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Abstract: Owing to Japan’s aging society and labor shortages, the food and agricultural industries
are facing a significant demand for robotic food handling technologies. Considering the large variety
of food products, available robotic end-effectors are limited. Our primary goal is to maximize
the applicability of existing end-effectors and efficiently develop novel ones, and therefore, it is
necessary to categorize food products and end-effectors from the viewpoint of robotic handling
and establish their relationships through an effective evaluation approach. This study proposes a
system for evaluating robotic end-effectors to identify appropriate ones and develop new ones. The
evaluation system consists of food categorization based on food properties related to robotic handling,
categorization of robotic end-effectors based on their grasping principles, a robotic system with visual
recognition based on Robot Operating System 2 (ROS 2) to conduct handling tests, a scoring system
for performance evaluation, and a visualization approach for presenting the results and comparisons.
Based on food categorization, 14 real food items and their corresponding samples were chosen for
handling tests. Seven robotic end-effectors, both commercialized and under development, were
selected for evaluation. Using the proposed evaluation system, we quantitatively compared the
performance of different end-effectors in handling different food items. We also observed differences
in the handling of real food items and samples. The overall performance of an end-effector can be
visualized and quantitatively evaluated to demonstrate its versatility in handling various food items.

Keywords: robotic end-effector; food property; categorization; performance evaluation

1. Introduction

The food industry is a complex and rapidly expanding sector that has been constantly
striving to satisfy the demands of population growth and adapt to changing human
lifestyles in recent years. Traditionally, the food industry encompasses various activities,
including processing, sorting, distribution, preparation, packaging, and other services.
Food contamination is another consistent challenge facing the food industry worldwide, as
demonstrated by multiple recalls due to poor food quality, undeclared allergens, and other
forms of contamination. To overcome global labor shortages and promote food safety in
the food industry, the use of robotics and automation has drawn significant attention from
both academia and industry [1]. The COVID-19 pandemic has accelerated the adoption of
food automation across multiple manufacturing stages in the food industry to ensure food
safety and maintain a reliable food supply [2].

Food handling is a fundamental operation in food factories, where pick-and-place op-
erations are commonly employed for packaging food items. Robotic systems have emerged
as efficient solutions for such operations because they are adaptable to various food prod-
ucts. However, several challenges continue to hinder the widespread implementation of
robotic systems in the food industry: (1) most existing robotic end-effectors have been

Foods 2023, 12, 4062. https://doi.org/10.3390/foods12224062 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12224062
https://doi.org/10.3390/foods12224062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-5469-8342
https://orcid.org/0000-0003-4037-3306
https://orcid.org/0000-0001-6076-0237
https://doi.org/10.3390/foods12224062
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12224062?type=check_update&version=1


Foods 2023, 12, 4062 2 of 16

developed to handle specific food products and have limitations in handling a wide range
of food products; (2) the speed of pick-and-place operations performed by robotic systems
must be improved to match the efficiency of skilled workers; (3) accurate recognition algo-
rithms are required to effectively identify food items in a bin-picking scenario; and (4) the
robotic system has to be food grade, easy to sterilize, easy to use, and, most importantly, it
must have a high cost performance. This study focuses on addressing the first challenge
regarding robotic end-effectors in food handling and proposes a system for evaluating
the performance of different end-effectors to help select proper existing end-effectors and
develop new ones. The evaluation system is based on food and end-effector categorizations,
experimental tests, and scoring and visualization approaches.

The food industry has a long history and many studies have been conducted on food
property estimation and categorization. Among the food properties related to robotic han-
dling, elasticity, which indicates the softness of food products, has been the most frequently
studied for applications in food science, mastication, and cooking [3–6]. Viscoelasticity
and rheology, which further consider viscosity and residual deformation, have also been
investigated for various applications [7–11].

Another important food property is friction, which has been investigated for applica-
tions in mastication [12–14] and robotic grasping [15]. In addition, 3D food geometry has
been studied for food modeling [16,17], quality evaluation, and classification [18,19]. Food
databases can also be found in the fields of food composition [20], nutrient profiles [21],
food constituents, chemistry and biology [22], and food recognition [23–26]. However,
most of the aforementioned food properties are difficult to apply in robotic food handling
because they have not been investigated or measured in a robotic food handling scenario.
Therefore, investigations and measurements specified for robotic food handling require
increased attention and effort.

