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ABSTRACT 
 
The classical model of plant root nutrient uptake given by Nye, Tinker and Barber is 
modified and extended for pollutant uptake in plants. An explicit closed mathematical 
description is given for the uptake, by a single cylindrical root for all cases of practical 
interest, by solving the absorption-diffusion equation for the soil pollutant concentration 
asymptotically in the limit of large time. This single root model can be used as a building 
block to construct a model for multiple root branching structure in a more realistic plant root 
system. The theoretical results derived analytically are compared with numerical results 
and experimental studies.  
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1. INTRODUCTION  
 
The high concentration of pollutants in soils is reflected by higher concentrations of 

pollutants in plants, and consequently in animal and human bodies. The ability of some 

plants to absorb and accumulate xenobiotics makes them useful as indicators of 

environmental pollution. The study of excessive concentrations of pollutants in biological 

matrices has been reported in numerous publications (Jensen et al., 1992; Lynch et al., 

1997; Marschner, 1995).  Pine and spruce needles, mosses and grasses are widely used as 

a specific indicator in the study of a geographical and temporal pattern of pollutants. Streit 

and Strum et al. (1993) classified the exchange of chemicals between soil and plants and 
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divided the most common methods of assessing toxicity to plants from soil into three 

categories in the conditions closed system: 

 

(i) monitoring of the presence or absence of specific plant ecotypes and/or plant 

species (indicator plant),  

(ii) measurements of pollutant concentration in tissues of selected species 

(accumulative bio-indicators),  

(iii) recording of physiological and biochemical responses (biomarkers) in sensitive bio-

indicators.  

 

The aim of the paper is to investigate relations between pollutant gradient in soil and its 

accumulation in plants through cylindrical roots.  

 

The classical model for uptake developed by Nye and Tinker (1997) and Barber (1984) 

supposes a single cylindrical root to be surrounded by an infinite extent of soil, with 

prescribed far field soil water concentration. The pollutant diffuses through the soil water (via 

the pore water), and its uptake at the root is given by a Michaelis-Menten dependence on 

concentration (Jungk et al., 1997; Jensen, 1992). This absorption-diffusion model thus 

consists of a linear diffusion equation with the nonlinear root surface absorption condition. In 

this paper we deal with this problem by providing a fully explicit approximation to the basic 

Nye–Tinker–Barber model. 

 
2. POLLUTANT UPTAKE BY A SINGLE ROOT FROM A CONTINUUM SOIL 
 
2.1 Model Formulation 
 
We assume that the soil consists of a solid phase, a liquid phase and a gas phase, and that 

the volume fraction of each phase stays constant, so, 

1
s l αθ θ θ+ + =

         (2.1) 

where θs is the volume fraction of the soil solid phase, θl   is the volumetric water content and 

θa is the volume fraction of the air phase. The sum of θl and θa is the soil porosity Φ. Typical 

values of Φ are 0.3-0.6 and typical values for θl in soils are 0.15 – 0.4 (Richardson, 1995).  

We assume that pollutant is present in the solid (Cs) and liquid (Cl) phase and the total 

concentration of pollutant in soil (CT;soil) is 

 ,T Soil s l l
C C Cθ= +

          (2.2) 

Assuming equilibrium sorption according to a linear Freundlich isotherm and neglecting intra-

particle diffusion, the rate of change of Cs with respect to t is (Tinker, 1975, Morton et al. 

1994) 

 

s l
p

C C
b

t t

∂ ∂
=

∂ ∂           (2.3) 
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where bp is the buffer power of the soil. For a volume of soil V without internal sources or 

sinks, the conservation law gives  

. 0lC
q

t
θ

∂
+ ∇ =

∂             
where the flux q is derived by assuming diffusive and convective transport and given by 

Fick's law that describes the movement of solutes in the direction of decreasing 

concentration gradient: 

 
( ) .l l l l lq D f Cθ θ= − ∇

   
where Dl is the diffusion coefficient of the solute in free water,  f l (θl) is the impedance  factor 

of solute in the liquid phase and v is the Darcy flux. 

