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ABSTRACT

The effect of Cadmium stress on plant growth, oxidative stress and antioxidant enzyme of
wheat seedlings (Triticum durum Desf.) was evaluated in this study. Cadmium stress
decreased plant growth, lowered the relative water content and caused oxidative damage,
as characterised by increased antioxidative enzymes in wheat leaves such as ascorbate
peroxidase (APX), guaїacol peroxidase (POX) and catalase (CAT). As a response to
increasing Cadmium supply particular increases in antioxidative mechanisms in wheat
cultivar Simeto suggest that the high Cadmium sensitivity of Simeto is related to enhanced
production and oxidative damage of reactive oxygen species.
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1. INTRODUCTION

Cadmium (Cd) is a non-essential heavy metal, released into the environment by
anthropogenic and non-anthropogenic sources. Environmental pollution with cadmium is
mainly caused by mining and smelting, dispersal of sewage sludge and the use of cadmium
rich phosphate fertilizers [1,2]. At very high concentrations in soils, cadmium can adversely
effect plant growth and also human health after introduction to the food chain [3,4].

In plants, the accumulation of cadmium can cause numerous morphological levels, an
excessive amount of cadmium causes plant growth retardation; chlorosis, leaf rolls, and
necroses [5]. At the physiological level, excess cadmium results in an inhibition of
photosynthesis and transpiration [6,7], imbalance of mineral nutrients [8], induction of
oxidative stress [9], changes in enzyme activity [10], and modifications to gene expression
[11]. Cadmium promotes the accumulation of reactive oxygen spices (ROS), causes severe
damage to important cellular components, such as lipids, proteins, DNA, and RNA [12,13]
and leads to a decreased growth [14]. ROS include superoxide radical, hydroxyl radical and
hydrogen peroxide. Plants have evolved a complex antioxidant system (enzymatic and non
enzymatic detoxification mechanisms) for protecting. The antioxidant enzymes, such as
peroxidases, superoxide dismutase and catalase scavenge different types of ROS [15].

Both increase and decrease in the activity of many antioxidant enzymes has been observed
in cadmium treated plants [4,16,17,18] suggesting that the antioxidant systems, beside being
involved in detoxification process, could be sensitive targets of cadmium toxicity. Plants can
also tolerate cadmium toxicity by inducing antioxidative defense systems. As mentioned
above, cadmium stress can be responsible for production of ROS and peroxidation of critical
cell compounds, such as membrane lipids and proteins, chlorophyll and nucleic acids
[19,20]. An induced antioxidative defense in response is to Cadmium stress might be,
therefore, a relevant mechanism for Cadmium tolerance in plants.

The purpose of this study is to examine the effects of cadmium on the growth, oxidative
stress, and antioxidative response of early wheat seedlings (Triticum durum Desf.). The
possible mechanisms of wheat seedlings response to cadmium stress involving free radical
metabolism and antioxidative changes are also discussed. In the present study, experiments
were conducted to assess the role of antioxidative defense systems in variety wheat Simeto.
The objective was to evaluate root and shoot length, dry matter production, development of
cadmium toxicity symptoms and to analyze levels of antioxidative defense systems in
leaves.

2. MATERIALS AND METHODS

2.1 Plant Material, Growth and Treatments

The experiments are done at the Laboratory of Cellular Toxicology of Annaba, University,
Algeria.

The tested wheat seeds (Triticum durum Desf.) were provided by the Algerian Office Inter
Cereals (AOIC) El Hadjar Annaba, Algeria. Wheat (Triticum durum, cv. Simeto) was used in
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the experiments. Seeds were surface sterilized in 5% Sodium hypochlorite (NaCiO) solution
for 10 min and rinsed with distilled water. Germination was performed in the dark on
Whatman filter papers in dishes Petri. Cadmium chloride (CdCl2, Fluka) was used as
Cadmium salt and prepared freshly for the treatments. Different amounts of CdCl2 were
added to the culture solution to form the following six treatments: 0 (control), 2, 5µM, 25µM,
50µM, 75µM, 100µM. The leaves were collected after 14 days for analysis of various
parameters.

