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ABSTRACT 
 

Blood-sucking arthropods evolved a salivary cocktail of anti-hemostatic, platelet antiaggregant and 
vasodilators components that neutralize the effects of hemostasis and allow a successful blood 
supply occurs. In salivary glands from Aedes aegypti was found several components with anti-
hemostatic action that inhibit the platelet aggregation and coagulation. These anticoagulants can 
prevent clot formation during the ingestion and digestion of blood meals by the Ae. aegypti insect. 
Thus, this review focused in Ae. aegypti saliva components that have anticlotting action and that 
has potential sources of novel pharmacologically active molecules, as potential therapeutic of new 
cardiovascular and anti-thrombotic drugs. 
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1. INTRODUCTION 
 
Arthropod-borne diseases remain a major health 
problem worldwide in humans, such as malaria, 
dengue, Japanese encephalitis, yellow fever, and 
filariasis. It is estimated that there are 
approximately 14,000 species of arthropods that 
feed on blood [1]. Among the groups of blood-
sucking insects, mosquitoes are given special 
attention, according to the World Health 
Organization (WHO), vectors of several 
emerging and reemerging diseases are 
responsible for over 1 million deaths/year. Of all 
mosquitoes families, the Culicidae family is the 
most important in terms of public health and 
contain genera Aedes, Culex and Anopheles. In 
this context, Aedes genus (e.g., Aedes aegypti 
and Aedes albopictus) in tropical areas, is known 
to be the primary vector of emerging and 
reemerging diseases such as yellow fever, 
dengue fever, ZIKV (Zika virus) and 
Chikungunya to humans, causing significant 
morbidity and mortality throughout the world               
[2-5].  
 
Mosquitos Ae. aegypti females need blood to 
ensure the development of their eggs and to feed 
need to locate blood vessels of their vertebrate 
hosts. Thus, to be successful in blood meal, the 
mosquito Ae. aegypti female have two major 
obstacles: Hemostasis and the host immune 
system [6,7]. During blood feeding, this mosquito 
rapidly inject saliva into the host tissue, and this 
is important to the interaction between the 
parasite, vector, and mammalian host. In this 
cenarious, the haematophagous saliva exert a 
key function to the pathogen transmission, lead 
to blood coagulation and vasoconstriction at the 
site of vascular injury; prevent platelet 
aggregation, and stimulation the inflammatory 
and immune response from the host [8,9].  
 
In the last years, several molecules from Ae. 
aegypti saliva were identified and has shown 
highly sophisticated pharmacological activities, 
for example, apyrase an enzyme that hydrolyses 
ADP, a nucleotide released by injured cells and a 
potent inducer of platelet aggregation [10]. 
Others major components in Ae. aegypti saliva 
with anticlotting and immunomodulator actions 
also were identified, such as tryptophan 
hydroxylase, antigen-5 family, D7 protein, 
salivary factor Xa-directed anticlotting, 30-kDa 
salivary allergen among others [11-14]. Thus, 
this review focused in Ae. aegypti saliva 

components that have anticlotting action, which 
may be potential sources of novel 
pharmacologically active molecules. In this 
regards, recent studies suggested that salivary 
components exhibit potential therapeutic 
application in clinical trials, such new 
cardiovascular and anti-thrombotic drugs and 
also may serve as vaccine targets against some 
diseases, including dengue, leishmaniasis and 
chagas disease. 

 

2. TAXONOMY AND EVOLUTION OF 
Aedes aegypti  

 
Arthropod families have at least fourteen 
members that contain more than 400 different 
genera and over 15,000 species, including             
Ae. aegypti, that belongs to the Kingdom 
Animalia, Phylum Arthropoda, Class Insecta, 
Order Diptera, Culicidae Family, Gender Aedes, 
Subgenus Stegomyia, Species Aedes aegypti. 
This species is the principal vector of some 
viruses worldwide, such as yellow fever, Zika 
virus, dengue and Chikungunya virus to humans, 
mainly because of its adaptability to urban life 
and its high susceptibility of the dengue virus  
[15-18].   
 
The Ae. aegypti was originated in Africa [19] and 
was first described in Egypt, leading to the name 
[20]. It arrived in Brazil through the slave ships 
during the period slavery [21]. Ancestors of the 
domestic populations of Ae. aegypti lived on the 
sub-Saharan Africa, whose tended to breed in 
forested habitats and was predominantly 
zoophilic (blood meals in non-human animals. 
Today, this ancestral population still exists in 
forests and vegetated ecotones in sub-Saharan 
Africa [22] and is called by a subspecies Aedes 
aegypti formosus. After, two forms were 
identified as aegypti and formosus subspecies 
According to McClelland [23] morphologically, 
this ancestor is much darker than the adapted 
populations to human habitats, although this 
classification is quite variable. 
 