Hence 

( )
( . ) .( )l l

l l l l l

C
D f C vC

t

θ
θ

∂
= ∇ ∇ − ∇

∂
      (2.4) 

The rate of change of CT; soil with time is given by: 

   
(( ) )

( . ) .( )
p l l

l l l l l

b C
D f C vC

t

θ
θ

∂ +
= ∇ ∇ − ∇

∂
    (2.5) 

Taking initial concentration Cl,0 (µmol cm
-3

) in soil solution as constant and assuming the 

uptake of pollutant at the root surface follows Michaelis-Menten kinetics , the conditions at 

the root surface will be 

,0
0

l l
C C at t= =

 

l m l
l l l n l

m l

C F C
f D v C

n K C
θ

∂
− =

∂ +
   

where 
n

∂

∂
 is the operator for the outward normal derivative, vn is the Darcy flux of water 

normal to the root surface, Fm (µmol cm
-2

 s
-1

) is the maximal root uptake rate and Km (µmol 

cm
-3

) is the Michaelis Menten constant.  

 

If there is no competition between roots then concentration far away from the root surface 

stays constant. So, the boundary condition far away from the root surface will be 

,0l lC C at x= → ∞
 

For simulating radial flow into a cylindrical root, the model is 

01
( ) ( )l l l

p l l l l

C C v C
b D f r

t r r r r r
θ θ

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂       

0 0,l m l
l l l l

m l

C F C
f D q C r r

r K C
θ

∂
− = =

∂ +
           (2.6) 
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,0 1
,

l l
C C r r= =

 
where r0 is the radius of the root, r1 is the half distance between two roots (r1 =1/√πρ, where 

ρ is root length density) and v0 is the Darcy flux of water into the root surface (Fowler, 1997; 

Varney et al. 1993).  

 

 Let  

 

Then the non-dimensional model is (dropping asterisks) 

0

1
( ) (2.7)

(2.8)
1

e

e

P CC C
r

t r r r r r

C C
PC on r r

r C

C C as r

λ

∞

∂∂ ∂ ∂
− =

∂ ∂ ∂ ∂

∂
+ = =

∂ +

→ → ∞

Hence dimensionless parameters are Peclet number, 
0 0 ,e

l l l

r v
P

D f θ
=  uptake parameter 

0m

m l l l

F r

K D f
λ

θ
=  and concentration in soil  ,0l

m

C
C

K
∞ =   

 
 

3. APPROXIMATE SOLUTIONS 
 
At Pe << 1, neglecting convective transport, the model becomes 

 

 

3.1 Numerical Solution  

 

For the numerical solution of Equations (3.1)-(3.3), we use a finite difference scheme with a 

centered discretisation in space and the θ-method in time (Ezawa et al., 2009). Let h be the 

step size of a uniform mesh in space, ∆t be the time step and J +1 be the number of grid 

points. If 
n

j nC (jh, n t) U  and C (n t) V∞∆ ≈ ∆ ≈ . Then the numerical scheme is given by 

 

( )
11

1 1
1 0,1,... 1

n nn n

j j
U U U U

r r n N
t r r r r r r

θ θ

++ −  ∂ ∂   ∂ ∂    
= + − = −      ∆ ∂ ∂ ∂ ∂           (3.4) 

0

1
( ) (3.1)

(3.2)
1

(3.3)

C C
r

t r r r

C C
on r r

r C

C C as r

λ

∞

∂ ∂ ∂
=

∂ ∂ ∂

∂
= =

∂ +

→ → ∞

2

0* * *

0

( )
,

p l

l m

l l l

r b
r r r t t and C K C

D f

θ

θ

+
= = =
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Where  

1 1

1 1

2 2

1 1
0,1,... 1

j j j j

j j
j

U U U UU
r r r j J

r r r r h h h

+ −

+ −

− −  ∂ ∂  
≈ − = −   ∂ ∂      

The scheme can be rewritten as  

1 1

1 1 1 1

12 2 2 2
1 1

1
n nj j j j

n

j j j

j j j

r r r r

U U U
r r r

θµ θµ θµ
+ ++ + − −

+
+ −

+ 
 − + + − = 
 
 