Researchers have also attempted to categorize food products and robotic end-effectors.
Wurdemann et al. [27] proposed an approach to categorize food products for a food ordering
process, and the key properties were considered as symmetry, surface condition, hardness,
springiness, and resistance to damage. Erzincanli and Sharp [28] proposed a classification
system for robotic food handling. Food products were classified based on their shape,
dimension, surface, compliance, temperature, and weight. Robotic end-effectors were
grouped based on their functions, such as clamping end-effectors, two-finger grippers,
three (or more)-finger grippers, hard fingered end-effectors, and soft fingered end-effectors.
A coding system was also created for food classification. Unfortunately, the aforementioned
food classifications used qualitative descriptions of food properties, such as smooth and
not smooth for the surface and rigid or hard and non-rigid or soft for compliance, which
are insufficient for robotic food handling. Quantitative descriptions are required for better
comparison and categorization.

Regarding robotic end-effectors, Fantoni et al. [29] wrote a detailed review of grasping
devices for automated production processes. The authors summarized the grasping prin-
ciples and detailed the end-effectors used in various applications, including in standard
mechanical, electronic, and micro-assembly, in the food industry, in logistics, and in inte-
grated grasping and processing. In recent years, soft robotic end-effectors have attracted
attention and many applications in the food industry have been reported. Many soft grip-
pers have the advantages of being lightweight, easy to control, adaptable to variations, and
soft, which match the preferences of food handling applications. Consequently, soft robotic
grippers are the most frequently commercialized soft robots. Examples include mGrip grip-
pers [30], soft flexible grippers [31], modular-designed soft grippers [32], vacuum-driven
soft grippers [33], and soft grippers [34].

In addition to commercialized soft end-effectors, there are various under-developed
ones specialized for food handling tasks, such as the needle gripper for grasping salads [35],
the soft suction gripper for handling fruits [36], the gripper using magnetorheological
fluid for shape adaption [37], the soft gripper equipped with suction cups on each finger
to improve its grasping capability [38], the origami-inspired soft gripper designed for
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grasping fragile food items [39], the soft jamming gripper for grasping various objects [40],
the soft wrapping gripper for packaging chopped and granular foods [41], the dual-mode
soft gripper combining grasping and suction for food packaging [42], and the finger-less
soft gripper capable of generating multiple grasping modes [43]. A detailed review that
introduces the principles of soft robotic grippers and their various applications can be
found in [44].

However, despite the rapid development of soft end-effector technologies, their actual
use in food production lines remains limited because of the large variety of food products
and high-mix low-volume manufacturing features in the food industry. This is also one of
the reasons it is difficult to select and design robotic end-effectors for food handling. In this
study, we focused on addressing the difficulty of selecting appropriate robotic end-effectors
for handling various food items. In addition, it was also expected to be useful for the
investigation of new end-effector designs. Therefore, the main contributions of this study
are as follows:

1. Food categorization was proposed based on the food properties related to robotic handling.
2. Pick-and-place tests were performed on the categorized food items using several

commercialized and under-developed robotic end-effectors.
3. A scoring system was proposed to evaluate the handling performance of robotic

end-effectors.
4. A visualization approach using a radar chart was proposed to present the evaluation

results and compare of different end-effectors.

2. Materials and Methods
2.1. Concept

Consider a general food handling task in which a robotic manipulator equipped with
a robotic end-effector is controlled to pick-and-place various food items, such as fruits,
vegetables, and snacks. A robotic manipulator can be feasibly selected as long as its reach
and payload satisfy the task requirements. However, selecting an appropriate robotic end-
effector is difficult owing to the complexity and variety of handled food items. Furthermore,
a proper method for evaluating the handling performance of robotic end-effectors is lacking.

