

34(2): 1-10, 2019; Article no.ARRB.54140 ISSN: 2347-565X, NLM ID: 101632869

Validation of a Commercial ELISA Kit for Screening 3-amino-2-oxazolidinone, A Furazolidone Antibiotic Residue in Shrimp

A. Y. K. M. Masud Rana^{1*}, Md. Maruf Billah Prince¹, Darmin Chakma¹, Hedayetul Islam¹, Mahamodun Nabi¹ and A. S. M. Saifullah¹

¹Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar - 1349, Dhaka, Bangladesh.

Authors' contributions

This work was carried out in collaboration among all authors. Authors AYKMMR and ASMS designed the work and analysed the data. Authors MMBP, DC, HI and MN conducted the experimental work. Author AYKMMR wrote the manuscript. All authors revised and approved the final manuscript.

Article Information

DOI: 10.9734/ARRB/2019/v34i230150 <u>Editor(s):</u> (1) Dr. Md. Aminur Rahman, Professor, World Fisheries University Pilot Programme, Pukyong National University (PKNU), South Korea. <u>Reviewers:</u> (1) James Burke, University of Arkansas, United States of America. (2) Teresa Fasciana, University of Palermo, Italy. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/54140</u>

> Received 10 November 2019 Accepted 19 January 2020 Published 22 January 2020

Original Research Article

ABSTRACT

Furazolidone, a banned nitrofuran antibiotic, is still illegally used in aquaculture and livestock husbandry. A commercial Enzyme-linked Immunosorbent Assay (ELISA) from Europroxima, The Netherlands is described, and validated for the screening of 3-amino-2-oxazolidinone (AOZ), metabolite of furazolidone antibiotic in the muscle of shrimp. Research works was conducted at Veterinary Drug Residue Analysis Laboratory, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Dhaka-1349, between July 2018 and December 2019. Validation was done in accordance with the European Commission (EC) decision 2002/657/EC in terms of specificity, detection capability CC β , selectivity, ruggedness, and stability. Homogenized sample was subjected to acid hydrolysis for releasing of tissue bound metabolite AOZ, and derivatized with o-nitrobenzaldehyde followed by ethyl acetate/n-hexane extraction and detection by ELISA reader. The detection capability CC β of the method was lower or at 0.3 µg/kg accepting 0% false compliant result. Cut-off factor *Fm* and the positivity threshold value *T* was 0.716 and 0.982,

*Corresponding author: E-mail: mrana_75bd@yahoo.co.in;

respectively. Mean OD of blank sample B was1.225. The assay was valid because T was greater than Fm and smaller than B. The kit was stable even after ten months of storage at recommended temperature and showed good sensitivity. From the practical point of view, the kit studied has good reliability, and could be used in the routine application for the control of illegal use of the drug.

Keywords: AOZ; ELISA; residues; validation; furazolidone; shrimp.

1. INTRODUCTION

Furazolidone, furaltadone, nitrofurantoin, and nitrofurazone are veterinary drugs belong to the group nitrofuran. This group of synthetic antibiotics are frequently used in the poultry and fish production for their excellent antibacterial, pharmacokinetic and, growth-promoting properties [1,2]. Use of nitrofurans has been banned by the European Union (EU) and many other countries for food-producing animals because of their carcinogenic, teratogenic, and mutagenic effects on human health [2,3]. Bangladesh also banned the use of nitrofuran antibiotic in aquaculture in 2010 [4]. After ingestion, nitrofuran parent drugs furazolidone, nitrofurazone, furaltadone, and nitrofurantoin are rapidly metabolized to corresponding tissue bound metabolites-3-amino-2-oxazolidinone (AOZ). semicarbazide (SEM), 3-amino-5morpholinomethyl-2-oxazolidinone (AMOZ), and 1-aminohydantoïne (AHD). The half-life of these parent drugs is 7-63 min. However, the formed metabolites remain for many weeks after treatment [3,5,6]. According to European Commission Decision No. 2002/181/EC [7], there is no maximum residue limit (MRL) for nitrofuran antibiotics but the minimum required (MRPL). performance limit MRPL means minimum content of an analyte in a sample, which at least has to be detected and confirmed. The MRPL for AOZ in foods of animal origin is 1 µg/kg [7]. European Commission approved ELISA as a qualitative/screening method for screening nitrofuran metabolites in matrices. Commercial ELISA kits are developed to detect the metabolites of parent nitrofuran drugs. Usually, these kits are already validated by the manufacturer, but it is recommended that every laboratory should validate them to accommodate in their environment depending on the requirements of the regulatory authorities.