The mosquito development for full transformation 
occurs, through the following stages: Egg, four 
larval instars, pupal and adult [24-29]. The 
salivary glands of adult mosquitoes are sexually 
dimorphic and it is clear that their structural and 
functional differences enable females to engage 
successfully in hematophagy The Ae. aegypti 
has anthropophilic habits and females perform 
hematophagy in daytime, with highest peak in 
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the period between 16 h and 18 h [28]. It has a 
quite imperceptible bite and can bite several 
people in order to acquire just one blood meal 
[30].   
 
Males insect vector feed only sugar to sustain 
life, while the females can feed both sugar and 
blood, but the blood supply is very important to 
obtain the nutrients necessary to produce yolk 
proteins and eggs. During such blood meals, 
females can transmit pathogens to a vertebrate 
host. This is due the structural and functional 
differences between the salivary glands of adult 
insects, which are sexually dimorphic and enable 
females to carry out the biting the vertebrate host 
[31]. To locate a host, mosquitoes use a multi-
sensory approach that includes detecting visual, 
olfactory, thermosensory, and gustatory cues to 
guide a series of behaviors collectively known as 
host seeking behavior [32,33]. Once a suitable 
host has been found, the mosquito lands and 
searches for a suitable site for the insertion of the 
mouthparts that lead an injury to the stratum 
corneum of the host skin. The skin is penetrated 
with active movements of the insect [34] and 
several seconds to minutes may pass until a 
suitable vessel or hemorrhagic pool is found, 
from where blood is sucked, resulting in to blood 
vessels and tissue injuries. This intradermal 
search for blood is known as probing time [1,35]. 
 
In this regards, the mosquito’s saliva contributes 
to the ability of insect to locate the blood of 
vertebrates, preventing the hematoma formation 
generated by lacerations caused by the 
penetration of their mouthparts through of the 
host skin [36]. So in summary, the saliva in adult 
female Ae. aegypti is produced by secretory cells 
in the medial and lateral lobes of the salivary 
glands, and then it’s released surrounding of the 
salivary duct that is connected to these 
extracellular secretory cavities of the mosquito 
[31].  

 
To perform this process, the insect salivary 
glands suffered sophisticated evolving in its 
chemical constitution, secreting molecules with 
diverse enzymatic, that affect blood clotting, 
platelet aggregation, vascular contraction, host 
immunity, inflammation, and angiogenesis, 
among others [31,37]. These salivary products 
help in the acquisition of blood meals from 
vertebrate hosts, as well as for the digestion of 
sugar and nectar meals. In addition, they 
modulate vertebrate immune responses 
potentially increasing virus transmission, host 
susceptibility, viremia, disease progression and 

mortality [38-41]. Thus, recent studies confirm 
salivary compositional diversity from several 
hematophagous arthropods by transcriptome 
analysis, however, most of the identified proteins 
not yet had their known functions [42].   
 

3. SOME SALIVARY COMPONENTS 
FROM Aedes aegypti 

 
Over the course of several million years, the 
molecular diversity of saliva of bloodsucking 
insects may have arisen as a consequence of 
the evolutionary process that leads to insect 
adaptation to hematophagy. This evolution is 
associated with the expression of salivary active 
molecules from females insect vector that have a 
variety of pharmacological effects in order to 
maintain haemostasis, inflammation and 
adaptive immunity in the vertebrate host, based 
upon the release of saliva into the feeding site 
[37,40]. However, during blood meals, females 
also can transmit pathogens and the salivary 
constituents are important to infection 
maintenance and disease onset in the vertebrate 
host [9].   
 

The past decade, several studies have focused 
on describing the sialome (set of RNA message 
+ set of proteins found in salivary glands) for 
large-scale genomic, transcriptomic and 
proteomic analyses of salivary secretions of 
various blood-sucking insects, such as 
Anopheles [17,42-44]. Culex, Psorophora 
mosquitoes, Phlebotomine, Simulium and Aedes, 
[45,46]. These studies of sialotranscriptome 
analysis revealed a vast repertoire of 
vasodilators, anti-clotting and immunomodulator 
substances and enzymes, although, until now, 
many of these proteins families have not yet their 
defined functions [1].  
 
Regarding Ae. aegypti, their salivary glands 
contain approximately 1–3 g of protein, and a 
female mosquito injects about half of this protein 
during a single feeding. Thus, these insect's 
regurgitated constituents play an essential role in 
food ingestion, pathogens transmission and may 
affect vascular constriction, blood coagulation, 
platelet aggregation, inflammation, immunity and 
angiogenesis [38].  
 