Therefore, we propose an evaluation system for robotic effectors based on food and
end-effector categorizations that aims to provide guidance for selecting an appropriate
robotic end-effector for food handling tasks, as shown in Figure 1. First, food categorization
is proposed based on a series of handling-related physical properties, such as weight,
shape, friction coefficients, and Young’s modulus, as shown in Figure 1a. These physical
properties are used to quantitatively classify different food items, which are helpful for
evaluating the performance of robotic end-effectors in food handling tasks. The robotic
end-effector categorization approach [45] is presented in Figure 1b. Robotic end-effectors
are classified based on their contact positions. In Figure 1c, the scoring system used for
the handling performance evaluation is illustrated. This scoring system is used to rate the
handling performance of a robotic end-effector. Moreover, a visualization approach for the
handling performance presentation, which displays the handling performance of robotic
end-effectors using a radar chart, is proposed. The most efficient robotic end-effector was
identified using the proposed evaluation system; this will be used for food handling tasks.

2.2. Food Categorization

Various physical properties have been proposed for classifying food items using
traditional food categorization approaches. Food items can be comprehensively described
and analyzed using multiple physical properties. However, this is difficult to consider,
and it is not necessary to consider each physical property when conducting robotic food
handling tasks. In this study, we mainly focus on a common food handling task and
propose a new food categorization approach based on several handling-related physical
properties, as described in Figure 1a. We considered two groups of handling-related
physical properties: body and surface properties.
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Robotic end-effectors
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Figure 1. Food handling using the evaluation system of robotic end-effectors: (a) food categorization,
(b) robotic end-effector categorization, and (c) food-categorization-based scoring and radar chart-
based visualization approach for robotic handling evaluation.

2.2.1. Body Properties

Body properties describe the internal physical parameters of a food item, such as
shape, size, weight, elasticity, viscosity, and fragility.

Shape describes the geometry of the body of a food item. Food items with a regular
shape are convenient to handle, but irregularly shaped ones are less convenient to handle.
In a food handling task, a robotic end-effector can intuitively determine whether a food item
can be grasped based on shape information. For example, a clamping robotic end-effector is
typically used for grasping food items with two parallel surfaces; however, it is rarely used
for grasping food items without any parallel surfaces. In fact, it is difficult to determine the
exact geometrical shape that matches a food item. Thus, a food item is considered to have a
certain shape if it is roughly matched.

Size describes the two-dimensional magnitude of the body of a food item, which is
commonly determined based on the grasping configuration in a food handling task. For
example, a robotic end-effector is typically controlled to grasp the narrower sides of a fish



Foods 2023, 12, 4062 5 of 16

rather than its wider sides. Therefore, the length of the grasping side of a food item is used
to quantitatively determine its size.

Weight describes the heaviness or mass of a food item. In food handling tasks, the
masses of grasped food items are different. There are light food items, such as a strawberry
weighing approximately 20 g, and heavy food items, such as a watermelon weighing
approximately 2000 g. Generally, most food items weigh up to 200 g.

Elasticity and Viscosity describe the ability of a food item to store and dissipate
energy. They are coupled physical properties; thus, they are treated with elasticity and
quantitatively described by the Young’s modulus in a food handling task. The elasticity of
a food item affects its handling performance after being grasped.

Fragility represents the magnitude of a food item that resists the damage. The grasping
force of a robotic end-effector should be properly determined to avoid damage when
handling food items.

2.2.2. Surface Properties

Surface properties describe the external physical parameters of a food item, such as
friction, stickiness, temperature, and humidity.

Friction is a resisting force that prevents two objects from sliding freely against each
other. As the lifting force of most robotic end-effectors is the friction force, friction is
an important physical property related to food handling tasks. When considering stable
grasping, static friction is of interest to us; therefore, we mainly focused on static friction
in food handling tasks. Static friction can be quantitatively expressed as the maximum
static friction coefficient, which is the ratio of the friction force divided by the normal force
during grasping. The maximum static friction coefficient of a food item can be used to
calculate the required lifting force for a robotic end-effector.

Stickiness is a food item’s ability to stick to a surface, characterized by the force of
attraction between the surfaces. A food item with a sticky surface may stick to the robotic
end-effector and affect the placing process. Therefore, stickiness is an important physical
property in food handling tasks.

Temperature is a physical quantity that quantitatively expresses the perceptions of
hotness and coldness. The surface of a food item has different physical properties if the
food item it at different temperatures, for example, frozen meat and thawed meat.

Humidity is the amount of moisture presenting over the surface of a food item.
Changes in humidity affect the friction coefficient of a food item, which indirectly influences
food handling performance.