Shrimp/prawn is one of the major export items in Bangladesh. Targeting mainly for export, prawn and shrimp aquaculture has been expanded very fast over the last decades. Total shrimp and prawn production, including capture, have been increased from 1.60 lakh MT in 2002-03 to 2.46 lakh MT in 2016-17 [8]. In 2017, over 80% of produced shrimp was exported to the EU [9]. In the past, to maximize the production, nitrofuran drugs were used in prawn/shrimp aquaculture, both prophylactically and therapeutically [10]. Rapid Alert System for Food and Feed (RASFF) is the official network of national authorities from 27 EU member states that exchange information on the presence of potential health risk to consumers presented by a food product. Since 2005, the number of notifications of RASFF has been increased against exported seafood of many countries including Bangladesh, particularly for the *M. rosenbergii*. Bangladesh received around 120 notifications during the period 2002-2011 for the presence of veterinary medicinal products of which 116 for SEM, 03 for AOZ and 01 for AMOZ. Data are retrieved from the web address- https://webgate.ec.europa. eu/rasff-window/portal. In the last few years, many Bangladeshi consignments of frozen prawn and shrimp had been rejected by the EU and USA due to the presence of nitrofuran drugs [11-14].

On January 22, 2018, Division of West Coast Imports, US Food and Drug Administration (FDA) refused the entry of four consignments of shrimp from a Bangladeshi company named "Sea Fresh" due to contamination with nitrofuran antibiotics Though the reiection [15]. is reduced significantly, and consciousness of using banned antibiotics among the farmers is increased, but there are chances to contaminate shrimp production chain through the food chain. Moreover, there are no authentic data about the local market. To meet the requirements and to identify the source of contamination and prevent the entrance of banned antibiotics in the shrimp value chain. Bangladesh Atomic Energy Commission (BAEC) in co-operation with International Atomic Energy Agency (IAEA) has established a new laboratory at Institute of Food and Radiation Biology (IFRB), Atomic Energy Research Establishment (AERE), Savar, Dhaka.

This study was taken to validate the method of a commercial ELISA kit in accordance with the European Commission regulations 2002/657/EC

[16] for screening the presence of AOZ residues in shrimp before sending the samples to the confirmatory test by LC-MS/MS/MS.

2. MATERIALS AND METHODS

2.1 Chemicals and Standard Solutions

AOZ ELISA kit from Europroxima, The Netherlands, lot no. 6959 was used throughout the validation process. Test kit contained microplate having antibody- coated well, sample dilution buffer, dilution buffer, AOZ stock solution, NPAOZ standard solution, AOZ-conjugate, anti-AOZ-antibody, red chromogen stop solution, and washing buffer. Nitrophenyl derivatives of nitrofuran metabolites (NPAOZ, NPAMOZ, NPAHD, and NPSEM) were received from Fish Inspection and Quality Control (FIQC) laboratory, Savar, Dhaka, and other chemicals were bought from Sigma Aldrich (Germany).

2.2 Matrix

The muscle tissue of shrimp was used throughout the study. Several shrimp samples were collected from different areas of the country, and muscle /flesh was separated very carefully. Following all the procedure of ELISA described by manufacturer, optical density (OD) readings of these muscle extracts were recorded and compared to the OD of zero standards (only buffer). Sample having the closest OD reading to zero standards was selected as the negative control (blank sample).

