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ABSTRACT 
 

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy can obtain structural, functional and 
ligand-binding information about frozen and solid-like biological samples. ssNMR spectra can be 
enhanced by orders of magnitude using the technique of dynamic nuclear polarisation (DNP). In 
DNP there is polarisation transfer from high-gyromagnetic ratio (γ) unpaired electrons to 
neighbouring nuclei using microwave irradiation at or near the electron Larmor frequency. This 
produces an absolute increase in the signal-to-noise ratio and allows experiments on much smaller 
quantities of sample and/or using much shorter acquisition times. Along with necessary 
instrumentation an essential requirement for DNP-ssNMR is a sample with an endogenous free 
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radical or an exogenous free radical polarising agent must be added to the sample. The polarising 
agent must be soluble in the sample matrix and compatible with the biological sample. The free 
radical(s) of the polarising agent also must be stable for the lifetime of DNP-ssNMR experiments. 
Nitroxides have been most used as polarising agents, including the biradical compounds TOTAPOL 

and AMUPol with a wide range of biological samples to produce DNP enhancement factors () of up 
to 250. Derivatives of TOTAPOL and AMUPol and many other different polarising agents have also 
been used. Whilst conventional polarising agents are mixed throughout the sample, others are 
targeted at specific sites to provide a more localised signal enhancement. Here we review the 
different polarising agents and spin tags that have been used in DNP-ssNMR studies on biological 
samples. 
 

 
Keywords:  Biological samples; dynamic nuclear polarisation; free-radical; microwave irradiation; 

polarising agent; signal enhancement; solid-state NMR. 
 

1. INTRODUCTION 
 

Nuclear magnetic resonance (NMR) 
spectroscopy is a widely used and powerful 
analytical technique that can produce qualitative 
and quantitative chemical, structural and 
dynamic information from a wide range of 
samples including organic and inorganic 
compounds, pharmaceuticals, biomolecules and 
biological samples, food, industrial and 
environmental samples [1-13]. It is also the basis 
for the clinical technique of magnetic resonance 
imaging (MRI). Despite this, NMR is intrinsically 
an insensitive technique, typically requiring up to 
milligram quantities of sample and/or very long 
experiment times. The insensitivity originates 
from the fact that the size of the NMR signal is 
related to the relative populations of the magnetic 
energy levels being observed. At thermal 
equilibrium the energy levels are extremely close 
together, thus requiring very little energy for the 
nuclei to be promoted from one to the other. In 
the simplest case of a spin-½ nucleus with two 
magnetic energy levels, the Boltzmann 
distribution predicts that an almost equal number 
of nuclei will be in the higher and lower energy 
states. For example, the population difference 
between higher and lower states of hydrogen 
atoms is only around 1 in 105 spins, so the NMR 
signal is very weak. The sensitivity is significantly 
worse for all other NMR-active nuclei [1]. An 
improved signal-to noise-ratio has traditionally 
been achieved by increasing the concentration of 
the sample, by acquiring and averaging a greater 
number of scans, by using a higher magnetic 
field to increase the energy difference between 
states or by using considerably lower probe and 
sample temperatures. There are limits as to what 
be achieved, especially for the biomolecules and 
biological samples that can only be obtained in 
low microgram quantities and that may not be 
stable for days to weeks of experiment time. The 
inherent insensitivity of NMR has been a major 

limiting factor for extending its application to 
larger and more complex biological samples, 
such as membrane proteins. 

 
For target samples that are too large for efficient 
orientation averaging in solution, solid-state NMR 
(ssNMR) is employed, usually in combination 
with the method of magic-angle spinning (MAS) 
[14-23]. Fast rotation of the sample with 
frequencies up to ~100 kHz about an axis tilted 
54.74° with respect to the external magnetic field 
results in collapse of most anisotropies and can 
produce isotropic NMR spectra like those in 
solution. A breakthrough in improving the 
sensitivity of ssNMR was the development of 
dynamic nuclear polarisation (DNP). 

 
2. DYNAMIC NUCLEAR POLARISATION 

SOLID-STATE NMR 
 
DNP is a powerful method for increasing the 
sensitivity of ssNMR by up to several orders of 
magnitude. It exploits polarisation transfer from 
high-gyromagnetic ratio (γ) unpaired electrons to 
neighbouring nuclei using microwave (MW) 
irradiation at or near the electron Larmor 
frequency. This leads to an absolute increase in 
the signal-to-noise ratio (S/N) and allows 
biological samples of much lower concentration 
to be studied in much shorter times (hours 
instead of days or weeks). Conventional DNP 
enhancement is defined as ε ≡ Ion/Ioff where Ion 
and Ioff represent the NMR signal intensities with 
and without MW irradiation. In theory, a DNP 
enhancement factor, ε, equal to the ratio 
between the gyromagnetic ratios of the electron 
spin (γ = 2.80249536 x 104) and the nuclear spin 
can be obtained. Theoretical enhancement 
factors from DNP are therefore up to ~660 for 1H 
(γ = 42.576), ~2624 for 13C (γ = 10.705) and 
6511 for 15N (γ = 3.0766) using Boltzmann 
electron spin polarisation. 
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The phenomenon of DNP first came from 
Overhauser [24], who proposed that transfer of 
polarisation from electrons to nuclei in metals 
was possible by saturating the electron transition, 
and this was experimentally verified in metals by 
Carver and Slichter [25]. During the 1980s, DNP 
was combined with MAS solid-state ssNMR but 
extending DNP to higher fields proved 
challenging due to a lack of high-power MW 
sources [26-28]. Since then, the extension of 
DNP to high fields and the use of DNP for signal 
enhancement in solid-state NMR measurements 
on biological samples have been pioneered by 
Griffin and co-workers at the Francis Bitter 
Magnet Laboratory at Massachusetts Institute of 
Technology [29-46]. For DNP-enhanced 
measurements on biological samples, a water-
soluble free radical compound or polarising agent 
was included in the frozen sample containing 
H2O/glycerol and the biomolecule to be studied 
[47,48]. Most DNP-enhanced experiments are 
based on hyperpolarisation at cryogenic 
temperatures, followed by rapid dissolution and 
NMR measurements at ambient temperatures 
[49], or on DNP solid-state NMR with frozen 
samples under MAS [50-54], which are the focus 
of this review. 
 

2.1 DNP Transfer Mechanisms 
 
DNP is possible in the liquid-state, but it is 
generally much less efficient because of 
diminished intermolecular dipolar couplings due 
to fast molecular tumbling [55,56]. The only 
practical mechanism available to directly polarise 
liquids is the Overhauser effect, involving dipolar 
relaxation between electrons and nuclei [57]. The 
Overhauser effect occurs with mobile electrons in 
gases and liquids and in conducting solids, but it 
is less efficient at higher magnetic fields. 
Approaches for performing DNP on liquid 
samples include use of supercritical solvents, 
polarisation at low magnetic field followed by 
NMR measurement at high magnetic field, or 
polarisation of a solid/frozen sample followed by 
rapid dissolution/in-situ melting and NMR 
measurement with enhanced polarisation in the 
liquid-state [58,59]. 
 
For DNP in the solid-state, three principal 
mechanisms have been proposed for polarisation 
transfer from electrons to neighbouring nuclei: (i) 
solid effect and (ii) cross effect mechanisms, 
based on quantum mechanics and relaxation on 
small spin systems, and (iii) thermal mixing 
mechanism, which originates from the 
thermodynamic macroscopic notion of spin 
temperature [39, 60] (Fig. 1). 