2.3. End-Effector Categorization

Many commercialized and under-researched robotic end-effectors have been devel-
oped for food handling tasks. The categorization of robotic end-effectors is necessary and
useful for exploring their handling performance. In this study, we adopt the categorization
method proposed by Wang in [45]. As shown in Figure 1b, robotic end-effectors are divided
into six categories based on their contact position/positions when grasping a food item:
(1) T type indicates that the end-effector handles a food item only at the top surface, such
as the suction cups, Bernoulli principle-based grippers, adhesive end-effectors and needle
grippers; (2) S type denotes that only the side surfaces of the food item are used during
grasping and many two- or multi-fingered robotic end-effectors belong to this category;
(3) B type indicates that the end-effector will be inserted under the food item for stable
handling, such as the SWITL hand commercialized by FURUKAWA KIKO [46]; (4) TS type
is a combination of T-type and S-type, and end-effectors belonging to this type handle food
items using top and side surfaces simultaneously, such as the gripper commercialized by
RightHand Robotics, Inc., which combines a suction cup and a three-fingered gripper [47];
(5) the BS type is a combination of B type and S type, and the end-effectors handle the
food item using bottom and side surfaces simultaneously, such as the ones proposed by
Ma et al. [48] and Gafer et al. [49]; (6) the TBS type is a combination of T, B, and S types,
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and the end-effectors belonging to this category tend to envelop the food item and use
all available surfaces to stabilize the grasping action, such as the multi-functional gripper
proposed by Sam and Nefti [50].

2.4. Scoring Approach

In the scoring approach, each food property is classified into different levels to obtain
a score according to handling performance. In this study, seven food properties were
considered during scoring: shape, size, weight, elasticity, fragility, friction, and stickiness.

2.4.1. Shape Adaptability

The shapes of the food items are categorized into three levels: regular, semi-regular,
and irregular. The regular level indicates that the food items have one of the following
shapes: sphere, cylinder, ellipse, cube, torus, cuboid, or cone. The semi-regular level
indicates that the food items have a shape in which most sides and interior angles are
different but they have at least two parallel sides. The irregular level indicates that the food
items have a shape in which all sides and interior angles are different. Consequently, shape
adaptability is defined as the shape level that the robotic end-effector can successfully grasp
and is scored as 1, 2, and 3 points for regular, semi-regular, and irregular levels, respectively.
If the robotic end-effector fails to handle the food item for shape reasons, it receives a score
of 0 points.

2.4.2. Size Adaptability

Size is categorized into three levels, small, normal, and large, corresponding to sizes of
0–50 mm, 50–100 mm, and over 100 mm, respectively, which represents the two-dimensional
magnitude of the body of the food item. Therefore, the size adaptability is scored as 1, 2,
or 3 points for the capability of grasping small, normal, and large levels, respectively. If the
robotic end-effector fails to grasp the food item because of size reasons, it receives a score
of 0 points.

2.4.3. Weight Adaptability

Weight is categorized into light, normal, and heavy levels, which indicates weight
ranges of 0–50 g, 50–200 g, and over 200 g, respectively. Weight adaptability is scored as
1, 2, and 3 points for light, normal, and heavy grasping levels, respectively. If the robotic
end-effector fails to grasp the food item for weight reasons, it receives a score of 0 points.

2.4.4. Friction Adaptability

Friction is categorized into three levels based on the magnitude of the maximum static
friction coefficient: low, medium, and high. Each level has a friction coefficient of 0–0.50,
0.50–1.00, and over 1.00 for low, medium, and high, respectively. In contrast to shape, size,
and weight adaptability, friction adaptability is scored as 3, 2, and 1 points for the ability to
cover low, medium, and high friction levels, respectively, to classify the ability to handle
slippery items. If the robotic end-effector fails to grasp the food item owing to friction
reasons, it receives a score of 0 points.

2.4.5. Elasticity Adaptability

Elasticity is categorized into three levels, low, medium, and high, which correspond
to Young’s moduli of 0–100 kPa, 100–500 kPa, and over 500 kPa. Consequently, elasticity
adaptability is scored as 3, 2, and 1 points for adapting to low, medium, and high elasticity
levels, respectively, to rate the ability to handle soft targets. If the robotic end-effector fails
to grasp the food item owing to softness, it receives a score of 0 points.