2.3 Principle of AOZ ELIZA

The AOZ ELISA is a competitive enzyme immunoassay for the qualitative and semiquantitative detection of AOZ. Well of the microtiter plate are pre-coated with antibody against AOZ. Horseradish peroxidase (HRP) labelled AOZ and standard solution or samples are added to the wells. Free AOZ from the samples or standards and AOZ-HRP conjugate compete for the specific antibody binding sites (competitive enzyme immunoassay). After an incubation period of 30 minutes, the non-bound reagents are removed in a washing step. The amount of bound AOZ-HRP conjugate is visualized by the addition of а substrate/chromogen solution (tetra methyl benzidine, TMB). Bound AOZ-HRP conjugate transforms the colorless chromogen into a colored product. The substrate reaction is stopped by the addition of sulfuric acid. The color

intensity is measured photometrically at 450 nm. The optical density is inversely proportional to the AOZ concentration in the sample.

2.4 Standard Curve Preparation

To get an assumption about the sensitivity of the kit and selecting spiking concentration of blank samples, a standard dose response curve was prepared in buffer according to manufacturer's instruction. Stock NPAOZ standard solution supplied with the ELISA kit was used as calibration concentration. NPAOZ concentration at 0.01, 0.026, 0.064, 0.16, 0.40 and 1.00 µg/kg were used in duplicates. Percent responses (%B/Bo) were calculated, where B is the absorbance value of the bound calibrator and Bo is the absorbance value of the blank calibrator. The graph is in semi log format whose X-axis was in logarithmic scale, and created by plotting %B/Bo values in Y axis and AOZ equivalent concentration in X axis. Graphpad Prism software (V. 8.0.1) was used for making S-type graph. As expected, the concentration is inversely proportional to B/Bo. Lower the B/Bo, higher the AOZ concentration, because lower quantity of enzyme conjugate binds to the antibody sites on the microplate wells compared The half to the analyte. maximal inhibitory concentration (IC₅₀) and R squad value were determined. This IC₅₀ value gives an index of sensitivity of the kit.

2.5 Spiking Blank Sample

According to European Commission guideline, the chosen concentrations of analyte for spiking blank samples should be lower or at the MRPL [17,18]. Since MRPL of AOZ for edible food is 1 μ g/kg, we fortified the blank samples with AOZ standard at 0.5 and 0.3 μ g/kg to choose the target concentration for spiking blank samples.

2.6 Sample Extraction and Derivatization Procedure

Effective control of nitrofuran drug is based on the measuring of the metabolite of the drug after their release from tissues, and their derivatization [3]. Extraction and derivatization of tissue bound metabolite AOZ of parent furazolidone from spiked samples were carried out according to the kit manufacturer's instruction. Briefly, 1 gm of each homogenized samples was taken into 50 ml tube and 4 ml distilled water, 0.5 ml 1 M HCl and 150 μ l derivative agent (10 mM 2nitrobenzaldehyde in DMSO) were added. After short vortexing, they were mixed head over head for 5 minutes. A 2.5 ml of 0.25M K_2HPO_4 , 0.4 ml of 1 M NaOH and 5 ml ethyl acetate were added to the derivatized samples. After head to head carefully mixing for 1 minute, samples were centrifuged for 10 minutes at 2000 x g and 2.5 ml of ethyl acetate layer was transferred into a 4 ml glass tube. Extracted ethyl acetate layer was subjected to evaporation at 50°C under nitrogen blow. Residues were dissolved in 1 ml hexane and 1 ml sample dilution buffer, and vortexed for 1 minute. The hexane layer was removed after centrifuge at 2000xg for 10 minutes. A 50 µl of the aqueous phase was used for ELISA.

2.7 Validation Protocol

To accommodate in our laboratory, assay of the ELISA kit was validated in accordance with the European Guideline for the validation of screening methods [17], which is based on the criteria of European Decision No. 2002/657/EC (16). The performance characteristics to be determined for validation were specificity, detection capability $CC\beta$, selectivity, ruggedness, stability of kit, and analyte.

