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Abstract

Let G = (V (G), E(G)) be any finite, undirected, simple graph. The clique centrality of a vertex x ∈ V (G),
denoted by ωG(x), is the maximum size of a clique in G containing x. A set D ⊆ V (G) is introduced in this
paper as a pointwise clique-safe dominating set of G if for every vertex y ∈ Dc there exists a vertex x ∈ D
such that xy ∈ E(G) where ω〈D〉G(x) ≥ ω〈Dc〉G(y). The smallest cardinality of such a pointwise clique-safe
dominating set of G is called the pointwise clique-safe domination number of G, denoted by γpcs(G). This
study aims to generate some observable properties of the parameter and to evaluate the minimum pointwise
clique-safe dominating sets of some special families of graphs such as the complete graph Kn, fan graph Fn,
wheel graph Wn and complete bipartite Km,n as well as graphs obtained under the mycielski operation.
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1 Introduction

The study of games and recreational mathematics partly led to the investigation of domination in graphs that
are important for further research. One of the domination-related problems that were introduced from more or
less a century before the formal study of domination in graphs was an attempt by De Jaenisch [1] to determine
the number of queens required to cover an n×n chess board. In 1962, Claude Berge [2] introduced the coefficient
of external stability which is known today as domination number. In the same year, Oystein Ore [3] introduced
the terms dominating set and domination number. From there, numerous studies have been done on domination
in graphs. These studies include total domination, weakly connected domination, clique domination and many
more.

Let G = (V (G), E(G)) be any finite, undirected, simple graph. A nonempty subset D of V (G) is a dominating
set of G if for every vertex y ∈ Dc, there exists x ∈ D such that xy ∈ E(G). The smallest cardinality of a
dominating set of G is called the domination number of G and is denoted by γ(G). Any dominating set of G of
cardinality equal to γ(G) is called a minimum dominating set of G or a γ-set of G.

Example 1.1. Consider graph G in Fig. 1. Let D = {v1}. Observe that every vertex in V (G) rD is adjacent
to v1. Hence, D is a dominating set of G and subsequently γ(G) = 1.

v1

v2 v3

v4

Fig. 1. The graph G

In 1988, Cozzens and Kelleher [4] introduced the dominating cliques in graphs, where a clique in G is a subset
W ⊆ V (G) such that the subgraph 〈W 〉G induced by W in G is complete. They defined a clique dominating
set as a set of vertices that dominates G and induces a complete subgraph of G. They also characterized the
classes of graphs containing some dominating sets that induce complete subgraphs. In [5], Canoy and Daniel
characterized the clique dominating sets in the join, corona, composition and cartesian product of graphs.

In [6], Eballe and Liwat introduced the clique-safe domination in graphs which is also related to this study. They
defined the clique-safe dominating set in graphs and give parameters for the clique-safe domination numbers of
the path and cycle graphs, where a clique-safe dominating set D ⊆ V (G) is called a clique-safe dominating set
in G if the size of the largest clique in 〈D〉G is at least as large as the size of the largest clique in 〈D〉G.

Tan and Cabahug [7] characterized the safe sets in graphs, where a safe set of G is a nonempty S ⊆ V (G)
such that for every component A of 〈S〉G and every component B of 〈V (G) r S〉G adjacent to A, it holds that
|A| ≥ |B|. They also present a new method of computing the minimum cardinality of a safe set of the path
graph and cycle graph using simple modular arithmetic. On the other hand, Madriaga and Eballe [8] introduced
the clique centrality of a vertex v ∈ V (G), denoted by ωG(v), as the maximum size of a clique in G containing
vertex v.