2.4.6. Stickiness Adaptability

During a pick-and-place operation, the stickiness of food items may be beneficial
for grasping; however, it also significantly affects the positional accuracy of placement.
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Therefore, in this study, we directly use the position error after placement to evaluate the
performance of different end-effectors. During the experiments, we set up a paper sheet
with several concentric circles at predefined intervals. The center of the circles represents the
desired placement position of the food item. The position error can then be measured after
placement, and we define three stickiness levels as small, medium, and large, corresponding
to position errors of 0–10 mm, 10–20 mm, and over 20 mm, respectively. Consequently,
stickiness adaptability is scored as 3, 2, and 1 points for small, medium, and large levels,
respectively. The stickiness adaptability score was zero if the end-effector failed to grasp
the food item for other reasons.

2.4.7. Fragility Adaptability

Fragility is an important measure of the resistance of food items to damage after
placement, including rupture, collapse, and plastic deformation. During the pick-and-place
operation, fragility is highly related to the grasping force applied by the end-effector. It
is difficult to obtain the absolute grasping forces for soft end-effectors; thus, we used
the control input (air pressure in the case of pneumatic end-effectors) as a criterion to
evaluate fragility adaptability. In our experiments, three different air pressures were used:
60%, 80%, and 100% of the recommended pressures for positive-pressure-driven end-
effectors. Pressures of −40 kPa, −60 kPa, and −80 kPa were used for vacuum-driven
end-effectors. Therefore, we categorized fragility adaptability into low, medium, and high
levels corresponding to the above-mentioned three air pressures. A high level indicates that
the food item can be successfully handled without damage even at the highest air pressure.
Consequently, the fragility adaptability is scored as 1, 2, and 3 points for low, medium,
and high levels, respectively. A score of 0 means that the food item was damaged even
when using the lowest air pressure. Similar to the stickiness adaptability, the end-effector
receives a score of 0 if it fails to grasp the food item for other reasons.

2.5. Visualization Approach

Based on the performance scores, we propose an approach that uses a radar chart to
visualize and compare the performances of different end-effectors, as shown in Figure 1c.
The radar chart has seven axes, each representing the adaptability score of the end-effector
for one food property. The overall performance of the end-effector forms a polygon in
the radar chart. If one vertex of the polygon is located at the center point of the radar
chart, it means the end-effector has a score of 0, which further suggests that the end-
effector failed to handle the food item for reasons related to one specific food property.
For example, in Figure 1c, we selected three end-effectors to handle an orange, and a
performance comparison is displayed in the radar chart. The three colored lines represent
the evaluation results for the corresponding robotic end-effector. The green end-effector
has scores of [2, 3, 1, 3, 1, 2, and 3], which indicates that it can grasp a food item with
a normal size (50–100 mm), heavy weight (over 200 g), regular shape, medium elasticity
(100–500 kPa), low friction (0–0.5), medium stickiness (placement error of 10–20 mm), and
high fragility. Using the radar-chart-based visualization approach, we can not only compare
the performances of different end-effectors handling the same food item, but also compare
the performances of one selected end-effector for handling different food items.

2.6. Experiment Methods

We conducted a series of food handling experiments to assess the performances of
multiple soft robotic end-effectors using the proposed evaluation system. During the
experiments, we controlled a four-degree-of-freedom (DOF) robotic arm (HSR-065A1,
Denso Wave Inc., Aichi, Japan) with a robotic end-effector to pick up a food item from the
picking plate and then place it on the placing plate, as shown in Figure 2a. A measurement
scale was placed on the placing plate, the center of which indicated the desired placement
position of the food item. The robotic arm was equipped with a 3D camera (RealSense
D435i, Intel, Santa Clara, CA, USA) to determine the position and orientation of the food



Foods 2023, 12, 4062 8 of 16

item. To drive the pneumatic end-effectors, an air compressor (SLP-15EFD, Anest Iwata
Corp., Kanagawa, Japan) and pressure regulators (ITV2030, SMC Co., Japan) were used to
generate desired air pressures. Solenoid valves were used to control the airflow and were
switched by the IO interface of the robotic arm. The vacuum pressure was generated using
an air ejector (VUH07-44A, PISCO Co., Ltd., Nagano, Japan). The entire robotic system was
constructed using ROS 2.