The solid effect mechanism involves one electron 
spin and nuclear polarisation enhancement 
results from irradiation of “forbidden” double 
quantum (DQ) or zero quantum (ZQ) electron-
nuclear transitions that become allowed due to 
electron-nuclear hyperfine interactions [61,62]. 
The solid effect mechanism is dominant in 
systems where the polarising agent exhibits a 
homogeneous electron paramagnetic resonance 
(EPR) linewidth (δ) and an inhomogeneous 
spectral breadth (Δ) smaller than the nuclear 
Larmor frequency (δ, Δ< ω0I). This condition is 
satisfied by radicals with high molecular 
symmetry [63-65]. Because the solid effect 
mechanism requires a polarising agent with a 
relatively narrow EPR spectrum, this restricts its 
practical applicability in DNP-enhanced 
measurements [38]. 
 
The cross effect mechanism requires at least a 
three-spin system composed of two electrons 
and a nucleus and for this process to occur the 
difference between the electron Larmor 
frequencies of these two electrons must be about 
equal to the nuclear (1H) Larmor frequency 
(ω0e1 – ω0e2 = ±ω01H). This results in strong 
state mixing and there is a high probability that 
MW irradiation resonant with electron 1 will flip 
electron 2 and the coupled proton together [66-
69]. Hence, cross effect operates when the 
polarising agent has an inhomogeneous 
broadened EPR spectrum whose breadth is 
larger than the nuclear Larmor frequency ω0I, 
and therefore the homogeneous linewidth δ 
remains small (Δ > ω0I > δ) [38]. High-field cross 
effect DNP experiments were initially performed 
with mono-radical species, such as TEMPO (1) 
[31,32]. In this case the frequency matching 
condition is fulfilled only for the fraction of the 
radicals that adopt the correct relative orientation 
of their g-tensors. Improvement in cross effect 
DNP was made by using biradicals [33,35] 
consisting of two tethered TEMPO moieties that 
achieve relatively short (~12 Å) electron-electron 
distances independent of concentration. Cross 
effect is the dominant continuous wave 
mechanism at high magnetic fields. 
 
The thermal mixing mechanism involves multiple 
electron spins in the polarisation transfer and 
takes place when the characteristic EPR 
linewidth (δ) is in the order of or larger than the 
nuclear Larmor frequency. Here the electron-
nuclear spin system can be described as a set of 
three interacting baths, each characterised by a 
spin temperature: electron Zeeman system 
(EZS), electron dipolar system (EDS), nuclear 
Zeeman system (NZS) [38]. Off resonance 
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irradiation of the allowed EPR transition results in 
a large polarisation gradient across the EPR line, 
which is equivalent to cooling the EDS. This bath 
is in thermal contact with the NZS, which is also 
cooled in an energy-conserving three-spin 
electron-electron-nuclear exchange, leading to 
DNP enhancement. At the high fields and low 
temperatures (80–110 K) typically used in MAS 
experiments, thermal mixing does not provide an 
important polarisation pathway. 
 

For comprehensive descriptions of theory behind 
the proposed DNP transfer mechanisms see 
Barnes et al. (2008), Maly et al. (2008), Corzilius 
et al. (2012), Hovav et al. (2012), Ni et al. (2013), 
Mentink-Vigier et al. (2015), Corzilius, (2016), 
Ravera et al. (2016), Lilly Thankamony et al. 
(2017) [38,39,43,57,60,70-73] and references 
within. 

2.2 Components for DNP-SSNMR 
 
The essential components required for 
performing DNP-ssNMR are an NMR magnet 
with a low-temperature MAS NMR probe that 
allows simultaneous irradiation of the sample 
with MW (THz) and radiofrequency power, a 
high-power MW/THz source such as a gyrotron 
oscillator, a low-loss transmission line that 
delivers continuous THz power from the source 
to the sample, and a free radical polarising agent 
(Fig. 2). The polarising agent can be either an 
endogenous radical in the sample or an 
exogenous radical that is added to the sample. 
The efficiency of polarisation transfer is 
dependent on the structure and properties of the 
polarising agent. 
 

 

 
 

Fig. 1. Quantum mechanical diagrams of the electron-nuclear transitions (dashed arrows) in 
the spin effect (a), cross effect (b) and thermal effect (c) mechanisms, which involve single, 

paired and multiple electron spins, respectively 
This figure was reproduced from Barnes et al. [39] 

 

 
 

Fig. 2. Components for DNP-ssNMR 
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3. POLARISING AGENTS FOR DNP-
ssNMR ANALYSIS OF BIOLOGICAL 
SAMPLES 

 
Because appropriate endogenous free radicals 
are not commonly found in biological samples, 
exogenous free radical polarising agents usually 
must be added to samples for DNP-ssNMR. In 
addition to providing efficient nuclear 
polarisation, there are additional factors to 
consider for polarising agents with biological 
samples. The desired concentration range of the 
polarising agent in the sample is typically 5-20 
mM and the sample is usually frozen at low 
temperatures, typically 80-120 K (Table S1). The 
sample and polarising agent are usually 
dissolved in or mixed with a cryoprotecting agent, 
the most common being a glycerol/water mixture 
that produces a glassy matrix when frozen. The 
polarising agent therefore needs to be soluble at 
the desired concentration in this mixture. 
Deuterated components can be used for higher 
DNP efficiency, and a d8-glycerol/D2O/H2O 
cryoprotectant mixture is sometimes referred to 
as “DNP juice”. An exogenous polarising agent 
ideally needs to be mixed uniformly in the 
sample. The polarising agent needs to be 
compatible with the biological sample, in that it 
does not adversely affect its native structure and 
function. The radical(s) of the polarising agent 
also need to be stable in the biological 
sample/matrix and remain stable for the lifetime 
of DNP-ssNMR experiments. This is especially 
challenging for applying DNP to cells and cell-
derived samples, where there can be fast 
reduction of radicals by native antioxidants from 
the cellular environment. Appropriate tests and 
control experiments should be performed to 
assess the usefulness and compatibility of 
chosen polarising agents with biological samples. 

 
Nitroxides are most used as exogenous 
polarising agents for DNP-ssNMR due to their 
stability in biological systems. A major 
development in polarising agents was the 
introduction of nitroxide biradicals with much 
better nuclear polarisation. These biradicals 
satisfy the requirement of having two strongly 
coupled electron spins for DNP through the cross 
effect mechanism. The biradical polarising 
agents TOTAPOL and AMUPol (see below) have 
been most used and have also been modified to 
improve their water solubility, to increase their 
molecular weight and to contain rigid linkers, and 
methyl groups adjacent to nitroxides have been 
replaced. Nitroxide-containing compounds begin 
the present review of polarising agents that have 

been used in DNP-ssNMR studies on biological 
samples. 
 

3.1 TEMPO and Derivatives 
 

The mono-radical TEMPO (2,2,6,6-tetramethyl-1-
piperidinyloxy) (1) was used as the polarising 
agent in the first application of DNP-ssNMR to 
study the functional intermediates of a protein. 
TEMPO was used a concentration of 40 mM in 
samples of [ζ-15N]lysine-labelled 
bacteriorhodopsin  purple membrane to give 

DNP signal enhancements of up to  = 40 [74]. 
This enabled the first NMR observation of the K 
intermediate of the ion-motive photocycle of 
bacteriorhodopsin and confirmed the 
identification of the NMR signals of several L 
intermediates. 
 

TEMPO and the derivatives TEMPOL (4-
hydroxy-TEMPO) (2) and TEMPONE (4-oxo-
TEMPO) (3) at a concentration of 100 mM were 
used as the polarising agent in aqueous samples 
of the small 13C-labelled biological molecules 
serine, alanine, glycine, proline, glucose, indole 
and imidazole in Overhauser DNP (ODNP) 
measurements at high field (9.4 T) and at room 
temperature. In these liquid-state experiments 
the electron-nucleus polarisation transfer is 
mediated by the electron-nucleus Overhauser 
effect driven by molecular motions, which 

achieved DNP enhancements of up to  = 11 
[75]. 
 