2.2 The Relative Water Contents (RWC)

The relative water content (RWC) was determined in fresh leaf discs of 2 cm2 diameter; discs
were weighed quickly and immediately floated on distilled water in Petri dishes to saturate
them with water for the next 24h, in dark. The adhering water of discs was blotted and tugor
mass was noted. Dry mass of the discs was recorded after dehydrating them at 70°C for 48h
[21]. RWC was calculated by using the following formula [22]:

RWC= x 100
2.3 Determination of proline content

The method of Troll and Lindsley [23] was used to determine the concentration of proline in
wheat leaves. Absorbance was measured at 528 nm by spectrophotometer Jenway 3600.
The proline concentration in the sample was determined from a standard curve using
analytical grade proline and calculated on fresh weight basis (mg/g FW).

2.4 Determination of Soluble Proteins

The method of Bradford [24] was used to determine the concentration of soluble proteins in
wheat leaves with BSA as standard. Absorbance was recorded at 595 nm. Soluble proteins
were expressed as mg/g FW.

2.5 Antioxidant Enzyme Activity

Extraction of POX, APX and CAT was as described by Loggini et al. [25]. Leaves of wheat
(1g fresh weight) were homogenized in ice cold 50mM phosphate buffer (pH 7,5). The
homogenate were centrifuged at 12000g for 20 min, and the supernatants were used for
enzyme activity assays.

Guaiacol peroxidase (POX) activity was measured according to the method of Fielding et al.
[26]. The reaction mixture (3ml) consisted of 100µl enzyme extract, 8mM Guaiacol, 50mM
phosphate buffer (pH=7,2), and 50 µl H2O2 (300mM). An increase in the absorbance due to
oxidation of guaiacol was measured spectrophotomtrically at 470 nm (ɛ= 24, 7mM¯¹ cm¯¹).

Ascorbate peroxidase (APX) activity was assayed according to the method of Nakano and
Asada [27]. The reaction mixture consisted of 100µl enzyme extract, 0,5mM ascorbate,
50mM phosphate buffer (pH=7,2) and 50µl H2O2 (300mM). The oxidation of ascorbate was
determined by the change in absorbance at 290 nm (ɛ= 2, 8mM¯¹ cm¯¹).
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Catalase (CAT) activity was determinated according to Cakmak and Horst [28]. The assay
mixture (3,0ml) consisted of 100µl enzyme extract, 50µl H2O2 (300mM) and 2, 85ml 50mM
phosphate buffer (pH=7,2). CAT activity was assayed by monitoring the decrease in the
absorbance at 240 nm as a consequence of H2O2 disappearance (ɛ=39, 4mM¯¹ cm¯¹).

2.6 Statistical Analysis

The experiment was arranged in a completely randomized design, with three independent
replicates. Data was analyzed by ANOVA and means were compared by the Tukey test at
the 95% level of confidence. The standard deviation was plotted in all graphs.

3. Results

3.1 Dry Weight and Relative Growth Rate

The dry weight (%), shoot and root growth of the wheat genotype Simeto, is shown in
Table 1.

Table 1. Effect of cadmium stress on growth traits (root and shoot growth) and
relative water content of wheat plants

Treatments Root length (cm) Shoot length (cm) Relative water content (%)
Control 11.116±1.245a 12.53±2.46a 95.436±3.054a
2,5µM Cd 6.813±1.424b 10.363±1.880ab 87.123±2.999ab
25µM Cd 4.65±0.435bc 9.38±0.844ab 84.002±3.287b
50µM Cd 4.03±0.678c 8.343±0.333b 78.616±3.506bc
75µM Cd 3.693±0.346c 7.933±0.404b 69.933±3.506cd
100µM Cd 3.413±0.306c 7.58±0.166b 61.135±4.893d
Mean pairs followed by different letters are significantly different (p=0.05); n=3. The same letters after

the data within a column indicates there was no significant difference at a 95% probability level

Shoot and root growth of wheat seedlings were significantly affected by cadmium, and
showed a continuous decrease with the increase of cadmium concentration. According to
the statistic analysis (ANOVA), the decrease of shoot and root length was high significant
(P˂0,001).

Exposure of the plants to different concentration of CdCl2 inhibited plant growth, which led to
a significant decrease in dry weight and relative growth rate.

These results indicate that the wheat seedlings were sensitive to cadmium. According to the
results at the concentration of 100µM there was significant reduce in root and shoot growth
and dry weight content.