A dominating set D ⊆ V (G) is introduced in this paper as a pointwise clique-safe dominating set of G if for
every vertex y ∈ V (G)rD = Dc there exists a vertex x ∈ D such that xy ∈ E(G) where ω〈D〉G(x) ≥ ω〈Dc〉G(y).
The minimum cardinality obtainable from among all pointwise clique-safe dominating sets of G is referred to as
the pointwise clique-safe domination number of G, denoted by γpcs(G). Any pointwise clique-safe dominating
set D of G such that |D| = γpcs(G) is called a minimum pointwise clique-safe dominating set of G or a γpcs-set
of G.
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Example 1.2. Consider the path P5 in Fig. 2. Let D = {v2, v4}. Observe that D dominates P5 and that
the 〈D〉P5 = K2, 〈Dc〉P5 = K3. It can be seen in the diagram that ω〈D〉G(v2) = ω〈D〉G(v4) = 1, ω〈Dc〉G(v1) =
ω〈Dc〉G(v3) = ω〈Dc〉G(v5) = 1. Clearly, D is a pointwise clique-safe dominating set of P5 and that γpcs(P5) = 2.

v1 v2 v3 v4 v5

Fig. 2. Path consideration

This study investigates the concept of pointwise clique-safe domination in graphs. It aims to generate some
general properties of pointwise clique-safe domination in graphs as well as evaluate the minimum pointwise
clique-safe dominating sets of some special families of graphs such as the complete graph Kn, fan graph Fn,
wheel graph Wn, and complete bipartite Km,n, as well as graphs obtained under the mycielski operation. As a
consequence, the pointwise clique-safe domination numbers of those aforementioned graphs are obtained.

Throughout this paper, every graph is considered in the context of being simple, finite, and undirected. Other
terminologies not specifically defined in this paper may be found in [9].

2 Basic Properties

Some general results on Pointwise Clique-safe Domination in Graphs

Below is our working definition of the pointwise clique-safe dominating set of a graph G:

Definition 2.1. A set D ⊆ V (G) is a pointwise clique-safe dominating set of G if D is a dominating set of G
and for every vertex y ∈ Dc there exists a vertex x ∈ D such that xy ∈ E(G) where ω〈D〉G(x) ≥ ω〈Dc〉G(y).

Theorem 2.1. For any graph G, the set D = V (G) is a pointwise clique-safe dominating set of G. As a
consequence, γpcs(G) ≤ n.

Proof. Observe that the set D = V (G) dominates G. Since Dc is empty, the set D = V (G) is a pointwise
clique-safe dominating set of G. This implies that γpcs(G) ≤ n. �

Our next result provides some bounds for the pointwise clique-safe domination number of G, where these bounds
can be observed to be sharp.

Theorem 2.2. For any graph G of order n, 1 ≤ γpcs(G) ≤ n, where both bounds are sharp.

Proof. By Theorem 2.1, γpcs(G) ≤ n. But it is also obvious that γpcs(G) ≥ 1. If G is the star graph Sn−1 of
order n, then γpcs(G) = 1. On the other hand, if G is the null graph Kn of order n, then γpcs(G) = n. �

Theorem 2.3. Let G be a nontrivial connected graph. Then γpcs(G) = 2 if and only if one of the following
holds:

a.) There exists a dominating set D of G containing two elements such that 〈D〉G = K2 and that ω〈Dc〉(y) ≤ 2
for every y ∈ Dc;

b.) There exists a dominating set D of G containing two elements such that 〈D〉G = K2 and that ω〈Dc〉(y) = 1
for every y ∈ Dc, which means that 〈Dc〉G is a null graph.
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Proof. Suppose that γpcs(G) = 2. This means that the cardinality of any minimum pointwise clique-safe
dominating set D of G is 2. We consider two cases:

i. Suppose D = {a, b} where ab ∈ E(G). Clearly, D is dominating in G where 〈D〉G = K2. Moreover, it is
necessary that ω〈Dc〉(y) ≤ 2 for every y ∈ Dc. This proves part (a) above.

ii. Suppose D = {a, b} where ab /∈ E(G). Clearly, D is dominating in G where 〈D〉G = K2. Furthermore,
it is necessary that ω〈Dc〉(y) = 1 for every y ∈ Dc, which means that 〈Dc〉G is a null graph. This proves
part (b) above.

The converse is straightforward. �

3 Pointwise Clique-safe Domination in Special Graphs

The following definitions are for some special graphs considered in this study:

Definition 3.1. [9] A graph G is said to be complete if every pair of distinct vertices in it are adjacent. A
complete graph of order n is denoted by Kn.

Definition 3.2. [9] A fan graph Fn is a graph of order n ≥ 3 which is obtained by joining a new vertex to all
the vertices of the path Pn−1.

Definition 3.3. [9] A wheel graph Wn is a graph of order n ≥ 4 which is obtained by joining a new vertex to
all the vertices of the cycle Cn−1.