Heparins with TEMPO groups heterogeneously 
distributed along the heparin back-bone have 
been tested as potential polarising agents for 
DNP-ssNMR. The spin-labelled heparins 

provided 1H DNP enhancement factors of up to  
= 110 [76]. 
 

 
 

3.2 TOTAPOL 
 

The first widely used polarising agent for DNP-
ssNMR on biological samples was the biradical 
compound TOTAPOL (1-[(2,2,6,6-tetramethyl-1-
oxidopiperidin-4-yl)amino]-3-(2,2,6,6-tetramethyl-
1-oxopiperidin-1-ium-4-yl)oxypropan-2-ol or 1-
(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol) 
(4), which comprises two molecules of TEMPO 
tethered by 3-aminopropane-1,2-diol. In the first 
report of the synthesis and characterisation of 
TOTAPOL [35], a 6 mM concentration of 

TOTAPOL affected an enhancement factor of  = 
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240 for DNP (5 T, 90 K, 140 GHz µWave) on [U-
13C, 15N]proline in aqueous media. Being 
compatible with aqueous media is clearly an 
important property for polarising agents in DNP-
ssNMR studies on many biological samples. 
 

 
 

Since 2006, TOTAPOL has successfully been 
used at concentrations of 2.5-60 mM as the 
polarising agent for DNP-ssNMR studies on a 
wide range of biological samples (Table S1). 
These include amyloid fibrils [77-81], light-
harvesting complex bacteriorhodopsin [82], SH3 
domain of α-spectrin [83], neurotoxin II bound to 
acetylcholine receptors in native membranes 
[84], signal peptide bound to lipid-reconstituted 
Sec translocon [85], plant (Arabidopsis thaliana) 
and bacterial (Bacillus subtilis) cell walls [86,87], 

bovine serum albumin [88], lung surfactant 
peptide KL4 [89], disulfide oxidoreductase A 
(DsbA) signal peptide in the exit tunnel of the 
ribosome [90], and mammalian P450-cytochrome 
b5 complex in lipid bilayers [91]. Also, various 
transport proteins (M2 proton transporter from 
influenza A virus, EmrE multidrug efflux pump, 
potassium channel KcsA) [92-94] and viral 
capsids from HIV-1 and bacteriophage AP205 
[95]. 
 
In these studies using TOTAPOL, the DNP 

enhancement factor ranged from  = 1.7 to 160 
(Table S1). For example, a DNP-ssNMR study of 
purified amyloid fibrils of the prion domain of the 
yeast prion protein Sup35 in cell lysate achieved 
up to 115-fold signal enhancements in 13C 
spectra using 10 mM TOTAPOL. This enabled 
detection of the protein at endogenous levels in a 
complex physiological environment and 
investigation of the structural influence of cellular 
lysates on amyloid fibril assembly (Fig. 3) [81]. 

 

 
 
Fig. 3. Left. One-dimensional 13C{1H} spectra of purified amyloid fibrils of the prion domain of 

the yeast prion protein Sup35 in cell lysate both with (black) and without (red) DNP 
enhancement by microwaves. DNP gave large signal enhancements (ε) for uniformly 1H,13C-

labelled NM in a deuterated matrix of cellular lysates containing a 60:30:10 (v/v) mixture of d8-
glycerol:D2O:H2O and 10 mM TOTAPOL (4) at 211 MHz/140 GHz with ω/2π = 4.3 kHz and a 

sample temperature of 83 K. Right. (A and B) Carbonyl carbon region of 13C-13C correlation 
spectra at 700 MHz using DNP MAS NMR of (A) cryoprotected purified Sup35 fibrils acquired in 

6 hours and (B) cryoprotected Sup35 fibrils assembled in the presence of cellular lysates 
acquired in 1 week. (C and D) Examination of the carbonyl carbon (C′) region of the spectra in 
projections of the Cα region (50–70 ppm indicated by dotted bracket) reveals the secondary 
structural composition of the protein backbone. The projection eliminates signals from non-

backbone sites, such as the carbonyl moieties in the amino acid side chains like Asn and Gln. 
Dotted black lines indicate the expected chemical shift values for α-helical conformations of 

the protein backbone and highlight a large shift away from α-helical character for Sup35 fibrils 
in lysates (D). The grey line represents the best-fitted solution to three Gaussian distributions 
describing the expected chemical shifts for the three possible secondary structural motifs: α 
helices (177.8 ± 1.5 ppm), random coils and turns (175.6 ± 1.5 ppm) and beta sheets (175.4 ± 

1.55 ppm). Fits to a sum of these three Gaussian distributions gave standard estimates of error 
of 0.84 (C) and 0.93 (D) 

This figure was adapted from Frederick et al. [81] 
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It is important to consider the stability and 
therefore the longevity of polarising agents in 
biological samples. That is to say, the radical 
must remain active for at least the time it takes to 
mix it with the sample, insert the sample into a 
rotor and freeze, which could be up to an hour. A 
study on the stability of TOTAPOL demonstrated 
that it is quickly (minutes) reduced in Escherichia 
coli cell pellets, suspensions and lysates. But 
fortunately, treatment of cells with the cysteine 
blocker N-ethylmaleimide significantly slowed the 
rate of reduction, and treatment of lysates with 
potassium ferricyanide completely re-oxidised 
the reduced TOTAPOL [96]. 
 

3.3 AMUPol 
 

The biradical polarising agent AMUPol (15-{[(7-
oxyl-3, 11-dioxa-7-azadispiro [5.1.5.3] hexadec-
15-yl) carbamoyl] [2-(2,5,8,11-tetraoxatridecan-
13-ylamino)}-[3,11-dioxa-7-azadispiro [5.1.5.3] 
hexadec-7-yl]) oxidanyl) (5) was introduced as a 
more efficient and more water soluble alternative 
to the established agent TOTAPOL [97]. AMUPol 
was synthesised in four steps from 1,2,2,6,6-
pentamethylpiperidin-4-one and it showed DNP 
enhancements of 3.5 to 4 times greater than for 
TOTAPOL. AMUPol has emerged as by far the 
most used polarising agent for biological samples 

with DNP enhancement factors ranging from  = 
16 to 250 (Table S1). 
 

 
 

For example, a DNP-ssNMR study used AMUPol 
as the polarising agent for determining the 
cholesterol binding site of eukaryotic membrane 
proteins in native-like membranes [98]. The 
approach involved yeast biosynthetic 13C-
labelling of cholesterol, in this case using [1-
13C]glucose to preferentially label methyl 
carbons, and detection of 13C-13C cross peaks 
with the 13C-labelled protein in 2D correlation 
spectra under DNP conditions at 110 K. This was 
demonstrated on the influenza M2 protein 
(residues 21-97), which was site-specific 13C,15N-
labelled at Ile, Phe, Gly, and Ala residues and 
reconstituted in POPC/POPG bilayers. The use 
of 15 mM AMUPol produced DNP enhancements 

of  = 28 to 42, which allowed detection of 
multiple cross peaks between cholesterol and M2 
in double quantum filtered 2D 13C-13C spectra, 

measurement of distance restraints, and 
molecular docking of cholesterol on M2 (Fig. 4) 
[98]. 
 
