m+3yj) + km+3,2m+3ym,

Q(y1) = km+4,1c+ km+4,2s1 + km+4,3t1 +
m∑
j=1

(km+4,j+3xj + km+4,j+m+3yj) + km+4,2m+3ym,

...

Q(ym) = k2m+3,1c+ k2m+3,2s1 + k2m+3,3t1 +

m∑
j=1

(k2m+3,j+3xj + k2m+3,j+m+3yj) + k2m+3,2m+3ym.

and the operation rules on Heisenberg superalgebra are the same as Theorem 3.1, by replacing x with c, we
obtain that

[Q(c), c] = − [c,Q(c)] , [Q(c), s1] = − [c,Q(s1)] ,
[Q(c), t1] = − [c,Q(t1)] , [Q(c), x1] = − [c,Q(x1)] ,

...

[Q(c), xm] = − [c,Q(xm)] , [Q(c), y1] = − [c,Q(y1)] ,

...

[Q(c), ym] = − [c,Q(ym)] .
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i.e. [
k11c+ k12s1 + k13t1 +

m∑
j=1

(k1,j+3xj + k1,j+m+3yj), c

]

= −

[
c, k11c+ k12s1 + k13t1 +

m∑
j=1

(k1,j+3xj + k1,j+m+3yj)

]
, · · · (1)[

k11c+ k12s1 + k13t1 +
m∑
j=1

(k1,j+3xj + k1,j+m+3yj), s1

]

= −

[
c, k21c+ k22s1 + k23t1 +

m∑
j=1

(k2,j+3xj + k2,j+m+3yj)

]
,[

k11c+ k12s1 + k13t1 +
m∑
j=1

(k1,j+3xj + k1,j+m+3yj), x1

]

= −

[
c, k31c+ k32s1 + k33t1 +

m∑
j=1

(k3,j+3xj + k3,j+m+3yj)

]
,

...[
k11c+ k12s1 + k13t1 +

m∑
j=1

(k1,j+3xj + k1,j+m+3yj), xm

]

= −

[
c, km+3,1c+ km+3,2s1 + km+3,3t1 +

m∑
j=1

(km+3,j+3xj + km+3,j+m+3yj)

]
,[

k11c+ k12s1 + k13t1 +
m∑
j=1

(k1,j+3xj + k1,j+m+3yj), y1

]

= −

[
c, km+4,1c+ km+4,2s1 + km+4,3t1 +

m∑
j=1

(km+4,j+3xj + km+4,j+m+3yj)

]
,

...[
k11c+ k12s1 + k13t1 +

m∑
j=1

(k1,j+3xj + k1,j+m+3yj), ym

]

= −

[
c, k2m+3,1c+ k2m+3,2s1 + k2m+3,3t1 +

m∑
j=1

(k2m+3,j+3xj + k2m+3,j+m+3yj)

]
.

By solving the system of linear equations, it follows that k12 = k13 = · · · = k1,2m+3 = 0.

Similarly, by replacing x with s1, t1, x1, x2, · · ·xm, y1, y2, · · · ym, we get

k22 = −k33, k23 = 0, k24 = km+4,3, · · · , k2,m+3 = k2m+3,3, · · · , k2,2m+3 = km+3,3.

k32 = 0, k42 = k3,m+4, · · · , k52 = k3,m+5, · · · , km+3,2 = k3,2m+3,

km+4,2 = −k34, · · · , k2m+3,2 = −k3,m+3.

k4,m+4 = 0, k4,m+5 = −k5,m+4, · · · , k4,2m+3 = −km+3,m+4,

k44 = km+4,m+4, · · · , k4,m+3 = k2m+3,m+4.

km+3,2m+3 = 0, km+3,4 = km+4,2m+3, · · · , km+3,m+3 = k2m+3,2m+3.

km+4,4 = 0, km+4,5 = −km+5,4, · · · , km+4,m+3 = −k2m+3,4.

...

k2m+3,m+3 = 0.
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Therefore, if the center c is an element of H1, then the matrix representations of quasi-centroid of the Heisenberg
superalgebra are as follows.


k11 0 0 0
α Λ A B
β C D E
γ F G H


where α, β, γ are 2, m, m dimensional column vectors respectively, Λ = diag(a,−a), a ∈ C, A, B are 2 × m

matrices, C, F are m× 2 matrices, C = BT ,A =

(
I
J

)
, F =

(
−JT IT

)
, D, E, G, H are m×m matrices,

H = DT , GT = −G, ET = −E.

4 Conclusions

The type of this article is Short Research Article. The matrix representations of quasi-centroid of the Heisenberg
superalgebra are shown in Theorem 3.1 and Theorem 3.2.
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