Definition 3.4. [9] A graph G is called a bipartite graph if the vertex-set V (G) of G can be partitioned into
two nonempty subsets V1 and V2, called partite sets of G, such that every edge in G joins a vertex in V1 with a
vertex in V2. If each vertex in V1 is adjacent to every vertex in V2, then G is called a complete bipartite graph;
in this case, G = Km,n if |V1| = m and |V2| = n. A star of order n+ 1 is the complete bipartite graph K1,n.

Illustration 3.1. Fig. 3 below shows the complete graph K5, fan graph F5, wheel graph W5, and the complete
bipartite graph K5,4. Moreover, vertices a and b are called the root vertices of F5 and W5, respectively.

b.) F5

a

a1

a2

a3

a4

c.) W5

b

b1 b2

b3b4

d.) K5,4

u1

u2

u3

u4

u5

v1

v2

v3

v4

a.) K5

x2

x3

x4x5

x1

Fig. 3. The Complete graph K5, Fan graph F5, Wheel graph W5 and the Complete bipartite
graph K5,4

Theorem 3.2. Let Kn be a complete graph of order n. A set D ⊆ V (Kn) is a pointwise clique-safe dominating
set of Kn if and only if D contains at least half of the vertices of Kn.
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Proof. Let D ⊆ V (Kn) such that |D| ≥ n
2

. If x ∈ D, then x dominates Kn. If Dc = ∅, then D is a
pointwise clique-safe dominating set of Kn. So suppose Dc 6= ∅. Let y ∈ Dc. Then for any x ∈ D we have
ω〈D〉Kn (x) = |D| ≥ n− |D| = ω〈Dc〉Kn (y). This means that D is a pointwise clique-safe dominating set of Kn.
On the other hand, if D ⊆ V (Kn) such that |D| < n

2
, then a similar argument can be applied to show that D

is not a pointwise clique-safe dominating set of Kn. �

Corollary 3.3. The pointwise clique-safe domination number of the complete graph Kn is given by γpcs(Kn) =
dn
2
e.

Proof. This is immediate from Theorem 3.2. �

Theorem 3.4. Let Fn be a fan graph of order n ≥ 3. Let V (Fn) = {a, a1, a2, ..., an−1} with a as the root vertex.
If a set D ⊆ V (Fn) contains the root vertex of Fn and at least one of the ai then D is a pointwise clique-safe
dominating set of Fn.

Proof. Notice that if D ⊆ V (Fn) contains the root vertex a of Fn and at least one vertex ai for some i =
1, 2, 3, ..., n− 1, then {a} is a dominating set of Fn and ω〈D〉Fn (a) ≥ 2 ≥ ω〈Dc〉Fn (y) = 1 or 2 for every y ∈ Dc.
Hence, D is a pointwise clique-safe dominating set of Fn. �

Corollary 3.5. The pointwise clique-safe domination number of the fan graph Fn of order n ≥ 3 is given by
γpcs(Fn) = 2.

Proof. Notice that there is no singleton set D ⊆ V (Fn) that is a pointwise clique-safe dominating set in Fn.
This means that γpcs(Fn) ≥ 2. But by Theorem 3.4, γpcs(Fn) ≤ 2. Combining the two inequalities, we obtain
γpcs(Fn) = 2. �

Theorem 3.6. Let Wn be a wheel graph of order n ≥ 4. Let V (Wn) = {b, b1, b2, ..., bn−1} with b as the root
vertex of Wn. If a set D ⊆ V (Wn) contains the root vertex of Wn and at least one of the bi, then D is a pointwise
clique-safe dominating set of Wn.

Proof. Notice that if D ⊆ V (Wn) contains the root vertex b of Wn and at least one vertex bi for some i =
1, 2, 3, ..., n− 1, then {b} is a dominating set of Wn and ω〈D〉Wn (b) ≥ 2 ≥ ω〈Dc〉Wn (y) = 1 or 2 for every y ∈ Dc.
Hence, D is a pointwise clique-safe dominating set of Wn. �

Corollary 3.7. The pointwise clique-safe domination number of the wheel graph Wn of order n ≥ 4 is given by
γpcs(Wn) = 2.