3.2 Proline Content

The effect of cadmium stress on the proline content of wheat leaves is presented in Fig. 1.

Exposure of wheat plants to cadmium significantly increased proline content. According to
the Fig. 1, Proline content was highly affected with the CdCl2 concentrations equal of higher
than 50uM, what was proved by statistical analysis (p˂ 0,001).
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Fig. 1. Effect of cadmium stress on the proline content of wheat leaves
Data are the mean ± S.E. of three replicates. Mean pairs followed by different letters are significantly

different (p=0.05). The same letters after the data indicates that there was no significant difference at a
95% probability level

3.3 Soluble Proteins

Fig. 2 shows the effect of cadmium on the soluble proteins content of wheat leaves.

Fig. 2. Effect of cadmium stress on the soluble proteins of wheat leaves
Data are the mean ± S.E. of three replicates. Mean pairs followed by different letters are significantly

different (p=0.05). The same letters after the data indicates that there was no significant difference at a
95% probability level

Increase of protein content in wheat leaves with the increased exposure to the cadmium
concentration has been observed (Fig. 2). Total protein content was 6,841mg/g FW in
control leaves, 9,671 mg/g FW at 50µM and 11,445mg/g FW at 100µM of Cadmium
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respectively.  The statistical analysis (ANOVA) indicated that the increase of soluble proteins
was highly significant (P˂0,01).

3.4 Antioxidant Enzyme Activity

The changes in antioxidant enzyme activities in wheat leaves, including POX, APX and CAT
induced by cadmium at different concentrations are shown in Figs. (3,4 and 5).

Fig. 3. Effect of cadmium stress on the activity of POX content of wheat leaves
Data are the mean ± S.E. of three replicates. Mean pairs followed by different letters are significantly

different (p=0.05). The same letters after the data indicates that there was no significant difference at a
95% probability level

Fig. 4. Effect of cadmium stress on the activity of APX content of wheat leaves
Data are the mean ± S.E. of three replicates. Mean pairs followed by different letters are significantly

different (p=0.05). The same letters after the data indicates that there was no significant difference at a
95% probability level
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Fig. 5. Effect of cadmium stress on the activity of CAT content of wheat leaves
Data are the mean ± S.E. of three replicates. Mean pairs followed by different letters are significantly

different (p=0.05). The same letters after the data indicates that there was no significant difference at a
95% probability level

The treatment with different concentrations of cadmium resulted high significant increase in
APX, POX and CAT activities (Figs. 3, 4 and 5). The expressed toxicity symptoms at higher
cadmium concentrations corresponded to increased enzymes activities in comparison to
controls (P˂0,01).

4. DISCUSSION

Exposure of plants to toxic metals can lead to numerous physiological and biochemical
disorders. The inhibition of plant seedling growth can be regarded as general responses
associated with heavy metal toxicity [29,30].

The present study shows that cadmium markedly reduced root elongation and shoot length.
Occurrence of these symptoms was associated with reductions in dry matter production.
Cadmium affected root growth more than shoot growth, especially at elevated Cadmium
levels, confirming the results found in wheat [31], radish [32] and barley [33]. Greater
sensitivity of roots to cadmium than shoots might be related to the fact that roots are the first
organs to be in contact with cadmium, accumulating it at much higher amounts than shoots
[19,34].

The water content in wheat plants decreased gradually and significantly (P˂0,001) with the
increase of Cd concentration (Table 1). To examine the osmotic effect of abiotic stress
treated plant tissues, the water content was frequently measured [35] and it was observed
that plant water status was highly affected by heavy metal stress [36-38]. These results
indicate that an excess level of cadmium has a toxic and an osmotic effect on wheat plants.

In higher plants, proline is accumulated under stress, both due to an increase in production
by reducing its degradation [39]. The accumulation of proline occurs after the development
of resistance is a consequence rather than a cause of hardening [40]. In the present study,
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proline increased significantly in the cadmium treated wheat plants. Enhanced proline
accumulation in reponse to Cd toxicity has been earlier demonstrated in Triticum aestivum,
Vigna radiate, Helianthus annus and Phaseolus vulgaris [41,42,43]. Thus, proline
accumulation is a potential indicator of stress tolerance [44]. Proline also acts directly as an
antioxidant to protect the cell from free radical damage and maintains a more reducing
environment that is favorable for phytochelation synthesis and cadmium sequestration [45].