In this context, Ribeiro et al. [47] investigated the 
sialotranscriptome from Ae. aegypti mosquitoes, 
and they found in cDNA coding several 
components already described in other insects, 
as tryptophan hydroxylase, antigen-5 family, D7 
protein, salivary factor Xa-directed anticlotting, 
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30-kDa salivary allergen, C-type lectin signature 
and related to the macrophage mannose 
receptor, a fibrinogen domain and related to 
vertebrate angiopoietins, salivary apyrase , 
vasodilator sialokinin, lyzozyme, gram-negative 
binding protein, serine proteases, calreticulin, 
bacterial adhesion proteins; mammalian testes 
protein, PAF-acetyl hydrolase, Adenosine 
deaminase, sphingomyelin phosphodiesterase; 
carboxylesterase; amylase; glucosidase, purine 
hydrolase among others. So far, other 
components have been described and their 
functions defined as shown in this review below.  
 
Majority of these salivary molecules from                 
Ae. aegypti are able of antagonizing the main 
effectors of immune responses and hemostatic 
responses of vertebrates due they represent a 
key obstacle for acquisition of the blood meal by 
hematophagous arthropods [1]. 
 

4. THE HEMOSTATIC SYSTEM AND 
SALIVARY COMPONENTS FROM 
Aedes aegypti 

 
Blood is normally maintained in a fluid state, but 
upon tissue damage, or upon contact with a 
variety of extraneous substances can activate of 
hemostasis and this hemostatic system comprise 
a complex defense mechanism responsible for 
the control of blood loss resulting from a vascular 
injury. It is a regulated multifunctional process 
that involves multiple physiological cellular and 
acellular components, including the vascular 
response, platelet aggregation and the 
coagulation system. The Fig. 1 shows the 
coagulation cascade and its activation pathways, 
as described in detail below. 
 
Hemostasis is categorized as either a primary or 
secondary process. Primary hemostasis involves 
the response of the vascular system and 
platelets to vessel injury. It takes place when 
there are injuries to small vessels during which 
the affected vessels contract to seal off the 
wound and platelets are mobilized, aggregate, 
and adhere to components of the 
subendothelium of the vasculature. Platelet 
adhesion requires the presence of various 
factors such as von Willebrand factor (vWF) and 
platelet receptors (IIb/IIIa and Ib/IX). Additional 
platelets are attracted to the site of injury by the 
release of platelet granular contents, such as 
adenosine diphosphate (ADP). The platelet plug 
is stabilized by interaction with fibrinogen. 
Secondary hemostasis involves the response of 
the coagulation system to vessel injury. It is 

required to control bleeding from large wounds 
and is a continuation of the primary hemostatic 
mechanisms. Whereas the outcome of primary 
hemostasis is the formation of the platelet plug, 
the outcome of secondary hemostasis is the 
formation of a thrombus [48]. 
 
The concept of coagulation cascade blood or 
secondary hemostasis, consists of a cascade of 
enzyme activation events in which serine 
proteases activate the proteins (pro-enzymes 
and pro-cofactors) in the next step of the 
cascade via limited proteolysis which was first 
proposed in 1964 [49]. This was described under 
the headings of the intrinsic pathway (dependent 
on contact activation by a negatively-charged 
surface, and involving coagulation factors XII, XI, 
IX, VIII and V), and the extrinsic pathway 
(dependent on tissue-factor being exposed to the 
circulation, and involving tissue factor and factor 
VII), converging on a common pathway to 
activate factor X, leading to conversion of 
prothrombin (factor II) to thrombin (factor IIa), 
culminating in the conversion of fibrinogen to 
fibrin (Fig. 1) [50]. Lastly, there is the 
polymerization of fibrin and the activation of 
platelets, leading to a blood clot. This process is 
protective, as it prevents excessive blood loss 
following injury (normalhemostasis) [43]. 

 
Disturbances of primary or secondary 
hemostasis could be associated with both 
hemorrhage and thromboembolic diseases [48]. 
Thus, the hemostasis equilibrium which is 
responsible for the maintenance of blood 
properties and keep it in its fluid form, is 
controlled by a complex system formed by 
interaction between cellular and protein phases 
of coagulation.  
 
Extensive studies both experimentally and 
clinically is focused on isolating and 
characterizing highly specific anticoagulants from 
blood-feeding (haematophagous) animals, 
especially those targeting specific coagulation 
factors and using in antithrombotic drug design. 
Hirudin and tick anticoagulant peptide are 
examples of these substances that can be used 
in the treatment of pathological processes that 
affect the hemostatic system [51,52]. 