Intel Realsense camera

Robotic end-effector

Food item

Placing plate and 

measurement scale

Picking plate

Denso robotic arm

Cucumber S/R Fish S/R

Pasta S/R Daifuku S/R Tomato S/R Boiled egg S/R

Hamburger S/R Fried shrimp S/R Strawberry S/R Fried chicken S/R

Green pepper S/R Halved  egg S/R Egg roll S/R Kamaboko S/R

T-type EE 2  BS-type EE 1

S-type EE 7

S-type EE 4

S-type EE5 S-type EE 6

S-type EE 3  

(a)

(b)

(c)

Figure 2. Task description of handling experiments: (a) experimental setup, (b) selected robotic
end-effectors, and (c) selected food items with their corresponding physical twins (food samples).

2.6.1. Tested Soft End-Effectors

Seven soft robotic end-effectors purchased and developed by our laboratory were used
for the handling experiments: five commercialized and two under development. As shown
in Figure 2b, the commercialized end-effectors consisted of a suction cup (T-type EE 2), two
two-fingered grippers (S-type EE 4 and EE 5), a three-fingered end-effector (S-type EE 6), and
a four-fingered gripper (S-type EE 7). The two end-effectors under development are a parallel
gripper [51] (BS-type EE 1) and a bladder end-effector [52] (S-type EE 3).
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2.6.2. Tested Food Items

Considering the food categorization proposed in Section 2.2, 14 food items were
selected for the handling experiments, as shown in Figure 2c, to cover as many food
categories as possible. The 14 food items were a green pepper, a halved egg, an egg roll, a
kamaboko slice, a hamburger, a fried shrimp, a strawberry, fried chicken, pasta, daifuku,
a tomato, a boiled egg, a cucumber and a fish. To investigate the feasibility of using food
samples instead of real food in handling experiments, commercialized food samples of the
selected food items were also tested in the handling experiments. The handling-related
physical properties of the real food items are listed in Table 1, where the size indicates the
dimension in the grasping direction. The weight and size were measured using three real
food items for each type of food; in particular, the size of pasta was determined using the
size of the plate shown in Figure 2c. The elasticity (Young’s modulus) of all food items
except pasta was measured using a motorized test stand (EMX-275, IMADA, Japan) with
a curve fitting method [53]. We only conducted one time measurement to determine its
order of magnitude as a reference, since the Young’s modulus of food items usually has
large variations and individual differences. The friction was measured as the maximum
static friction coefficient using a friction measuring machine (TL201 Tt, Trinity-Lab. Inc.,
Japan) with 5 measurements of one real food of each type except for pasta. The elasticity
and friction coefficient of the pasta were obtained from [54,55], respectively.

Table 1. Handling-related physical properties of the fourteen real food items, where ‘R’, ‘SR’, and ‘IR’
indicate regular, semi-regular, and irregular shapes, respectively.

Food Items Weight
(g)

Size
(mm) Shape Elasticity

(kPa) Friction

Green pepper 33∼38 46∼54 IR 166.00 1.35∼1.53
Halved egg 21∼23 37∼39 SR 43.47 0.32∼0.46

Egg roll 25∼26 28∼29 R 25.11 0.41∼0.59
Kamaboko 5∼7 21∼22 SR 52.27 1.42∼1.68
Hamburger 139∼141 60∼67 SR 15.00 0.34∼0.42

Fried shrimp 22∼24 40∼41 IR 384.40 0.50∼0.72
Strawberry 14∼18 25∼28 IR 29.55 0.57∼0.95

Fried chicken 25∼32 38∼45 IR 19.55 0.42∼0.64
Pasta 309∼310 200 IR 158.00 0.20∼0.30

Daifuku 55∼62 44∼46 SR 11.15 1.54∼1.69
Tomato 12∼13 24∼26 R 410.30 0.44∼0.65

Boiled egg 41∼42 38∼40 R 52.46 0.32∼0.46
Cucumber 89∼129 20∼28 SR 987.20 1.02∼1.23