Proof. This is exactly analogous to the proof of Corollary 3.5, using Theorem 3.6 instead. �

Theorem 3.8. Let Km,n be a complete bipartite graph with partite sets A and B such that |A| = m and |B| = n.
Let D ⊆ V (Km,n). Then D is a pointwise clique-safe dominating set of Km,n if and only if one of the following
conditions hold:

a.) D = A;

b.) D = B ;

c.) D = C ∪ E, where ∅ 6= C ⊆ A, ∅ 6= E ⊆ B .
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Proof. Observe that each partite set of Km,n is a dominating set such that ω〈A〉Km,n (x) = 1 = ω〈B〉Km,n (y)
for every x ∈ A and y ∈ B. Hence, A and B are pointwise clique-safe dominating sets of Km,n. This shows
parts (a) and (b). For part (c), let D = C ∪ E, where ∅ 6= C ⊆ A, ∅ 6= E ⊆ B. If Dc = ∅, then we
are done. So suppose Dc 6= ∅. Let y ∈ Dc, u1 ∈ C, and u2 ∈ E. If y ∈ A, then u2y ∈ E(Km,n) and
ω〈D〉Km,n (u2) = 2 ≥ ω〈Dc〉Km,n (y) = 1 or 2. On the other hand, if y ∈ B, then u1y ∈ E(Km,n) and

ω〈D〉Km,n (u1) = 2 ≥ ω〈Dc〉Km,n (y) = 1 or 2. In either case, D is a pointwise clique-safe dominating set of

Km,n. This shows part (c).

The converse is straightforward. �

Corollary 3.9. The pointwise clique-safe domination number of the complete bipartite graph Km,n is given by

γpcs(Km,n) =

{
1 if either m = 1 or n = 1

2 if both m,n ≥ 2
(3.1)

Proof. This is a direct consequence of Theorem 3.8. �

4 Pointwise Clique-safe Domination in Graphs Under the
Mycielski Operation

Below is the definition of the specific unary operation considered in this study.

Definition 4.1. [10] Consider a graph G with V (G) = {v1, v2, v3, ..., vn}. To obtain the Mycielski of G, denoted
by µ(G), the following steps are applied:

(i) Consider graph G as our initial graph.

(i) Add a set of new vertices U = {u1, u2, u3, ..., un} and add edges from vertex ui of U to the vertices vj in
V (G) if the corresponding vertices vi and vj are adjacent in G.

(ii) Add another new vertex w0 and add edges joining w0 to each element in U .

Illustration 4.1. Fig. 4 below shows the Mycielski graph µ(P3) of P3.

a.) µ(P3)

v1 v2 v3

u1
u2

u3

w0

Fig. 4. Mycielski graph µ(P3) of P3
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Remark 4.2. One may verify that if G is of order n and size m, then the Mycielski graph µ(G) is of order
2n+ 1 and size 3m+ n.

Lemma 4.3. If D is a pointwise clique-safe dominating set of µ(G), then V (G) ∩D is a pointwise clique-safe
dominating set of G.

Proof. Let D be a pointwise clique-safe dominating set of µ(G), and let W = V (G) ∩ D and C = V (G) r D.
Suppose W does not dominates G. This means that for every vertex y ∈ C not dominated by W , there
exists ui ∈ D such that yui ∈ E(µ(G)). But there is no guarantee that ω〈D〉µ(G)

(ui) ≥ ω〈C〉G(y), especially if

ω〈C〉G(y) ≥ 3. Hence, there must exist x ∈ W such that xy ∈ E(G) and ω〈W 〉G(x) ≥ ω〈C〉G(y). Therefore, W
must be a pointwise clique-safe dominating set of G.