 
In this regards, the haematophagous insect’s 
saliva has shown high clinical importance, since 
during the feeding process of insects occurs an 
injury in blood vessels and tissue, which in turn 
triggers the start of the hemostatic action of the 
host with the activation of the coagulation
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Fig. 1. The coagulation cascade consists of a series of serine proteases which activate each 
other sequentially. The intrinsic pathway is dependent on contact activation by negatively-
charged surface, and involving coagulation factors XII, XI, IX, VII and V, while the extrinsic 

pathway is dependent on tissue-factor being exposed to the circulation and involving tissue 
factor and factor VII, converging on a common pathway to activate factor X, leading to 

conversion of Prothrombin to Thrombin and culminating in the conversion of fibrinogen to 
fibrin, which in turn polymerizes itself and, together with platelets, forms the blood clot Source: 

Adapted from Adams and Bird (2009) 
 

cascade [37,53-55]. As the hemostasis is a 
redundant and complex system, these insects, 
including the Ae. aegypti evolved a mechanism 
to reverse this complexity through a salivary 
cocktail with anticoagulants, antiplatelet and 
vasodilators components that neutralize the 
effects of hemostasis and allow a successful 
blood supply occurs [13,15]. In this regards, in 
salivary glands from Ae. aegypti was found three 
general classes of anti-hemostatic agents that 
inhibit the platelet aggregation and coagulation, 
andor induce vasodilation, as apyrase and D7 
protein, inhibitors of platelet aggregation, the 
serpin, a serine protease inhibitor that acts on 
the factor Xa with anticoagulant activity, among 
others described below in detail. These 
anticoagulants target blood coagulation 

proteinases can prevent clot formation during the 
ingestion and digestion of blood meals by the Ae. 
aegypti insect. The Table 1 shows the shows the 
main action mechanisms of anti-hemostatic 
components found in vertebrates and 
invertebrates.  
 

4.1 Apyrase  
 
Apyrase was found in salivary glands of some 
insects to prevent blood clotting. It leads to 
platelet aggregation inhibition by the hydrolysis of 
adenosine triphosphate (ATP) and adenosine 
diphosphate (ADP), limiting their accumulation in 
the extracellular matrix, resulting in increase of 
adenosine monophosphate (AMP) and inorganic 
phosphate, which are unable to induce platelet
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Table 1. Pharmacological properties exhibited by anti-hemostatic components 
 

Components Main action mechanisms References 
Apyrase Leads to platelet aggregation inhibition by the 

hydrolysis of ATP and ADP resulting in increase of 
AMP and inorganic phosphate, which are unable to 
induce platelet aggregation and activate 
neutrophils. Removal of ATP and ADP limits their 
effect on platelet activation. 

Clark, 2011; Ribeiro et 
al., 1984; Silva, 2009. 
Waidhet-Kouadio et al., 
1998. 

Serpin Inhibition of factors IXA, XA and XIa; inhibition of 
thrombin. 

Rosenberg, damus, 
1973. Davie et al., 1991; 
Olson et al., 2010 

D7 Protein Binding to thromboxane a2; Inhibit the action of 
biogenic amines. 

Arca et al., 2007; calvo 
et al., 2006, 2009. 

Aegyptin Inhibition of platelet aggregation and interaction 
with collagen. 

Calvo et al., 2007. 
Andrews & berndt, 
2004. 

Kazal-type serine 
protease 

Inhibitor of thrombin, it has two important regulatory 
regions besides the active site, exosites 1 and 2, 
which are binding sites for fibrinogen and heparin, 
respectively, and that is a key in blood coagulation.  

Watanabe et al., 2011. 

 
aggregation and activate neutrophils [36,56-58]. 
In summary, when insect feeding, ATP and ADP 
are released from damaged cells and activated 
platelets, thus they stimulate platelet aggregation 
and mast cells degranulation at the bite site. 
Then, removal of ATP and ADP by salivary 
apyrase reduces the pain caused by these 
extracellular nucleotides and limits their effect on 
platelet activation [44,59]. 
 
The apyrase has been detected in mosquitoes 
[60], stink bugs [61], blackfly [62], ticks [63,64], 
fleas; and Culicoides [65], and is synthesized in 
the salivary gland of female adults of Ae. aegypti 
and accumulates on the distal side lobes [60]. 
For molecular cloning and sequence analysis 
were revealed at least three classes of apyrases 
of different evolutionary origin. They are 
represented by the apyrases of the yellow fever 
mosquito Ae. aegypti [11,66] the intracellular 
parasite Toxoplasma gondii [67], and the bedbug 
C. lectularius (Valenzuela, 1998). The T. gondii 
apyrase belongs to a large family of ecto-
ATPases that are found in a wide variety of 
organisms and tissues ranging from plants [68] to 
humans [69]. The C. lectularius apyrase belongs 
to a novel type of ATPases [70], and Ae. aegypti 
apyrase shows a high degree of sequence 
similarity to 5'-nucleotidases from different 
organisms [11].  
 