2.7.1 Specificity and detection capability (CCβ)

According to EC guideline CRL 2010 [17], 20 blank and 20 spiked samples were used to study specificity and detection capability. Spiking level (screening target concentration) will be the detection capability CC β (smallest content of analyte that may be detected in a sample with an error probability of β) of the method, where less than or equal to 5% of false-compliant results may present. Since MRPL for AOZ in foods of animal origin is 1 µg/kg, we set the target concentration at half of the MRPL (0.5 µg/kg) and lower the MRPL (0.3 µg/kg). Twenty blank samples were spiked in each cases.

Detection capability and specificity can be determined by classical or statistical approach explained in the guideline of CRL/2010 [17]. In classical approach explained in Annex I, ranges of analytical responses for blank and spiked samples are evaluated. The cut-off level is the highest response for the spiked samples provided that it does not overlap with the lowest response for the blanks. If one response of spiked samples overlaps the lowest response of blank samples, then the false compliant rate will be 5% (β error).

The statistical approach explained in Annex II, took into account the β error of 5% in selecting

detection capability [17,19]. The positivity threshold T and the Cut-Off value Fm were calculated accordingly. The positivity threshold T and the Cut-Off factor Fm are matrix specific.

$$T = B - 1.64 \times \text{SDb},\tag{1}$$

where *B* is the mean, and SDb is the standard deviation of the optical densities (ODs) of the blank samples and,

$$Fm = M + 1.64 \times SDs, \tag{2}$$

where M is the mean, and SDs is the standard deviation of the ODs of the spiked samples.

The assay was considered valid only if T was greater than Fm and smaller than B.

2.7.2 Selectivity/Cross-reactivity

AOZ ELISA utilizes antibodies raised in mouse against protein conjugated AOZ. The reactivity pattern against four types of nitrofuran metabolites (AOZ, AHD, AMOZ, and SEM) were checked in the buffer by the manufacturer. We checked the cross-reactivity in the blank matrix against AHD, AMOZ, SEM, NPAHD, NPAMOZ, and NPSEM. Blank matrix was prepared following all the procedures of sample extraction avoiding the derivatization step. After complete extraction, dried residues was suspended in 500 µl of sample buffer, and spiked with AOZ and NPAOZ at 1 µg/kg (MRPL) concentration. Other nitrofuran metabolites and their nitrophenyl derivative were used at 10 µg/kg concentration for spiking the extracted blank matrix solution. Analytical responses were compared with blank and derivatized AOZ (i.e. NPAOZ).

2.7.3 Ruggedness

Ruggedness studies use the deliberate introduction of minor changes in the method and their consequences on the performance characteristics. We changed the amount of derivatization agent from 150 to 200 μ l, incubation period from 1 hr to 2 hr and also changed the incubation period after adding conjugate solution from 30 minutes to 1 hr. Effect of these changes on analytical responses for blank and spiked samples was recorded.

2.7.4 Stability of analyte and kit

According to EC Guideline stability of the analyte should be tested both in matrix and in solution [16,17]. It is also mentioned that if the stability of

the analyte is known, there is no need to determine it again. We did not determine the stability of AOZ since its stability has already been determined by Cooper and Kennedy, 2007 [20] both in matrix and in stock solution. Stability of the kit was studied by keeping the kit at 2-8°C for 10 months of first opening. Performance of the kit again checked in blank shrimp matrix kept at -20°C before expiration date. Five blank and five fortified (spiked at 0.3 μ g/kg) samples were analysed, and analytical responses were recorded.

3. RESULTS AND DISCUSSION

3.1 Standard Curve

An S-type graph was formed with IC50 value 0.0224-0.028 µg/kg and R-squared value 0.9996 (Fig. 1). If IC₅₀ value is multiplied by method multiplication factor 2, then it will be around 0.05µg/kg. This sensitivity indicates the minimum detectable concentration of AOZ which is same to the manufacturer's declared limit of detection (LoD). Limit of detection was also calculated from 20 blank matrix spiked with AOZ at 0.3 µg/kg (Table 1). Highest response among the 20 spiked samples (0.692) was converted to %B/Bo and read from the standard curve. LoD was calculated multiplying the observed equivalent AOZ concentration (~0.025 µg/kg) with method multiplication factor 2 and found to be around 0.05 µg/kg.