AMUPol was used as the polarising agent in an 
elegant DNP-ssNMR study on the pentameric 
light-driven proton pump green proteorhodopsin, 
which enabled observation of light-dependent, 
functionally relevant cross talk between 
protomers of the proteorhodopsin homo-oligomer 
[99]. The study used wild-type and mutant forms 
of proteorhodopsin site-specific labelled with 
[13C6, 15N3]histidine, [15Nε]lysine and 
[13Cδ1]tryptophan reconstituted in DMPC/DMPA 
lipids and containing 20 mM AMUPol, which 

produced DNP enhancement factors of  = 40 to 
60. Proteorhodopsin was trapped in different 
photointermediate states by using cryogenic 
temperatures, for example, the K state was 
trapped by illuminating the wild-type form directly 
in the DNP-NMR probe at 100 K. The M state 
was trapped by illumination of the E108Q mutant 
at room temperature directly inside the MAS rotor 
followed by fast freezing in liquid nitrogen. A 
highly conserved histidine residue (His75) is 
located at the protomer interface, and this was 
exploited in various DNP-ssNMR experiments 
detecting cross-protomer contacts (Fig. 5). It was 
shown that His75 switches from the (τ)- to the 
(π)-tautomer and changes its ring orientation in 
the M state. His75 couples to a tryptophan 
residue (Trp34) across the oligomerization 
interface and defines a cross-protomer Asp–His–
Trp triad, which potentially serves as a pH-
dependent regulator for proton transfer [99]. 
 
A recent study on the stability of AMUPol in intact 
and lysed mammalian cells showed that AMUPol 
was reduced at a slower rate than TOTAPOL. 
Indeed, the reduction of AMUPol by mammalian 
cell lysates was slow relative to the timescale of 
cellular sample preparation for DNP-ssNMR 
[100]. Like for TOTAPOL [96], reduction of 
AMUPol was prevented by 2.5 mM N-
ethylmaleimide, but this also compromised 
cellular viability and did not improve DNP 
performance. It was suggested that the most 
effective approach to achieve high DNP 
enhancements for samples of cells is to minimise 
room temperature contact times with cellular 
constituents. 
 

3.4 Derivatives of TOTAPOL and AMUPol 
 
Some highly water-soluble derivatives of 
TOTAPOL and AMUPol were introduced in which 
the four ring-oxygens of AMUPol were replaced 
with a carbon atom and a hydroxyl group 
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attached at each of these positions. bcTol 
[bis(spirocyclohexyl-TEMPO-alcohol)urea] (6) 
[101] and bcTol-M [bis(spirocyclohexyl-TEMPO-
alcohol)-ureadimethyl] (7) [102] both retain the 
carbamide group of AMUPol, which is 
unsubstituted or substituted with methyl groups 
in the two molecules, respectively. In cyolyl-
TOTAPOL [spirocyclohexanol-yl-1-(TEMPO-4-
oxy)-3-(TEMPO-4-amino) propan-2-ol] (8), the 
carbamide group is replaced by the 3-
aminopropane-1,2-diol group of TOTAPOL [102]. 
At a concentration of 20 mM, bcTOL has been 

used as the polarising agent in DNP-ssNMR 
studies of the functional sensory module of the 
cyanobacterial phytochrome Cph1 [103] and 
microcrystalline SH3 domain [101], with the latter 

achieving a DNP enhancement factor of  = 224. 
bcTOL-M has been added from a stock 
concentration of 39.5 mM to K7M2 mouse 
osteosarcoma extracellular matrix enriched in 
13C, 15N-amino acids to achieve a DNP 

enhancement factor of  = 26 ± 9 [104]. 

 

 
 

 
 

Fig. 4. Left. Example 2D DQF-13C-13C spectrum of site-specific labelled M2 and [1-13C]glucose-
labelled cholesterol in POPC/POPG membranes with 15 mM AMUPol (5) measured at 110 K 

with DNP and a 13C spin diffusion mixing time of 300 ms. DQF significantly simplifies the ω1 
dimension of the spectra, facilitating assignment of intermolecular protein-cholesterol cross 

peaks. Right. Cholesterol (green) docking onto M2 (PDB code: 2L0J) using HADDOCK. 
Distance restraints obtained from the 2D 13C-13C spectra were used to constrain the binding 
site. Cholesterol carbons that exhibit cross peaks with the M2 protein are shown as spheres. 

Key Ile and Phe residues at the binding interface are indicated, along with the distances to the 
cholesterol carbons 

This figure was adapted from Elkins et al. [98] 



 
 
 

Nawaz and Patching; Curr. J. Appl. Sci. Technol., vol. 42, no. 28, pp. 11-38, 2023; Article no.CJAST.104973 
 
 

 
19 

 

 
 

Fig. 5. Visualising the cross-protomer H75-W34 contact in green proteorhodopsin. (A) For the 
detection of the cross-protomer H75-W34 contact, (13Cδ1-Trp, 15N3-His)-GPRWT (wild type) and 

various mutants were prepared. (B) Two-dimensional TEDOR spectra of GPRWT, GPRW74F, 
GPRW34F, GPRWT-mix, GPRW74F-W34F, and GPRE108Q-W74F, all with (13Cδ1-Trp, 15N3-His) labelling. The 
1D spectra on the right are from (13C6-15N3-His, 15Nε-Lys)-GPRE108Q in the dark state (black) and 

M state (orange) and were plotted to identify the H75(τ) and (π) resonances. Cross peak 1 in 
GPRWT (left) is observed in all spectra and corresponds to a mixture of correlations between 

W34/W74-Cδ1 and H75-N as well as natural abundance correlations between Trp-Cδ1 and Trp-
N or Trp-Nε1. Cross peak 2 can be attributed to a correlation between W74 or W34-Cδ1 and 

H75-Nδ1(τ). Spectra of GPRW74F and GPRW34F confirm that both tryptophan residues contribute 
to the interaction. The mixed-labelled sample GPRWT-mix consisting of (13Cδ1-Trp)-GPRWT and 

(15N3-His)-GPRWT proves that a W34-H75 interprotomer contact exists. M state trapping of 
(13Cδ1-Trp, 15N3-His)-GPRE108Q-W74F shows a stretching of signal 2 toward the Nε2(π) resonance. 
(C) The GPRWT sample shows close proximity of H75-Nδ1(τ) to W34-Cδ1 and an intraprotomer 
contact to W74-Cδ1. The GPRE108Q-W74F sample indicates a turn of H75 so that Nε1(π) and W34-

Cδ1 occur in close proximity 
This figure was reproduced from Maciejko et al. [99] 

 
The triradical DOTOPA-TEMPO (4-[N,N-di-(2-
hydroxy-3-(TEMPO-4'-oxy)-propyl)] 
aminoTEMPO) (9) [105] was synthesised based 
on the procedure for TOTAPOL [35], but 
modified by reacting 4-amino-TEMPO and 4-
(2,3-epoxypropoxy)-TEMPO in a 1:1.7 ratio, 
instead of a 1:1 ratio. DOTOPA-TEMPO at 6 mM 
was used as the polarising agent in static DNP-
ssNMR experiments at ultra-low temperature (8 
K) on 13C-labelled 40-residue β-amyloid samples 
in both fibrillar and non-fibrillar states. DNP 

signal enhancement factors of  = 16-21 were  

 
achieved and this allowed use of 2D 13C-13C 
exchange spectroscopy to probe peptide 
backbone torsion angles (ϕ,ψ) in selectively 13C-
labelled β-amyloid [106]. The triradical DOTOPA-
3OH-Methoxy (10) was synthesised from 
DOTOPA-TEMPO [107] and used as the 
polarising agent at 6 mM in DNP-ssNMR 
experiments on frozen solutions of Aβ40 amyloid 
fibrils at 25 K [108]. This achieved DNP 

enhancement factors of  = 18-80 and enabled 
characterisation of successive stages of amyloid-
β self-assembly. A DOTOPA derivative with 
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much greater solubility in glycerol/water solutions 
at neutral and basic pH, succinyl-DOTOPA (4-
{N,N-di-[2-(succinate, sodium-trimethylamine 
salt)-3-(TEMPO-4’-oxy)-propyl]}-amino TEMPO) 
(11), was synthesised by reacting DOTOPA with 
succinic anhydride [109]. The potential 
application of succinyl-DOTOPA as a polarising 
agent was demonstrated using 10 mM in DNP-
ssNMR measurements at 25 K on a frozen 
solution of the 27-residue peptide M13 (uniformly 
15N, 13C-labelled at Phe8, Ile9, Ala10, and Val11) 
with the calcium-sensing protein calmodulin. In 
1D 13C spectra, this achieved a DNP 

enhancement factor of  = ~140 [109]. 
 