Ae. aegypti apyrase (ATP diphosphohydrolase) 
is an enzyme member of the family 5'-
nucleotidase with 68-kDa that inhibits platelet 
aggregation and prevents activation of 

neutrophils [11,60,71,72]. Ae. aegypti apyrases 
are different of others apyrases, such as apyrase 
of 37.5-kDa from Cimex lectularius belongs to a 
novel protein family showing significant similarity 
to phlebotomine apyrases [61,70,73] and to 
human and to rat apyrases [74,75]. The 5’-
nucleotidase apyrase from Ae. aegypti works 
with either Ca

2+
 or Mg

2+
, and the pH optimum is 

about 9 (although the enzyme is still very active 
at physiological pH) [61,76].  
 

4.2 Serpin 
 
Serpins are a proteins superfamily originally 
grouped together as serine protease inhibitors, 
which all of the endogenous thrombin inhibitors 
are members to this superfamily and their action 
mechanism are common to most members 
[77,78]. Structurally, serpins can contain 350 to 
400 amino acids, a molecular weight of 40 to 55 
kDa and consist of a mixed α/β fold [79] The 
serpins structure is characterized by three β-
sheets (A, B and C) and eight or nine α-helices 
and the "reactive center loop" (RCL) [78]. The 
RCL is a protein motif of 20 amino acids, located 
near the C-terminus of the protein, which is the 
most important region for serpins inhibitory 
activity. This motif contains a scissile bond 
between the so-called residues P1 (the N-
terminal portion of the cleavage event) and P1 
'(C-terminal portion of the cleavage event) which 
is cleaved by the target protease. This cleavage 
triggers structural rearrangement of both the 
protease and the inhibitor in a suicide 
mechanism that irreversibly complexes and 
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inactivates both interacting partners [80,81]. The 
mechanism involves the attack of protease in the 
portion P1 and P1' of the serpin, can be which 
can lead to conformational change and formation 
of a serpin-enzyme complex inactive covalently 
bonded [82]. It can also follow another route 
where a protease cleaves the serpin making it 
inactive protease maintains its activity [78,83].  
 

Most serpins are inhibitors of chymotrypsin like 
serine proteases, although have been identified 
additional cross-class serpin inhibitors and inhibit 
cysteine protease family members such as the 
caspases and cathepsins [84]. In addition, there 
are members of this superfamily that are lacked 
of any proteinase inhibitory properties and serve 
other functions, such angiotensinogen, 
ovalbumin, transporters or chaperones 
[77,78,85]. So far several sequences of serpin 
were identified (over 1500) in the genomes of all 
organisms of life, including nematodes, virus, 
insects, higher plants and vertebrates and 36 
confirmed human serpins and were classified in 
16 clades (designated A through P) [78,86]. In 
human, the antithrombin is a main plasma serpin 
that is involved in control and regulation of 
coagulation, inhibiting the thrombin and clotting 
factors IXa, Xa and Xia [87]. This serpin 
circulates in the blood in a "repressed" with low 
capacity to prevent the formation of clot [48,86]. 
In addition, others serpins are involved in the 
clotting process, such as heparin cofactor II [88], 
(α-2 macroglobulin [89], Protein Ca [90] and the 
α1-antripsina [91]. 
 

In hematophagous insects, the serpins are found 
in their salivary glands, being involved in a wide 
variety of physiological processes, including in 
the modulation of immune response, coagulation, 
fibrinolysis, complement regulation and 
inflammation or angiogenesis [78,92,93]. 
Regarding Ae. aegypti, Stark and James [15] 
found a serine protease inhibitor-like molecule of 
56 kDa, in salivary extract from female insect, 
which inhibited both intrinsic and extrinsic 
coagulation pathways by inhibition specifically 
coagulation factor Xa. The biochemical 
characterization of the FXa-directed 
anticoagulant revealed a reversible, non-
competitive and non-covalent kinetic, with no 
activity against thrombin and limited activity 
against trypsin. Furthermore, these authors 
reported that there are about 0.2–2 ng of this 
anticoagulant in each 1 mg of total protein of 
salivary extract. They were based on the 
similarity in molecular masses of FXa (46 kDa) 
and AFXa (56 kDa), which is roughly consistent 

with a 1:1 ratio of inhibitor to enzyme expected 
for a physiological inhibitor [15]. In 1998, these 
same authors isolated and characterized a gene 
designated anticoagulant factor Xa (AFXa), 
encoding of this novel Factor Xa-directed 
anticoagulant of salivary glands from female Ae. 
aegypti. From molecular blast analysis of the 
AFXa conceptual translational product was 
shown a highest degree of amino acid sequence 
identities and similarities with serpin-like serine 
protease inhibitors, such arginine-serpin, 
plasminogen activator inhibitor-2, from human, 
mouse, and rat [13]. 