3.2 Determination of Cut-off Value, Specificity and Detection Capability

3.2.1 Classical approach

For an effective screening with minimum false compliant rate, we set the target concentration at 0.5 (half MRPL) and 0.3 µg/kg. Analytical responses of blank and spiked samples at 0.3 µg/kg were summarized in Table 1. Among the samples spiked at 0.3 µg/kg, the highest response was 0.692 which did not overlap the lowest response of blank (1.001). Therefore, the Cut-Off value will be 0.692 and the detection capability CC β of the method will be 0.3 µg/kg. Since a clear Cut-Off level is established at 0.3 µg/kg concentration. We did not consider the responses of spiked samples at 0.5 µg/kg for the rest of the study.

3.2.2 Statistical approach

The distribution of the ODs of blank samples and spiked samples is illustrated in Figs. 2 & 3.

Difference of ODs between blank and spiked samples was so high that it allowed a good detection at 0.3 µg/kg. The mean OD for blank and spiked samples was presented in Table 2. From these data, mean response of blank samples *B*, mean response of spiked samples *M*, positivity threshold T and Cut-Off factor Fm were calculated. According to the guideline CRL/2010 [17], the detection capability $CC\beta$ is validated when the Cut-Off factor Fm < B. If T < Fm < B, the false-positive rate is greater than 5%. In the case of Fm < T, the false-positive rate is below 5%. The assay is valid only if Fm < T. The CC β is equal to the concentration of the spiked samples at which less than or equal to 5% of false negative results remain. In this study, calculated Threshold value T and Cut-Off factor Fm were equal to 0.9823 and 0.716 OD respectably. Since Fm < T, the kit assay is valid for screening AOZ in muscle of shrimp with less than 5% false positive rate.

If *T* is chosen as the decision limit to determine the positivity of samples, the false positive rate is 0% (Fig. 2). If *Fm* is chosen as decision limit to determine negativity of samples, the false negative is also 0% (Fig. 2). Mean response of blank samples *B* and mean response of spiked samples *M* were 1.225 ± 0.148 and 0.635 ± 0.081 .

Table 1. Optical density values (ODs) of blank and spiked samples, and determination of Cut-Off factor, specificity and detection capability according to classical approach (Annex I of CRL/2010)

SN	Blank samples	Spiked at 0.3µg/kg
1	1.035	0.515
2	1.167	0.549
3	1.079	0.584
4	1.06	0.590
5	1.162	0.692
6	1.001	0.650
7	1.128	0.648
8	1.071	0.638
9	1.149	0.685
10	1.196	0.566
11	1.440	0.644
12	1.306	0.663
13	1.369	0.670
14	1.335	0.667
15	1.269	0.645
16	1.235	0.644
17	1.256	0.678
18	1.316	0.678
19	1.357	0.625
20	1.575	0.678

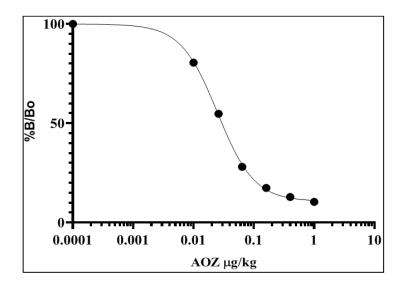


Fig. 1. Standard curve. X-axis is in logarithmic scale. Each point represents the mean of 02 replicates. R squared value 0.9996. IC₅₀ is 0.0224-0.0279 μg/kg

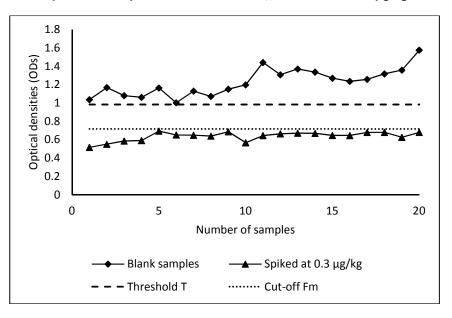


Fig. 2. Graphical illustration of the distribution of optical densities (ODs) of blank samples (shrimp) and blank samples spiked at 0.3 µg/kg with AOZ

OD respectably (Table 2). In accordance with the guideline, CC β is validated because *Fm*<*B* where false compliant result is 0%. Therefore the detection capability CC β of the ELISA kit for AOZ in muscle of shrimp was at or below 0.3 μ g/kg.