3.5 bTbK and Derivatives 
 
The conformationally-restricted biradical bTbK 
(12) was used as the polarising agent in DNP-
ssNMR measurements on oriented samples of a 
15N-labelled transmembrane peptide in POPC 
membranes at 100 K, achieving a DNP 

enhancement factor of  = 18 [110]. A larger 
derivative of bTbK, known as TEKPol (13), was 
used as the polarising agent in DNP-ssNMR 
measurements on wild spider silks at 110 K. A 
concentration of 10 mM TEKPol produced DNP 

enhancements of  = >50, which enabled the 
detection of novel hydrogen-bonding networks 
and arginine conformations, and the post-
translational modified amino acid hydroxyproline 
[111]. The bulky and conformationally-restricted 
biradical polarising agent SPIROPOL (14) 
contains four sulphur atoms that exist as a 
mixture of sulphonyls, sulphoxides and thioethers 
[112]. SPIROPOL was tested alongside 
TOTAPOL as a polarising agent in DNP-ssNMR 
studies on sedimented samples and 
concentrated frozen solutions of bovine serum 
albumin. Under comparable conditions, 
TOTAPOL and SPIROPOL produced DNP 

enhancement factors of  = 31 and 26, 
respectively [88]. 

 

 

 

3.6 AsymPols and POPAPOL 
 
A family of highly efficient biradical polarising agents known as AsymPols, which are composed of 
asymmetric bis-nitroxides, in which a piperidine-based radical and a pyrrolinoxyl or a proxyl radical 
are linked together, were computationally designed and then synthesised. The basic AsymPol agent 
(15) was modified by replacing the methyl groups by spirocyclohexanolyl groups to slow the electron 
spin relaxation, and phosphate groups were added to improve the solubility and to give the agent 
AsymPolPOK (16) [113]. A study of nitroxide biradicals for DNP in cellular environments compared 
the efficiency and stability of AsymPolPOK with TOTAPOL, AMUPol and also the pyrrolidine-based 
agent POPAPOL [1-(PROXYL-3-oxy)-3-(PROXYL-3-amino)propan-2-ol] (17). 
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Using samples of [13C,15N]-proline in 60% d8-
glycerol, 30% D2O, 10% H2O with 10-15 mM 
polarising agent, POPAPOL, TOTAPOL, AMUPol 

and AsymPolPOK produced enhancements of  
= 32, 36, 160 and 72, respectively, in 13C spectra 
at 14.1 T and 100 K (Fig. 6) [114]. At a 
concentration of 1 mM the same polarising 

agents produced enhancements of  = 16, 10, 54 
and 46, respectively. When the stability of the 
radicals was compared by EPR under reducing 
conditions in the presence of 1 mM ascorbic 

acid, POPAPOL had the slowest rate of 
reduction with a decay constant (τ) of 8.7 
minutes, while the constant for TOTAPOL was 
3.2 minutes. Interestingly, in mammalian 
HEK293 cell lysates, AsymPolPOK had the best 
DNP performance and stability [114]. 
AsymPolPOK was used as the polarising agent 

to achieve DNP enhancements of  = >100 in 13C 
spectra of polyglutamine amyloid fibrils, which 
enabled 13C-13C correlation experiments at 
natural abundance on 1-2 mg of sample [115]. 

 
 

 
 
Fig. 6. Polarising agent performance in vitro. (A) DNP enhancements of 0.25 M 13C,15N-labelled 

proline with 10 mM (AsymPolPOK and AMUPol) or 15 mM (TOTAPOL and POPAPOL) 
polarising agent. (B) DNP enhancements of 0.1 M 13C,15N-labelled proline with 1 mM polarising 

agent. (C) Enhancement of the proline carbonyl signal of samples prepared with 1 mM 
polarising agent compared to a proline sample prepared without polarising agent. (D) 

Polarising agent (1 mM) reduction time course in 1- or 2-mM ascorbic acid, recorded by EPR. ϵ 
= enhancement. Standard error bars are shown, n=3 

This figure was reproduced from Ackermann et al. [114] 
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3.7 TinyPols 
 
The DNP enhancement efficiency of binitroxide 
polarising agents such as AMUPol drops 
significantly at higher magnetic fields due to the 
unfavourable field dependence of the cross effect 
mechanism. For example, in a 3.2 mm rotor, the 
1H enhancement factor of a frozen solution of 10 
mM AMUPol in d8-glycerol/D2O/H2O 60/30/10 

(v/v/v) drops from  = 250 at 9.4 T, to ~140 at 
14.1 T, 48 at 18.8 T and 20 at 21.1 T (Lund et al., 
2020). To overcome this problem, a group of 

water-soluble binitroxide polarising agents known 
as TinyPols (18) were developed, which have a 
three-bond non-conjugated flexible amine linker 
that allows substantial couplings between the two 
unpaired electrons. When the distance between 
the two unpaired electrons on TinyPols was 
reduced, the unfavourable field dependence was 
significantly reduced compared to AMUPol. The 
best performing polarising agent in this series 
was M-TinyPol (19), which produced DNP 

enhancement factors of  = 90 and 38 at 18.8 T 
and 21.1 T, respectively [116]. 

 

 
 
M-TinyPol at a concentration of 10 mM was used to achieve a 22-fold DNP enhancement in 13C 
spectra of [1,3-13C2/2-13C/15N]-labelled amyloid Aβ1-42 at high magnetic field (18.8 T). This enabled 
the acquisition of well-resolved and sensitive two-dimensional and three-dimensional correlation 
spectra and nearly complete resonance assignment of the core of M0Aβ1-42 (K16-A42) using sub 
milligram sample quantities (Fig. 7). Many unambiguous internuclear proximities were detected, which 
defined the structure of the core and the arrangement of the different monomers [117]. 

 
3.8 Verdazyl-Ribose 

 
The water-soluble monoradical verdazyl-ribose (20) was synthesised in two steps by condensation of 
2,4-diisopropylcarbonobis(hydrazide) bis-hydrochloride with ribose [118] and later tested as a 
potentially useful polarising agent for DNP-ssNMR. With a sample of [15N,13C3]-L-alanine at 31 K, a 

concentration of 40 mM verdazyl-ribose produced DNP enhancement factors of  = 31 and 74 in 13C 
spectra with MAS (6.7 kHz) and without MAS, respectively [119]. 
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Fig. 7. (A) DNP-enhanced 13C spectra of 1,3-13C2/2-13C/15N-labelled M0Aβ1-42 illustrating an 

enhancement of ε = 22 using (B) bis-nitroxide polarising agent M-TinyPol (19). (C) DNP-
enhanced 13C-13C CORD-RFDR spectra of 1,3-13C2/2-13C/15N-labelled M0Aβ1-42. The resolution 

in the spectrum is comparable to that obtained at ambient temperatures, ∼0.6 ppm as 
indicated for I31Cβ-Cα. In red are shown the long-range contacts that correspond to the 

intramolecular monomer structure of the fibril. (D) DNP-enhanced NCO (left) and NCA (Right) 
spectra acquired using M-TinyPol as the polarising agent. ωr/2π = 40 kHz and T = 115 K 

This figure was reproduced from Bahri et al. [117] 
 
 

3.9 Trityl Radicals OX063 and StaPols 
 
The trityl radical OX063 (21) (15 mM) was used 
as the polarising agent in DNP-ssNMR 
experiments at 1.4 K to enhance the signals for 

[1-13C]lactate and [2-13C]pyruvate in rat muscle. 