 
4.3 D7 Protein 
 
The D7 protein is a most abundant secreted 
protein in the salivary glands of female 
hematophagous arthropods [94-96]. Valenzuela 
et al. [96] suggested that D7 proteins should be 
between 10% and 50% of the salivary protein, 
varying depending on the insect vector. In the 
case of mosquitos and sand flies salivary glands 
is approximately 1-3 g of protein content and 
half of this protein is discharged during a blood 
meal [60,97,98]. 

 
These proteins, known as multifunctional 
molecule, are related to the odorant-binding 
protein (OBP), which is adapted to bind small 
ligands, such as host biogenic amines (serotonin, 
histamine and norepinephrine) that may 
antagonize vasoconstriction, platelet aggregation 
and pain [42,45]. Thus, the mosquito D7 protein, 
during feeding, acts as an anti-hemostatic factor, 
antagonizing the vasoconstriction and platelet 
aggregation, plays an important role in facilitating 
blood-feeding process and indirectly may 
improve the pathogens transmission [42,96,99].  

 
The first D7 gene encoding was reported 15 
years ago, in the salivary glands from mosquito 
Ae. aegypti [12]. In this regards, Valenzuela et al. 
[96] reported the proteins expressed in the 
salivary glands and among the 31 novel protein 
sequences are 4 additional members of the D7 
protein family (1 new D7 protein member and 3 
short D7 protein). Then, the most abundant 
salivary cDNA coded for protein sequence 
having high similarity to the D7 protein family. 
This new D7 protein is named D7Bclu1. Another 
cDNA coding for a truncated member of the D7 
protein family was D7Cclu23. They, also, 
described 2 new short D7 proteins that are 
similar to D7Cclu23, but have no similarities to 
other proteins in the NR database. 
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In addition, the D7 protein exists in two forms 
(along and short) in the mosquito genome, which 
contain one and two OBP-like domains, 
respectively [96,100,101]. The along form (30-35 
kDa) is found exclusively in mosquitoes and sand 
flies and the short form (~15 kDa) is found in 
other insects [102,103]. Regarding to Ae. 
aegypti, Juhn et al. [31] reported the in situ 
hybridization patterns of 30 genes expressed in 
the salivary glands of adult female, of these three 
members were of the D7 gene family, one short 
isoform D7s2 (AAEL 006423) localized only in 
the distal-lateral lobes, and two long isoforms, 
D7L1 (AAEL006417) and D7L2 (AAEL006424), 
found in distal-lateral and medial lobes. Their 
findings support the argument that these genes 
encodes proteins play a role in binding agonists 
of haemostasis, inhibiting the vasoconstriction 
and platelet aggregation, while promoting blood-
feeding [31,42]. 
 

Further studies also reported that D7 proteins 
could perform other functions unrelated to 
binding of small ligands, such as one short D7 
protein from Anopheles stephensi, named 
hamadarin, which showed to prevent kallikrein 
activation by Factor XIIa [104]. Alvarenga et al. 
[59] showed the D7 family protein functions 
(D7L1 AnSt) that bind to thromboxane A2, thus 
acting to inhibit platelet activation during feeding 
of Anopheles mosquitoes. Moreover, Aedes D7 
protein long fought also efficiently norepinephrine 
contraction in rat aortic rings, and it has been 
shown that the N-terminal domain of AeD7 binds 
with high affinity to cysteinyl leukotrienes, which 
act as inflammatory mediators [42,105].  
 

4.4 Aegyptin 
 
Aegyptin is a 30 kDa mosquito salivary gland 
protein that has anti-hemostatic effect and is an 
allergen, thus facilitating the blood-feeding 
process and also indirectly improves the 
pathogens transmission [103]. It binds to specific 
platelet glycoprotein VI (GP VI), integrin α21, 
von Willebrand factor (vWF) and collagen (KD 
6.0 nM) and inhibits platelet aggregation [106]. In 
addition, aegyptin attenuates platelet adhesion to 
either soluble or fibrillar collagen and inhibits 
vWF interaction with collagen under static and 
high-shear conditions. In addition, aegyptin acts 
as a specific ligand for collagen and inhibits 
platelet activation and thrombocyte aggregation. 
In this regards, the collagen is a matrix protein 
that plays a pivotal role in the process of primary 
hemostasis, initiates recruitment of circulating 
platelets and triggers platelet activation cascade, 

which triggers and stimulates thrombin formation 
[17,103]. In this regards, the aegyptin blocks 
GPVI interaction with collagen and inhibits 
platelet aggregation and adhesion [17]. Surface 
plasmon resonance identified a high-affinity 
interaction between RGQOGVMGF (where O is 
hydroxyproline), a peptide corresponding to the 
collagen-binding site for vWF, and aegyptin [41]. 
Aegyptin also recognizes the peptides (GPO) 
and GFOGER with low affinity (micromolar 
range), which represent the glycoprotein VI- and 
integrin alpha2beta1-binding sites on collagen, 
respectively [41].  
 