Cut-off value or *Fm* value established from the classical and statistical approach was 0.692 and 0.716 respectively, which was close to each-other. However for better reliability *Fm* value 0.716, established from statistical method will be used for screening AOZ residues in shrimp. When the OD of one sample is greater than *Fm*, we can assume that the sample is screen negative. Critical interpretation of the result was not possible due to the lacking of validation report on the performance of ELISA kit from EUROPROXIMA in matrix, The Nederland. However, some researchers performed validation of AOZ ELISA kit from other manufacturers or made by themselves. First

ELISA for detection of AOZ residues in prawns was developed by Cooper, et al. [21] having CC β below 0.4 µg/kg with 5% false positive rate in negative samples and a limit of detection 0.05 µg/kg. In house validation of AOZ ELISA from r-BIOPHARM was carried out by Eizabeta DS, et al. [22] and determined the CCβ 0.5 µg/kg with a limit of detection below 0.3µg/kg. On the contrary, the CCB of the ELISA kit from EUROPROXIMA, which we used throughout this study, is at or lower 0.3 µg/kg (Table 2 and Fig. 2). We performed full validation for a single matrix shrimp, and the result suggests that AOZ kit from EUROPROXIMA showed better responses compared to other ELISA.

3.3 Selectivity/Cross Reactivity

Optical density (ODs) values of all the metabolite of nitrofuran and their derivatives except AOZ were within the range of optical density values showed by the blank matrix and did not overlap the cut-off value Fm (Tables 1, 2 and 3). Therefore, reaction nitrofuran cross of metabolites towards the antibody raised against the AOZ are noted as negligible. Response towards non-derivatized AOZ was also close to responses of the blanks. Response to derivatized AOZ was as usual as expected. This result also reflects the declaration of manufacturer about the selectivity of ELISA kit against different metabolites of nitrofuran where the cross reactivity pattern of the antibody used in AOZ

ELISA were 100% for derivatized AOZ and <0.01% for derivatized AMOZ, SEM, and AHD.

3.4 Ruggedness Study

Effect of minor changes in method on the optical density values of blank and spiked samples are summarized in Table 4. Blank responses were greater than the Threshold value (T) 0.98 and responses of spiked samples were lower than cut off (*Fm*) value 0.716 (Table 2). Therefore, minor changes would not affect the performance characteristics of the method.

3.5 Stability of Analyte and Kit

Cooper and Kennedy [20] described that nitrofuran metabolite AOZ in muscle and liver of pig did not drop significantly during 8 months storage at -20°C. Metabolite stock and working standard solutions in methanol were also stable for 10 months at 4°C. In our study, after 10 months storage, we found mean OD of blank samples was 1.536 (n=5) while it was 0.744 for spiked samples at 0.3 µg/kg (n=5, data not shown). There is a clear difference of responses between blank and spiked samples. Early values for blanks were 1.001-1.575 (n=20), and for spiked were 0.515-0.692 (n=20). Responses of the kit at first stage and after ten months were similar. This result suggests that the kit is very stable if it is stored at the manufacturer's recommended temperature (2-8°C). However, it needs to update the cut-off level (Fm) regularly using positive and negative control samples.