A DNP enhancement of  = ~28 enabled 
measurement of the rapid pyruvate and lactate 
kinetics [120]. The seven-step synthesis of 
OX063 was reported later [121]. 
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A series of biradical derivatives of OX063, known 
as StaPols, were synthesised to contain both the 
trityl radical and a nitroxide radical on a pyrroline 
group. To achieve this, OX063 was covalently 
conjugated with the highly stable gem-diethyl 
pyrroline nitroxide through a rigid piperazine 
linker. StaPol-1 (22) and StaPol-2 (23) were 
highly soluble and highly stable towards reducing 
agents [122]. DNP-ssNMR measurements on a 
sample containing 0.25 M [13C, 15N]proline and 
10 mM biradical in d8-glycerol/D2O/H2O, 60/30/10 

(v/v/v) at high field (18.8 T) and 95 K produced 

high DNP enhancements of  = 84, 105 and 117 
for StaPol-2, StaPol-3 (24) and StaPol-1, 
respectively. Measurements on [13C, 15N]ubiquitin 
with 30 mM StaPol-1 in vitro, in HeLa cells and in 

cell lysate produced DNP enhancements of  = 
117, 50 and 183, respectively. The high stability 
and excellent DNP performance of StaPol-1 may 
originate from structural rigidity in the molecule 
[122]. 

 

 
 

4. TARGETED POLARISING AGENTS AND SPIN TAGS 
 
Whilst conventional polarising agents are mixed throughout the sample, others are targeted at specific 
sites to provide a more localised signal enhancement. In some cases, this allows samples to be 
matrix-free to provide a more concentrated sample. Polarising agents can also be covalently linked in 
the sample to provide highly specific spin tags. 
 

4.1 Membrane-Anchored Biradicals 
 
A series of biradical polarising agents was developed for DNP-ssNMR investigation of matrix-free 
supported lipid bilayer samples. This included the agents bTurea-C16 (25), PyPol-C16 (26), and 
PyPol-cholesterol (27), which were designed to mimic lipid molecules and be membrane-anchored 
[123]. When PyPol-C16 was used with static samples of the antimicrobial peptide PGLa oriented in 

DMPC/DMPG lipids at 100 K, a DNP enhancement factor of  = 17 was achieved [124]. 
 

 



 
 
 

Nawaz and Patching; Curr. J. Appl. Sci. Technol., vol. 42, no. 28, pp. 11-38, 2023; Article no.CJAST.104973 
 
 

 
25 

 

4.2 TotaFAM 
 
The large trimodal fluorescent polarising agent 
TotaFAM (28) contains a maleimide-derived 
TOTAPOL for cross effect DNP, a Tat peptide 
(residues 47–57 of the HIV-1 Tat protein) for 
intracellular targeting, and a fluorophore (6-FAM) 
for optical localisation. TotaFAM was used at 2.7 

mM in 13C-enriched intact human embryonic 
kidney cells (HEK293F) at ultra-low temperatures 

of <6 K to achieve a DNP enhancement of  = 63 
in 13C spectra [125]. Such polarising agents 
enable the subcellular localisation determined by 
optical microscopy to be correlated with chemical 
and structural information determined by in cell 
DNP-ssNMR. 

 

 
 

4.3 Site-Specific Spin-Labelling at Disulphide Bridges 
 
A strategy for site-specific spin-labelling at disulphide bridges in bioactive molecules was 
demonstrated with the cyclic heptapeptide eptifibatide (deam-ino-cysteinyl-DL-homoarginyl-glycyl-DL-
alpha-aspartyl-DL-tryptophyl-DL-prolyl-DL-cysteinamide (1->7)-disulfide), which is an antiplatelet 
aggregation inhibitor deriving from the venom of rattlesnakes [126]. A bis-sulfone based spin-label 
containing a TEMPO group (29) was synthesised in three-steps starting from 4-acetylbenzoic acid. 
The spin-label was intercalated in eptifibatide by Michael reaction of its allylsulfone form with the 
reduced form (disulphide bond opened by DTT) of eptifibatide. The radical properties of the spin-
labelled eptifibatide were confirmed by EPR spectroscopy, then 1H/13C DNP measurements were 
performed on 15 mM spin-labelled eptifibatide in a 8.2 M glycerol-d8/D2O/H2O matrix at 97/107 K. 

Based on the signals originating from glycerol, there were DNP enhancements of  = 14 and 19 in 1H 
and 1H-13C CP spectra, respectively [126]. 
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4.4 Targeted TOTAPOL 
 
In some types of samples for ssNMR, polarising 
agents such as TOTAPOL (4) can be targeted in 
the sample, rather than dispersed throughout it, 
by exploiting the natural affinity of TOTAPOL for 
sugar-like moieties. This approach has been 
used with samples of cellulose and Bacillus 
subtilis bacterial cells (targeting the 
peptidoglycan layer) to achieve DNP 

enhancements at 100 K of  = 20 and 24, 
respectively [127,128]. The “gluing agents” 
glucose/trehalose can also be used as an 
adhesive to stick TOTAPOL to the surface of a 
protein to prevent its aggregation, which has 
been demonstrated on lysozyme [128]. In a 
similar manner, the affinity of TOTAPOL to 
amyloid surfaces was exploited to assist 
structural investigations of CsgA amyloid fibrils 
from Escherichia coli by DNP-ssNMR [129]. 
Furthermore, the concept of sedimented solute 
DNP (SedDNP) was introduced, whereby the 
polarising agent is co-sedimented with the 
protein in the absence of a glass-forming                   
agent. This approach was demonstrated                     
using TOTAPOL (2-15 mM) with the                             
iron-storage protein complex apoferritin (ApoF) 
and with bovine serum albumin (Fig. 8) at <90 K 
to achieve DNP enhancements in 13C spectra of 

 = 42 and 66, respectively [88,130]. The                    
targeted approach allows matrix-free sample 
preparation (i.e., no solvent or cryoprotectant), 
which  has the advantages of avoiding line-
broadening interactions and maximising the 
sample filling factor, thus significantly                
reducing the time for acquiring correlation 
spectra. 
 

4.5 Covalently Bound Spin-Labels 
 
A polarising group can be unambiguously 
targeted in the DNP-ssNMR sample by 
covalently binding it to the biological molecule of 
interest. For example, a nitroxide spin-label at 
the N-terminus intermolecular interface region of 
Gramicidin became proximal only when channels 
formed in the membrane and produced DNP 

enhancements of up to  = 6 for the dimeric 
protein in lipid bilayers at 115-120 K [131]. 