Aegyptin is a protein commonly found in 
sialotranscriptomes of mosquitoes and black flies 
[47], including Culex sp, and Anopheles sp [107], 
Aedes allergen. In addition, Aegyptin was first 
identified as 30-kDa in Aedes allergen [14,108]. 
In this regards, Calvo et al. [17] reported that Ae 
aegypti salivary gland expresses aegyptin, a 
potent collagen-binding protein that prevents its 
interaction with three major ligands, namely, 
GPVI, vWF and integrin α2β1. These authors 
showed that aegyptin binds to soluble collagen I-
III, but no interaction was observed with other 
matrix proteins including laminin, vitronectin, 
fibronectin, vWf, and fibrinogen. Juhn et al. [31] 
identified a aegyptin gene (AAEL010235), this 
gene is accumulate only in the cells of the distal-
lateral lobes, except for the transcripts of 
aegyptin, which also accumulate in the 
intermediate region and distal tip of the proximal-
lateral lobes These It was found that aegyptin 
recognizes with high affinity the sequence 
involved in collagen interaction with vWF, and 
also interacts with GPVI and integrin α2β1 
binding sites. Aegyptin effectively inhibits carotid 
thrombus formation in vivo. In Ae. aegypti 
salivary gland, Calvo et al. [17] also identified as 
a high-affinity binding site for aegyptin, the 
senquence RGQOGVMGF (O is hydroxyproline) 
that mediates collagen interaction with von 
Willebrand Factor (vWF). However, the aegyptin 
recognizes with low affinity the peptides (GPO) 
and GFOGER, representing the glycoprotein VI 
and integrin α2β1 binding sites, respectively, that 
binds in collagen and prevents platelet adhesion 
and aggregation. In addition, in vivo model, these 
authors showed that the aegyptin prevents laser-
induced carotid thrombus formation. Other study 
also showed that doses of 100 µg/kg of aegyptin 
displays effective anti-thrombotic activity in rats, 
suggesting that aegyptin is a suitable molecule to 
inhibit platelet-collagen interaction in vivo [109]. 
Similarly, aegyptin from A. stephensi and Ae. 
aegypti salivary glands also inhibit platelet 
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aggregation by interfering with collagen 
recognition [16].  
 

Regarding, vectors like Anopheles stephensi and 
Simulim nigrimanum also express salivary 
collagen-binding proteins that prevent collagen-
induced platelet aggregation were the exposure 
of collagen in damage to the endothelium plays 
an important role in the early stages of the 
hemostatic plug formation following vascular 
injury [109,110]. Aegyptin displays sequence and 
functional similarities to AAPP, a collagen-
binding protein from the salivary gland of 
Anopheles stephensi [111]. 
 

4.5 Kazal-type Serine Protease 
 

Kazal type serine protease inhibitors (KPIs) is 
one of the thrombin inhibitors, which contain one 
or more Kazal inhibitory domains linked together 
by peptide spacers of variable length [112]. In 
Kazal domain is found six well-conserved 
cysteine residues capable of forming three intra-
domain disulfide bridges between cysteine 
numbers, C1:C5, C2:C4, C3:C6, resulting in a 
characteristic three-dimensional structure 
[41,113]. The kazal-type domains are composed 
of 40-60 amino acid residues including some 
spacer amino acids and in tertiary structure 
includes one α-helix and one anti-parallel β-sheet 
[112,114]. The α-helix is surrounded by an 
adjacent three stranded β-sheet and loops of 
peptide segments [112]. Some amino acid 
residues in the Kazal motif are relatively 
conserved, but most of them are quite variable 
both within and among the invertebrate species 
[115]. In this regards, the specificity within Kazal-
type inhibitors is determined for predicted 
reactive site, P1 amino acid residue, which is 
located at position C2-X-P1. Whereas, outside of 
the conserved cysteine residues, there are high 
amounts of variability in other amino acid 
residues [112].  
 