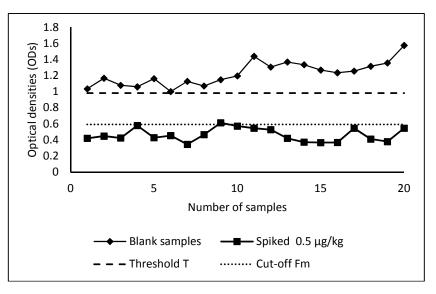


Fig. 3. Graphical illustration of the distribution of optical densities (ODs) of blank samples (shrimp) and blank samples spiked at 0.5 µg/kg with AOZ

Table 2. Determination of the threshold value T and cut off value Fm and detection capability CCβ for AOZ ELISA kit

Matrix	Nb	B±SD _b (uOD)	Ms±SD _s (uOD)	T(uOD)	Ns	Fm (uOD)	Nfp	CCβ (μg/kg)
Shrimp	20	1.225±0.148	0.635±0.081	0.9823	20	0.716	0/20	0.3
ELISA, enzyme linked immunosorbent assay; B, mean of blank samples; M_s , mean of spiked samples; SD_b ,								
standard deviation of blank samples; SD_s , standard deviation of spiked samples; N_b , number of blank samples;								
N _s , number of spiked samples; Nfp, number of false positive; uOD, unit of optical density								

 Table 3. Cross reactivity pattern of AOZ ELISA to different nitrofuran metabolites and their derivatives. n=20 for blank and n=2 for spiked samples

Reactant/Analyte	Concentration (µg/kg)	Absorbance (OD)
Blank matrix (n=20)	0	1.001-1.575
AOZ	1	1.261
NP-AOZ	1	0.321
AHD	10	1.623
NP-AHD	10	1.493
AMOZ	10	1.593
NP-AMOZ	10	1.182
SEM	10	1.166
NP-SEM	10	1.57

Table 4. Factors that may affect the analytical response of ELISA in blank and spiked samples (Either stated, n = 2)

Factor	Variation		an OD
		Blank	Spiked at 0.3 µg/kg
Derivatization agent	200µl instead of 150µl	1.198	0.638
Incubation period after derivatization	120 min instead of 60 min	1.192	0.593
Incubation period after adding conjugate solution	60 min instead of 30 min	1.274	0.640
Reading after completion of reaction	After 20 minutes	1.239	0.6121

4. CONCLUSION

Commercial ELISA kit from Europroxima. The Nederlands, has been validated in accordance with the requirements of European Regulations 2002/657EC [16]. Detection Capability CCB has been determined using both classical and statistical methods described in the EU Guideline CRL2010 [17]. The kit passed the validation criteria successfully. Statistical method is more elaborated and acceptable method for determining cut-off value. It is therefore suggested that the laboratories should use the cut-off value (0.716) determined by statistical method for screening AOZ positive samples. Samples having optical density values higher than the cut-off value (towards blank) will be considered as screen negative. In practical, the kit is very suitable for monitoring AOZ residue, metabolite of furazolidone antibiotic, in muscle of shrimp. It does not require solid-phase extraction (SPE) procedure, hence reduces cost and time.

Operator skill is very important for screening drug residues in matrices. For a skilled operator, the target concentration (detection capability) could be set at lower or at 0.3 μ g/kg. During routine analyses, the recommendation is to calculate a daily threshold *T* and a daily cut-off factor *Fm*, which would be based on the analyses of negative and positive quality controls (QCs) on each day. The assay is valid only if *T* is greater than *Fm* daily.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Rodziewicz L. Detrermination of nitrofuran metabolites in milk by liquid chromatography-electrospray ionization tendem mass spectrometry. J Chromagr (B) Analyt Technol Biomed Life Sci. 2008; 864:156-160.