�

Theorem 4.4. Let G be a connected nontrivial graph of order n and µ(G) be the Mycielski graph of G with W
as the pointwise clique-safe dominating set of G. If D ⊆ V (µ(G)) satisfies any of the conditions below then D
is a pointwise clique-safe dominating set of µ(G).

a.) D = V (G) ∪ {ui} for some i = 1, 2, ..., n;

b.) D = V (G) ∪ {w0} ;

c.) D = W ∪ {w0} ∪ {ui : vi ∈W};
d.) D = W ∪ {w0} ∪ {ui : vi /∈W};

Proof. For part (a), we let D ⊆ V (µ(G)) = V (G) ∪ {ui} for some i = 1, 2, ..., n. Observe that D dominates
µ(G). Now for every y ∈ Dc, there exists x ∈ D such that ω〈Dc〉µ(G)

(y) = 2 ≤ ω〈D〉µ(G)
(x). Hence, D is a

pointwise clique-safe dominating set of µ(G). The same argument can be used to prove part (b), in which for
every y ∈ Dc, there exists x ∈ D such that ω〈Dc〉µ(G)

(y) = 1 ≤ ω〈D〉µ(G)
(x).

For part (c), let D ⊆ V (µ(G)) = W ∪ {w0} ∪ {ui} for i = 1, 2, ..., n such that ui : vi ∈ W . Note that every
vertex y ∈ Dc ∩ V (G) is already pointwise clique-safe dominated by D. Moreover, for every vertex ui ∈ Dc,
there exists x ∈ D ∩ V (G) such that xui ∈ V (µ(G)) and ω〈D〉µ(G)

(x) ≥ ω〈Dc〉µ(G)
(ui). This proves part (c).

Now, for part (d), let D ⊆ V (µ(G)) = W ∪ {w0} ∪ {ui : vi /∈ W}. Note that every vertex y ∈ Dc ∩ V (G) is
already pointwise clique-safe dominated by D. Moreover, for every vertex ui ∈ Dc, there exists x ∈ D ∩ V (G)
such that xui ∈ V (µ(G)) and ω〈D〉µ(G)

(x) ≥ ω〈Dc〉µ(G)
(ui). This proves part (d). �

Since we cannot yet make general characterization for the pointwise clique-safe dominating set of the mycielski
of any graph, we will just characterize the mycielski of some special families of graphs.The next result gives the
pointwise clique-safe domination of the mycielski graph of the complete graph µ(Kn).

Theorem 4.5. Let µ(Kn) be the mycielski graph of the complete graph Kn and W be the pointwise clique-safe
dominating set of Kn. Then D ⊆ µ(Kn) is the pointwise clique-safe dominating set of µ(Kn) if and only if any
of the following holds:

i.) If n is even, D = γpcs − set of Kn ∪ {ui : vi ∈W} for some i = 1, 2, ..., n ;

ii.) If n is odd, D = γpcs − set of Kn ∪ {ui} for some i = 1, 2, ..., n .

Proof. Suppose D ⊆ µ(Kn) is the pointwise clique-safe dominating set of µ(Kn). By Lemma 4.3, D contains W .
Since D dominates µ(Kn), D must contain a ui as a dominating vertex of u0. Now, if Kn is of even order, by
Corollary 3.3, W and W c have the same order which implies that their vertices have the same clique centrality.
This means that we must choose a vertex ui that can increase the clique centrality of the vertices of W and
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that ui happens to be a vertex that does not corresponds to any element of W . Hence, D = γpcs − set of
Kn ∪ {ui : vi ∈W} for some i = 1, 2, ..., n.

Now, suppose n is odd. By Corollary 3.3, |W | > |W c|. This means that we need not to increase the clique
centrality of the every element of W . Hence, we can choose any ui as an element of D.

The converse is straightforward. �

The previous result asserts that in both cases, the smallest cardinality of D is equal. Now, the next result
provides the pointwise clique-safe domination number of the mycielski graph of the complete graph µ(Kn).

Corollary 4.6. The pointwise clique-safe domination number of the mycielski graph of the complete graph µ(Kn)
is given by

γpcs(µ(Kn)) = γpcs(Kn) + 1.

Proof. This is a direct consequence of Theorem 4.5. �

5 Conclusion

In this article, the concept of pointwise clique-safe domination is introduced and its corresponding pointwise
clique-safe domination number is being investigated. These graphs are the complete graph Kn, fan graph
Fn, wheel graph Wn and complete bipartite Km,n as well as graphs obtained under the mycielski operation.
Furthermore, the corresponding expressions for the pointwise clique-safe domination number of those mentioned
graphs are determined. Finally, the parameter introduced in this paper may be explored further to address some
relevant problems as done in [11], [12], [13], [14], [15], [16], [17] , and [18].
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