 
A TOTAPOL-derived spin tag, ToSMTSL (30), 
containing a methanethiosulfonate group 
(−SSO2CH3) that can react selectively with the 
thiol group of exposed cysteine residues on a 
protein, was synthesised from TOTAPOL. 
ToSMTSL was covalently linked to [U-15N]-
labelled cysteine mutants (N148C and S26C) of 
Anabaena sensory rhodopsin reconstituted in 
DMPC:DMPA liposomes. Such samples 
produced 15N spectra with DNP enhancements of 

up to  = 15. Whilst this was similar to DNP 
enhancements from samples co-suspended with 
TOTAPOL (~17 mM) in glycerol-d8/D2O/H2O, the 
sensitivity possible with ToSMTSL would be four-
fold greater due to the gain in filling factor [132]. 
In further work, ToSMTSL was conjugated with 
the sulfhydryl group of 1,2-dipalmitoyl-sn-glycero-
3-phosphothioethanol (PTE) to obtain a lipid with 
a biradical-modified head group. The resultant 
ToSMTSL-PTE (31) was reconstituted in lipid 
bilayers and used to polarise lipid-embedded [U-
13C]-labelled proteorhodopsin at 102 K to give 

DNP enhancements in 13C spectra of up to  = 7 
[133]. 
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Fig. 8. DNP-enhanced (“mw on”, blue) and thermal equilibrium (“mw off”, red) polarisation 13C-

CPMAS spectra of natural abundance bovine serum albumin sedimented from a 100 mg/mL 
solution in 90/10 (v/v) D2O/H2O with 5 mM TOTAPOL (4). The thermal equilibrium spectrum has 

also been multiplied by a factor of 10 (“off × 10”, red) for better comparison  
This figure was reproduced from Ravera et al. [88] 

 
A maleimide-modified TOTAPOL radical (mTP) 
(32) was synthesised from TOTAPOL by 
acylating the secondary amino group on the 
linker connecting the two TEMPO units. An N-
terminally cysteinylated Bak-derived peptide was 
then ligated with mTP. By performing DNP-
ssNMR experiments at 108 K on [U-13C, 15N]-
labelled Bcl-xL tagged with mTP in cell lysates, it 
was possible to selectively enhance the signals 
for the Bak peptide over those from other cell 
components [134]. Subtraction of the background 
signal (from a sample without the selective Bak 
peptide) enabled acquisition of DNP-enhanced 
2D spectra of Bcl-XL in cell extracts prepared 
from cells grown in [U-13C, 15N]-labelled media. 
Indeed, this approach used approximately 400-
fold less radicals to achieve a similar signal 
enhancement compared to conventional 

experiments with non-targeted TOTAPOL      
[134]. 
 

A nanomolar affinity ligand of dihydrofolate 
reductase (DHFR), trimethoprim, was covalently 
linked to TOTAPOL to create the derivatised 
polarising agent TMP-T (33). When TMP-T was 

bound to DHFR, DNP enhancements of up to  = 
42 in 13C spectra were achieved at 100-110 K, 
which was comparable to using TOTAPOL co-
dissolved with the protein [135]. 
 

An AMUPol-derived spin tag, AMUPol-MTSSL 
(34), was synthesised and covalently linked to 
the KcsA ion channel. Sedimented samples of 
KcsA-MTSSL in liposomes produced 13C spectra 

with DNP enhancement factors of  = 12-15 
[136]. 
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A functionalised ligand composed of D-
galactose, a phenylglycine linker and TOTAPOL 
(35) was used as a paramagnetic tag to probe 
the ligand binding site of the galactophilic lectin 
LecA. At 100 K, DNP enhancements in 13C 

spectra of up to  = 43 were achieved, which 
enabled acquisition of well-resolved correlation 
spectra to measure interactions between LecA 
residues and D-galactose (Fig. 9) [137]. Because 
this approach allowed selective highlighting and 
identification of residues present in the binding 
site, the authors called this method Selective 

Dynamic Nuclear Polarisation. In Sel-DNP two 
datasets of each ssNMR experiment must be 
recorded, a reference set for the biomolecular 
bound-ligand complex for which the polarising 
agent is homogeneously distributed in the 
sample, and a second spectrum obtained with 
the same pulse sequence, but using a specific 
ligand tethered to a paramagnetic tag [137]. An 
advantage of Sel-DNP is that it does not have a 
limitation to the size of the biomolecular target 
that can be studied, because only residues close 
to the ligand–polarisation tag are detected. 

 

 
Fig. 9. (a) Functionalised ligand used in Sel-DNP and composed of a ligand tethered to a 

paramagnetic tag via a short linker (35). The ligand corresponds to D-galactose, the linker is 
made of a phenylglycine unit, and the paramagnetic tag is the bis-nitroxide TOTAPOL. (b) 

Structure of the binding site of LecA highlighting the residues known (from the crystal 
structure) to interact with the galactose ligand (in cyan). (c) and (d) DNP-enhanced 13C–13C 

DQ/SQ one-bond correlation spectra of LecA, using (c) AMUPol (reference spectrum S0) and 
(d) the functionalized ligand of (a) (spectrum S). Positive contours are in black and negative 

ones are in red 
This figure was adapted from Marin-Montesinos et al. (2019) [137] 

 
In a novel targeted approach, proteins were engineered to contain the unnatural amino acid 
norbornene-lysine (36), containing a strained cycloalkene group. The cycloalkene was selectively 
reacted with a tetrazine group on a TOTAPOL-derived polarising agent (37). Norbornene-lysine was 
incorporated into the three proteins ubiquitin, heterochromatin protein 1 (HP1α) and the structural 
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maintenance of chromosomes (SMC) protein from Pyrococcus yayanosii using an orthogonal tRNA 
and aminoacyl-tRNA synthetase (aaRS) pair introduced into the cell through a separate plasmid 
construct [138]. In 13C DNP-ssNMR spectra of the 13C-labelled proteins tagged with TOTAPOL-

tetrazine at 100 K, DNP enhancements of  = 24, 6 and 7 were achieved for ubiquitin, HP1α and 
SMC, respectively. The DNP enhancement provided by 1 mM tagged ubiquitin was 68% of that 
provided by dispersed TOTAPOL at 15 mM with untagged ubiquitin under the same conditions, and it 
was possible to record a 2D 13C-13C spectrum of 100 ug of tagged ubiquitin (1 mM) in less than a day 
[138]. 
 

 
 

4.6 Spin-Labelled Peptides 
 
Nitroxide-tagged peptides based on the 21-
residue antimicrobial peptide maculatin 1.1 
(Mac1) from the skin glands of an Australian tree 
frog (Litoria genimaculata) were used as a 
polarising agent for DNP-ssNMR studies in lipid 
membranes. The mutant F3W of Mac1 (MacW) 
was used and a single (T-MacW) and double (T-
T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-
oxyl-4-amino-4-carboxylic acid) group was 
introduced at the C-terminus by solid-phase 
peptide synthesis to provide the spin-labelled 
peptides [139,140]. Because Mac1 has shown 
membrane-anchoring properties in lipid and 
bacterial membranes, it has the potential to 
selectively provide DNP enhancement to NMR 
signals from the membrane and from 
components (e.g. proteins) embedded within it. 
DNP enhancement properties of the spin-labelled 
peptides were assessed by adding [13C-V14, 15N-
A18]-labelled Mac1 to DMPC bilayers in the 
presence of T-MacW or T-T-MacW, then 1H-13C 
and 1H-31P CP-MAS spectra were recorded at 
108 K. There was an almost doubling of DNP 
enhancement produced by T-T-MacW compared 

to T-MacW. For example,  = 13.7-14.4 for T-
MacW and 22.1-27.0 for T-T-MacW in 13C 

spectra, and  = 12.0 for T-MacW and 19.4 for T-
T-MacW in 31P spectra [140]. 