In the present work, Cadmium treatment increased soluble protein content; these results
suggest that this increase is due to the increase of antioxidant enzymes and reactive oxygen
species. Although, some ROS contact as signaling molecules by altering the expression of
certain genes and modulating the activity of specific defense proteins, in high concentrations
can be extremely harmful to organisms [46]. They can induce oxidation of proteins, lipids
and nucleic acids, leading to alterations in cell structures and mutagenesis [47]. Increase of
soluble proteins could results from the activation of genes for synthesis of specific proteins
associated with stress such as proteins “LEA” that protect the vital set of cellular proteins
[48], and the heat shock proteins which permit maintains membrane protein and the plant
cell structures [49]. The acquisition of resistance to stress process is accompanied by an
important synthesis of soluble protein; this is the result of a slower development and storage
of molecules in the hyaloplasm or in some organelles (chloroplasts, mitochondria). It seems
that the synthesis of specific proteins is necessary for the hardening [40].

Reactive oxygen species (ROS) are an unenviable part of aerobic life. Their steady state
concentration is a balance between production and elimination providing certain ROS level
[50]. This equilibrium can be disturbed by metal stress, leading to enhanced ROS level and
damage to cellular constituents, which is called oxidative stress [34,51,52]. In plants, toxic
metals induce oxidative stress by generating ROS via hydrogen peroxide (H2O2), superoxide
radicals (O2¯), hydroxyl radicals (OH¯) and singlet oxygen (O2·) [53]. In response to the
increased ROS, the antioxidant defense system comprising POD, APX and CAT plays
important roles in scavenging ROS [54]. Both increase and decrease in the activity of many
antioxidant enzymes have been observed in cadmium treated plants [55,56,18,17].

Our results showed that, Cd treatment significantly increased POD, APX activities in leaves
of wheat plants (Figs. 3 and 4). Similarly, Milone et al. [57] showed that cadmium could
increase POD and APX activities in wheat seedling leaves. Increase in ascorbate peroxidase
and guaїacol peroxidase activities could represent an appropriate protection against
overproduction of peroxides when heavy metals accumulate in wheat [58].

The role of POD is to eliminate the excess of H2O2 [59]. POD catalyzes H2O2 dependent
oxidation of substrate, while CAT and APX eliminate H2O2 by breaking it down directly to
form water and oxygen [60]. APX reduces H2O2 to H2O, subsequently producing
monodehydroascorbate radicals (MDHA) from ascorbate (Asc) [61].

Catalase (CAT) is an important enzyme in the protection against oxidative stress in all
aerobic organisms. It catalyzes, rapid decompisition of hydrogen peroxide into oxygen and
water, thereby protecting cells from oxidizing effects caused of excessive H2O2 [62]. Earlier
data in the literature concerning the catalase response in plants leaves exposed to cadmium
stress are contradictory since both enzyme activation [63,64] and inhibition [65,16,66] have
been described. In our investigations exposure of wheat plants to cadmium markedly
induced an increase of CAT activity in leaves. In response to the in ROS accumulation, the
antioxidant defense system comprising SOD and CAT plays important roles in their
scavenging [67]. SOD could eliminate superoxide, a harmful substance to cell membranes,
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produced in the aero-metabolism process. H2O2 is also toxic to plant cells, could be
eliminated by CAT [68].

Comparing the activity of H2O2 eliminating enzymes, many authors assume that APX plays a
central role in H2O2 detoxification at the chloroplast level where as at the cytosol level POD is
the most important H2O2 scavenger [69,70]. Furthermore, POD participating barrier against
poisoning heavy metals. In contrast to APX and POD, CAT activity is primarily regulated by
the amount of H2O2 produced by photorespiration due to its peroxisome location [19].

5. CONCLUSION

The present results allow us to conclude that the wheat plants showed a negative response
to cadmium toxicity. The physiological and biochemical process in plants was significantly
affected by stress of CdCl2. To deal with the cadmium induced oxidative stress, wheat plants
activated antioxidant enzymes such as CAT, APX and POD to diminish the reactive oxygen
species. These biochemical responses can be interpreted as an internal tolerant mechanism
and may allow us to develop strategies for reducing the risks of the cadmium contamination
to crop production.
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