- 2. Vass M, Hruska K, Franek M. Nitrofuran antibiotics: A review on the application, prohibition and residual analysis. Vet Med 2008;53:469-500.
- 3. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2015. Scientific Opinion on nitrofurans and their metabolites in food. EFSA Journal 2015;13 (6):414-217.
- DOI:10.2903/j.efsa.2015.4140
 Anonymous. Ministry of Fisheries and Livestock. Darks. Pangladesh. Fish Food
- Livestock, Dhaka, Bangladesh. Fish Feed and Animal Feed Act 2010, Rules. 2011;7.
- Hossain MB, Ahmed S, Rahman MF, Kamaruzzaman BY, Jalal KCA, Amin SMN. Method development and validation of nitrofuran metabolites in shrimp by liquid chromatographic mass spectrometric system. J Biol Sci. 2013;13: 33-37.
- Cooper KM, Kennedy DG. Nitrofuran antibiotic metabolites detected at parts per million concentrations in retina of pigs, a new matrix for enhanced monitoring of nitrofuran abuse. Analyst. 2005;130: 466-468.
- European Commission regulation No. 2002/181/EC of 13 March 2003 amending Decision 2002/657/EC regarding the setting of Minimum Required Performance Limits (MRPL) for certain residues in food of animal origin. Off J Eur Comm. 2003; L71:17-18.
- Anonymous. Department of Fisheries, Ministry of Fisheries and Livestock, Government of the people's republic of Bangladesh. Yearbook of Fisheries Statistics of Bangladesh; 2016-17.
- Anonymous. Sea food trade intelligence portal [Internet]. Utrecht (The Nederlands): Solidaridad; 2018. Available:https://seafood-tip.com/sourcingintelligence/countries/bangladesh/shrimp/
- 10. Nowsad AKMA. Final report on studies on nitrofuran contamination in exporatable shrimp and prawn products. Bangladesh Fisheries Research Forum, Dhaka; 2007.
- 11. Hassan MN, Rahman M, Hossain MB, et al. Monitoring the presence of chloramphenicol and nitrofuran metabolites in cultured prawn and feed in the Southest coastal region of Bangladesh. Egypt J Aquat Res. 2013;39:51-58.

- 12. Alam SMN. Bangladesh in the rapid alert system for food and feed notifications in the period 2000-2012: A review. Vet Med. 2013;58(8):399-404.
- Islam MJ, Liza AA, Reza AHM, et al. Source identification and entry pathways of banned antibiotics nitrofuran and chloramphenicol in shrimp value chain of Bangladesh. Eurasia J Biosci. 2014;8:71-83.
- 14. RASFF Portal [Internet]. European Union: European Commission; 2018. [Cited Jan 2002-Dec 2018] Available:https://webgate.ec.europa.eu/ras ff-window/portal
- Florida(USA): Southern Shrimp Allience; 2018. [Cited 2018] Available:http://www.shrimpalliance.com/2 018-begins-bangladeshi-shrimp-refusedentry-banned-antibiotics-indian-shrimprefused-entry-salmonella/
- European Commission regulation No. 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Comm. 2002;L221: 8–36.
- Anonymous. Community Reference Laboratories Residues (CRLs) 20/1/2010. Guideline for the validation of screening methods (initial validation and transfer). 2010;1–18. Available:http://ec.europa.eu/food/food/che micalsafety/residues/Guideline Validation
- Screening_en.pdf 18. Anonymous. Community Reference Laboratories Residues (CRLs) 07/12/2007. CRLs view on state of the art analytical methods for national residue control plans; 2007. [Cited 2007 December 7]

Available:http://www.rivm.nl/bibliotheek/digi taaldepot/crlguidance2007.pdf

Rana AYKMM, Talukdar SU, Nabi MM, 19. Islam MH, Islam MJ, Saifullah ASM. Validation of a commercial enzyme-linked immunosorbent assay for screening tetracycline residues in foods of animal origin from the perspective of Bangladesh. J Pharm Res Int. 2018;24 (6):1-9.

DOI:10.9734/JPRI/2018/45959

20. Cooper KM, Kennedy DG. Stability studies of the metabolites of nitrofuran antibiotics during storage and cooking. Food Add Contam. 2007;24 (09):935- 942.

Rana et al.; ARRB, 34(2): 1-10, 2019; Article no.ARRB.54140

- 21. Cooper KM, Elliott CT, Kennedy DG. Detection of 3-amino-2-oxazolidinone (AOZ), a tissue-bound metabolite of the nitrofuran furazolidone, in prawn tissue by enzyme immunoassay. Food Add Contam. 2004;21:841-848.
- 22. Elizabeta DS, Gordana A, Zehra HM, et al. In-house validation and quality control of commercial enzyme-linked immunosorbnet assays for screening of nitrofuran metabolites in food of animal origin. Mac Vet Rev. 2012;35:13-21.

© 2019 Rana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/54140