 

4.7 Spin-Labelled Lipids 
 
The spin-labelled lipids TEMPO-PC (1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho(tempo)-choline) 
(38), 7-Doxyl-PC (1-palmitoyl-2-stearoyl-(7-
doxyl)-sn-glycero-3-phosphocholine) (39), and 
16-Doxyl-PC (1-palmitoyl-2-stearoyl-(16-doxyl)-
sn-glycero-3-phosphocholine) (40) have been 
investigated as polarising agents for DNP-
ssNMR [141]. For these nitroxide monoradical-
tagged lipids, it was found that the position of 
attachment for the nitroxide to the lipid molecule 
affects the DNP enhancement, where the 
enhancement decreased as the radical was 
positioned more deeply into the membrane (at 3 
mol%). TEMPO-PC therefore produced the 
greatest enhancement. It was also found that 
when the spin-labelled lipid concentration was 
increased beyond 3 mol%, the electron-electron 
dipolar interaction begins to interfere with DNP 
through the cross effect, so 3 mol%, was used as 
the optimum concentration [141]. In a separate 
study, TEMPO-PC and 5-Doxyl-PC were used to 
enhance 13C spectra of the lipophilic lung 
surfactant mimetic peptide KL4 
(KLLLLKLLLLKLLLLKLLLLK), which was 13C´-
enriched at leucine 12. With KL4 in DPPC-
d62:POPG multilamellar vesicles, DNP 

enhancements of  = 5.8-8.6 were achieved 
[142]. A lipid-anchored polarising agent N-propyl-
PALMIPOL, which consists of a TOTAPOL 
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moiety functionalized with a palmitate (C16) 
chain, was synthesised and used in DNP-ssNMR 
measurements with egg PC vesicles. The 
polarising agent is localised in the lipid bilayer 
with the biradical function at the surface of the 
liposomes and DNP experiments can be 

performed without excess cryoprotectant 
molecules. DNP enhancements of 2.7-8.1-fold in 
13C spectra were achieved [143]. An advantage 
of using spin-labelled lipids as the polarising 
agent is that no manipulation of the membrane 
protein is required. 

 

 
 

4.8 Endogenous radicals and paramagnetic metal ions 
 
An endogenous stable radical of the flavin mononucleotide semiquinone of flavodoxin was used for 
DNP enhancement of 1H ssNMR spectra at 90 K by a factor of 15-fold [144]. The endogenously 
bound paramagnetic metal ion Mn2+ cofactor in the [13C, 15N]-labelled full-length hammerhead 
ribozyme complex was used to enhance polarisation in DNP-ssNMR spectra without addition of any 

other polarising agent. A DNP enhancement of  = 8 in 13C spectra was achieved, which allowed 
acquisition of two-dimensional 15N-13C TEDOR and 13C-13C PDSD correlation spectra [145]. Overlap 
in these spectra was simplified by reducing the number of isotope-labelled nucleotides in the complex. 
This was achieved by spontaneous hybridization of two differently isotope-labelled strands, each 
individually synthesised by in-vitro transcription. Different isotope-labelling schemes allowed 
measurement of some inter-nucleotide distances [146]. 
 
Complexes of the paramagnetic metal ions Gd3+ and Mn2+ were investigated as polarising agents for 
DNP-ssNMR of 1H, 13C, and 15N at magnetic fields of 5, 9.4, and 14.1 T. Then in preliminary DNP 
experiments on a protein, the Gd3+-binding chelator tags DOTA-M (1,4,7,10-tetraazacyclododecane-
1,4,7-tris-acetic acid-10-maleimidoethylacetamide) and 4MMDPA (4-mercaptomethyl dipicolinic acid) 
were attached to three single-site cysteine mutants (F4C, A28C, and G75C) of ubiquitin, which does 
not contain native cysteine residues [147]. Direct DNP-enhancement of 13C in the [U-13C, 15N]-labelled 
A28C ubiquitin mutant with the Gd-DOTA-M (41) and Gd-4MMDPA (42) tags in [d8,12C3]-glycerol/D2O 

produced small and inverse enhancements by Gd3+ of  = -0.8 to -1.2 and -1.7 to -3.1, respectively. 
Interestingly, when glycerol was absent from the sample, DNP enhancement factors improved three-
fold. For example, in 13C spectra of the [U-13C, 15N]-labelled F4C mutant labelled with Gd-DOTA-M, 
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DNP enhancements were approximately  = -3 and -9 in the presence and absence of glycerol, 
respectively. There was however line broadening in the presence of Gd3+, which would make the 
extraction of structural information more challenging [147]. In more extensive experiments, 
perdeuteration of the protein to counteract nuclear spin-lattice relaxation and proton-driven spin 
diffusion effects improved DNP enhancements of 13C spectra, but only up to around ten-fold [148]. 
Direct DNP of 15N nuclei produced much larger signal enhancements. For example, the 90% 
deuterated G75C mutant tagged with Gd-DOTA-M produced enhancements of >100-fold in the amide 
resonance. This approach enabled analysis of experimental DNP built-up dynamics, which was 
combined with structural modelling of the Gd3+-tags in ubiquitin and provided quantitative information 
on the distance dependence of the initial DNP transfer [148]. 
 

 
 
It was recently demonstrated that the 
commercially available and relatively inexpensive 
chemical gadolinium(III) nitrate [Gd(NO3)3] 
produces substantial DNP enhancements of 13C 
and 15N nuclei in [2-13C, 15N]glycine. A solution of 
1.5 M [2-13C, 15N]glycine doped with 20 mM 
Gd(NO3)3·6H2O in 1:3:6 (v/v/v) 
H2O/D2O/glycerol-d8 produced direct NMR signal 

enhancements of  = −16 (13C) and –57 (15N) and 

direct overall NMR signal enhancements of  = 
−35 (13C) and −197 (15N) at 9.4 T and ∼105 K 
[149]. The potential use of Gd(NO3)3 and other 
readily available simple metal-containing 
chemicals as polarising agents with different 
biological samples needs to be investigated. 
 

5. CONCLUSION 
 

One of the components required for performing 
DNP-ssNMR is a radical-containing polarising 
agent, and this usually must be an exogenous 
polarising agent that is added to the NMR 
sample. In these experiments the efficiency of 
polarisation transfer is highly dependent on the 
structure and chemical and physical properties of 
the polarising agent. In addition to providing 
efficient polarisation transfer, for biological 
samples the polarising agent must be soluble in 
the sample matrix and compatible with the 
biological sample, such that it does not adversely 
affect its native structure and function. The free 
radical(s) of the polarising agent also must be 
stable in the sample for the lifetime of DNP-
ssNMR experiments. Appropriate tests and 
control experiments should be performed to 

assess the usefulness and compatibility of 
polarising agents with biological samples. Here 
we have reviewed the polarising agents and spin 
tags that have been used in DNP-ssNMR studies 
on biological samples. Nitroxides have been 
used most, especially the biradical compounds 
TOTAPOL and AMUPol and derivatives with a 
wide range of biological samples. In these 
experiments the three-spin cross effect 
mechanism of DNP transfer is dominant, but it is 
found that the enhancement efficiency of 
binitroxide polarising agents drops significantly at 
higher magnetic fields due to the unfavourable 
field dependence of the cross effect mechanism. 
A balance between different sample and NMR 
conditions must therefore be assessed. Whilst 
conventional polarising agents are mixed 
throughout the sample, others are targeted at 
specific sites to provide a more localised signal 
enhancement. Targeted polarising agents enable 
use of matrix-free samples to concentrate the 
sample, whilst others can be covalently bound to 
provide signal enhancement at highly specific 
sites. The continued development of novel 
polarising agents and labelling and sample 
preparation strategies for DNP-ssNMR can open 
many biological samples to NMR studies that 
were not previously possible. 
 

SUPPLEMENTARY MATERIALS 
 

Supplementary material is available in the 
following link:  
https://journalcjast.com/index.php/CJAST/library
Files/downloadPublic/27  
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