Fish 103∼108 35∼37 SR 138.70 0.60∼0.71

2.6.3. Experimental Protocols

The robotic system shown in Figure 2a was programmed to perform typical pick-
and-place operations. The end-effectors was controlled to grasp the food item and lift it
to a height of approximately 200 mm. The food item was then transported to a position
approximately 150 mm above the place point. Finally, the end-effector moved downward
to release the food item. The horizontal transport distance was approximately 540 mm. The
duration of the entire pick-and-place circle, including four pauses between every pair of
motions, was approximately 12 s. The air pressures for EE 1, EE 3, EE 4, and EE 7 were set
to 60%, 80%, and 100% of their standard recommended pressures, respectively. For EE 2,
EE 5, and EE 6, which were actuated by vacuum pressure, the experiments were conducted
at three different vacuum pressures: approximately −40 kPa, −60 kPa, and −80 kPa. Five
experimental trials were conducted for each food item, including both real food and the
sample. Thus, the total number of experimental trials was 7 (EEs) × 14 (foods) × 2 (real and
sample) × 3 (pressures) × 5 (trials) = 2940 trials. A video demonstrating the experimental
setups and some experimental trials can be found in the Supplementary Material.



Foods 2023, 12, 4062 10 of 16

3. Results and Discussion

Consider EE 5; the results are shown in Figure 3. T1, T2, and T3 represent the three dif-
ferent air pressures used in the experiments. Successful trials (indicated by green circles)
indicated that the food item was stably picked up and placed at the desired location. Other-
wise, the trial was considered a failure, and the reasons were divided into three different
types: (1) grasping failure, in which the food item could not be picked up (red triangle);
(2) damage failure, in which the food item was damaged (blue square); and (3) movement
failure, in which the food item was dropped during the transporting motion (yellow di-
amond). Figure 3 shows that EE 5 succeeded in all trials for both the sample and real
tomato, but failed 11 times in grasping the real egg roll owing to damage. In addition, EE
5 failed all trials in grasping the hamburger because it was large and it did not fit in the
EE 5’s grasp. Interestingly, Figure 3 also shows that EE 5 succeeded in a few trials when
handling real fish, but failed in all trials in grasping the fish sample owing to the heavy
weight of the sample. The figure provides information of how the end-effector handles
various food items.

Food samples

Fried chicken

Real food

Egg roll

Halved egg

Hamburger

Daifuku

Fried shrimp

Strawberry

Tomato

Cucumber

Pasta

Boilded egg

Fish

Kamaboko

T1: -40kPa

Successful trailSuccessful trail Damage failureDamage failure Grasping failureGrasping failure Movement failureMovement failure

T2: -60kPa T3: -80kPa T1: -40kPa T2: -60kPa T3: -80kPa

Green pepper

Figure 3. Results of handling experiments using EE 5. The green circle, blue square, red triangle,
and yellow diamond indicate a successful trail, damage failure, grasping failure, and movement
failure, respectively.

Following the scoring approach proposed in Section 2.4, scores were calculated for
each end-effector handling each food item. The results were visualized using a radar chart.
Figure 4 shows the evaluation results of EE 5 when handling 14 real food items. We can see
that EE 5 failed to handle kamoboko, hamburgers, daifuku, and fish for different reasons.
For successful food items, EE 5 can cover a large variety of food properties, as shown in
Figure 4o.
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(a) Green pepper (b) Halved egg (c) Egg roll

(d) Kamoboko (e) Hamburger (f) Fried shrimp

(g) Strawberry (h) Fried chicken (i) Pasta

(j) Daifuku

 

 

 

 

    
      

      
      

     
      

         
      

       
      

         
      

         
      

(k) Tomato (l) Boiled egg

(m) Cucumber (n) Fish (o) Successful food items

Figure 4. Evaluation results of EE 5. The handling performance related to each food item is displayed
using a radar chart, and the right bottom radar chart shows the overall evaluation results on handling
all fourteen food items.

Figure 5 shows the evaluation results of the seven soft end-effectors for handling the
same food item (real fried shrimp). We found that EE 4, EE 5, and EE 6 performed well in
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handling the fried shrimp. Furthermore, EE 1 and EE 7 performed better than EE 4, EE 5,
and EE 6 because they had better adaptability to fragility. However, EE 2 and EE 3 failed
to grasp the fried shrimp because of the shape of EE 2 and size of EE 3, as indicated in
Figure 5b,c, with the corresponding vertices located at the center of the radar charts.