The KPIs are grouped into the family l1 of the 
serine protease inhibitors that have been 
reported since 1980’s [116]. This family was 
named by Kazal et al. [117], who were the first to 
isolate a pancreatic secretory trypsin inhibitor 
(also known as SPINK1). The inhibition 
mechanism of the Kazal proteinase inhibitory 
domain is due each Kazal domain acts as a 
substrate analogue that stoichiometrically binds 
competitively through its reactive site loop to the 
active site of cognate proteinase forming a 
relatively stable proteinase–proteinase inhibitor 
complex [112]. 

The first Kazal-type thrombin inhibitor in a 
haematophagous insect was identified by 
Friedrich et al. [118] that reported a double 
headed Kazal-type thrombin inhibitor, rhodniin, 
from Rhodnius prolixus. In invertebrates, a large 
number of proteins containing Kazal-type 
domains have been identified in many blood-
feeding arthropods including in mosquitoes, ticks, 
triatomines and flies [110,119,120,121]. These 
insect Kazal-type inhibitors are known to inhibit 
thrombin, chymotrypsin, trypsin, plasmin, factor 
XIIa, subtilisin A and elastase [118,120,121].  
 
Examples are the thrombin inhibitors, rhodniin, 
infestin and dipetalogastin, isolated from blood-
sucking insects, Rhodnius prolixus, Triatoma 
infestans and Dipetalogaster maximus, 
respectively [122-124]. Others examples is a 
tryptase inhibitor, LDTI (Leech Derived Tryptase 
Inhibitor) [125], subtilisin inhibitor, infestin 1R 
[123], and elastase inhibitor, CmPI-II [126]. 
These inhibition of the coagulation cascade to 
facilitate fluidity in the mouth parts and midgut 
following blood-feeding on a host [110,127].  
 
Regarding to Ae aegypti, Ribeiro et al. [44] 
analyzed a set of 3776 Salivary Gland cDNA 
sequences and indentified 573 new transcripts of 
putative secretory proteins from Ae. aegypti. 
Among those sequences, these authors found 
Kazal-type putative protease inhibitors, including 
the sequence gij94468720, which was expressed 
in salivary glands and in carcass of female and 
also in whole male. In addition, Watanabe et al., 
[127] expressed, purified and characterized for 
first time a putative Kazal-type serine protease 
inhibitor that is present in different tissues of Ae. 
aegypti, which was named Ae. aegypti Trypsin 
Inhibitor (AaTI). In addition, these authors 
cloning, expression, purification and 
characterization a recombinant AaTI (rAaTI), and 
for multiple alignment of AaTI amino acid 
sequence with other Kazal-type inhibitors 
revealed high similarity to non-classical Kazal-
type inhibitors such as dipetalogastin [124], 
infestins [120,122], LDTI [125], brasiliensin [128], 
and a Kazal-type inhibitor from L. vannamei. 
These authors also showed that the AaTI can act 
as anticoagulant during the feeding and digestive 
processes for inhibition mechanism for thrombin 
and  trypsin from different development stages of 
Ae. aegypti. Posteriorly, Watanabe et al. [129] 
showed that the rAaTI was able to prolong 
prothrombin time, activated partial 
thromboplastin time and thrombin time. In 
addition, the rAaTI contains a C-terminal charged
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Fig. 2. Anti-hemostatic components of salivary gland from Aedes aegypti. In summary, the 
apyrase, aegepytin and D7 protein inhibit the primary hemostasis, serpin and kazal-type serine 

protease inhibit the coagulation cascade (secondary hemostasis) 
Source: Own authors 

 
peptide, the same as for other thrombin 
inhibitors, like hirudin [130] dipetalogastin [124] 
and rhodniin [131] suggesting that C-terminal 
region might be important to the rAaTI inhibits 
the thrombin by interacting with thrombin exosite 
2 [127]. Then, these authors showed that the 
rAaTI may bind to the same region where 
antithrombin III or heparin binds on the thrombin 
surface. Classical inhibition experiments showed 
an uncompetitive inhibition mechanism for rAaTI 
and thrombin [127]. In this regards, thrombin is a 
serine protease, being a key enzyme of the blood 
coagulation cascade and also an important 
platelet aggregation activator, that has two 
important regulatory regions besides the active 
site, exosites 1 and 2, which are binding sites for 
fibrinogen and heparin, respectively [110,129]. 
The Fig. 2 above displays a summary of the main 
effects of the anti-hemostatic components of 
salivary gland from Aedes Aegypti. 
 

5. CONCLUSION 
 
From these findings, it was possible to prove that 
in order to facilitate their blood meals, the blood-
sucking arthropods, such as Ae. aegypti have 

elaborated a wide range of the salivary 
components with anticoagulant action that plays 
an essential role in host hemostatic defense, 
facilitating the maintenance of the blood flow 
from the feeding site to the insect digestive tract. 
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