(a) EE 1 (b) EE 2

(c) EE 3 (d) EE 4

(e) EE 5 (f) EE 6

(g) EE 7 (h) All EEs

Figure 5. Evaluation results of seven robotic end-effectors in handling the same food item (real
fried shrimp). The handling performance of each robotic end-effector is displayed using a radar
chart, and the right bottom chart shows the comparison of the handling performances of all robotic
end-effectors.

In addition, we propose an index to evaluate the overall performance of end-effectors
and attempt to help select an appropriate end-effector for a given food item. The index
was calculated as the production of all adaptability scores for a certain food item. We
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decided to use the production over summation because production can not only enlarge
the differences among different end-effectors, but also can consider a score of 0 to clearly
indicate a handling failure. Table 2 shows the calculated indices of the seven robotic
end-effectors for handling 14 types of food items. For a given food item, the larger the
index, the better the performance of the end-effector. End-effectors having the same index
indicates that they performed similarly in handling the food item. A zero index indicates
that the end-effector cannot handle the food item. From Table 2, we can easily see that only
two end-effectors can handle pasta, hamburgers, fish, and cucumbers. No end-effector
successfully handled a kamaboko piece. In contrast, many end-effectors handled fried
shrimp, halved eggs, daifuku, and strawberries.

Table 2. Evaluation results of seven robotic end-effectors: the weight is calculated using the product
of the score of each handling-related property of a food item.

EE 1 EE 2 EE 3 EE 4 EE 5 EE 6 EE 7

Green
pepper 108 0 0 0 108 72 108

Halved
egg 108 0 0 108 36 108 108

Egg roll 0 0 0 27 27 54 0
Kamaboko 0 0 0 0 0 0 0
Hamburger 432 0 0 432 0 0 0

Fried
shrimp 108 0 0 36 36 36 108

Strawberry 162 0 0 162 162 162 162
Fried

chicken 162 0 0 0 162 162 162

Pasta 0 0 0 0 1458 1458 0
Daifuku 216 0 216 216 0 216 216
Tomato 24 0 0 0 24 24 24
Boiled

egg 54 0 0 0 108 108 108

Cucumber 24 0 0 0 36 0 0
Fish 144 0 0 144 0 0 0

4. Conclusions

Owing to the large variety of food products, it is desirable for one end-effector to
cover as many types of food items as possible. However, performing experimental tests
on all food products is impractical. Therefore, it is beneficial to have an approach to
evaluate end-effector performance and help in the selection and design of robotic end-
effectors for food handling. In this study, we proposed an evaluation system consisting
of food categorization based on handling-related physical properties, robotic end-effector
categorization based on handling principles, a scoring system for performance evaluation,
a visualization approach for display and comparison, and an ROS-2-based robotic system
for conducting handling experiments.

To provide an example and demonstrate the evaluation process, we selected 14 real
food items and their corresponding samples as handling targets. We selected seven pneu-
matic soft robotic end-effectors, both commercialized and under development, for the
evaluation. After the experiments, the score of each end-effector was calculated and the
performance was evaluated and visually displayed using radar charts for comparison.
Through this process, we can not only obtain the overall performance of a robotic end-
effector in handling various food items, but also compare the performances of different
robotic end-effectors in handling the same food item. The overall performance of a robotic
end-effector in handling various food items can quantitatively demonstrate its versatility
and limitations, which may provide new ideas for modifications. However, a perfor-
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mance comparison of different end-effectors in handling the same food item can serve as a
quantitative measure for selecting the proper end-effector for a certain handling task.

In this study, we chose 14 food items and seven pneumatic soft robotic end-effectors
to handle evaluations as an example. In the future, more food products and robotic end-
effectors will be tested and evaluated. The applicability of existing end-effectors will be
continuously assessed. Meanwhile, new designs of soft robotic end-effectors will be derived
and explored while guaranteeing food safety with appropriate materials and actuation
methods. We will allow access to data including the food properties and experimental
results as a reference, and we also encourage readers who are interested in performing
the same evaluations on their end-effectors and food products to share their results if they
prefer to do so. With the efforts of the research community, more food property data and
evaluation results of robotic end-effectors can be gathered, and we believe the challenges
of robotic food handling will be overcome.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12224062/s1, Video S1: food handling video.
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