( ) ( ) ( )
1 1 1 1

2 2 2 2
1 1

1 1 1 1
n nj j j j

n

j j j

j j j

r r r r

U U U
r r r

θ µ θ µ θ µ
+ + − −

+ −

+ 
 − + − − + − 
 
  ,  

0,1,... 1j J= −
 

          (3.5) 

where 
2

t

h
µ

∆
=  .  We solve the tri-diagonal system of equations 

( ) ( )( )11 1 , 0,1,... 1n n
D U I D U b j Jθµ θ µ+− = + − + = −

  (3.6) 

 

I is the (J + 1) × (J + 1) unit matrix, b is (J + 1) ×1 zero-vector used to implement the 

boundary conditions, U is the vector (U0;U1; --- UJ )
T
 and D is the differential operator, a tri-

diagonal (J + 1) × (J + 1) matrix whose entries are zero except for 

1 1 1 1

2 2 2 2, ,
j j j j

j j j

r r r r

r r r

− + − +
+ 

 
 
  

 at              0,1,... 1j J= −  

The first and last rows of matrices ( )1 Dθµ−  and ( )1I Dθ µ+ −  are modified according to 

the boundary conditions.  

The numerical scheme for the initial condition and for flux equation (3.2) will be 

0 1 0,1,... 1jU j J= = −        (3.7)  

( )

( )

1 1 1 0
1 0

1 0

1

2 0,1,... 1
1

1
2

n n
n n

n n

U U
U U

n N
h

U U

λ
+ + +

−
= = −

+ +

   (3.8) 

and at every time step, we approximate C∞ in equation (3.3) with an explicit Euler Scheme. 

( )1 0

1

1
1

2

n n n n n

j j
V V t U U V where V

+

−

 
= + ∆ + − = 

   
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3.2 Approximate Analytic Solutions 

 

3.2.1 Analytic solutions for the limit c∞< 1   

  

3.2.1.1 Approximations for λ >> 1 

 

(1)  When λ >> 1 i.e., pollutant uptake is high, we expect the gradient of pollutant 

concentration near the root surface to be big i.e.  

1

1
r

C

r
λ

=

∂
≈ 〉〉

∂
       (3.9) 

 

Thus, there is a boundary layer near r = 1 and by rescaling the independent variables r and t 

to stretched variables R and T, i.e., r = 1 + R/λ and t = T /λ2
, the problem reduces to 

2

2

1C C C

T R R Rλ

∂ ∂ ∂
= +

∂ ∂ + ∂        (3.10) 

 

since 1/(λ + R) << 1 for λ >> 1. The rescaled boundary conditions are 

0, 1
C

C at R and C as R
R

∂
= = → → ∞

∂      (3.11) 

 

and the initial condition is C = 1 at T = 0 for 0 < R < ∞.  

The solution to this leading order problem (3.10)-(3.11) is given by 

( , ) ( ) ( ),
2 2

R TR R
C R T erf e erfc T

T T

+= + +
     (3.12) 

with the flux, 
0( ) | ,R

C R
F T

R r
=

∂ ∂
=

∂ ∂
 of pollutant  into the root given by 

( ) ( )
T

F T e erfc Tλ=
        (3.13) 

 

as T → ∞ , the concentration of pollutant at the root surface C → 0 and F→ 0, since 

( ) 0
T

e erfc T →
 

For 
2

1
t

λ
≤  the comparison of analytic solution with numerical simulations of the model is 

given in Fig 1 (a)  
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(a)       (b) 

Fig. 1. Comparison of numerical experiments (solid lines) for pollutant flux F(t) for λ = 

10 and C∞=0.1 with the full non-linear model and asymptotic approximations 

(dashed lines) 

 

Analytic solution given by the equation (3.13) for short time (a), and by the equation (3.20) 

for long time (b). 

(2)  For 
2   ~ 1/    

c
t t λ
∼

>  the root surface pollutant concentration has dropped to a very low 

level so the boundary condition at the root surface at the leading order will be C = 0 at r = 1  

so,  
1

( ),
C C

r
t r r r

∂ ∂ ∂
=

∂ ∂ ∂
        (3.14) 

C = 0 at r = 1; and C → 1 as r → ∞.  

The initial condition for this problem would be given by the approximate solution (3.7) 

evaluated at t≈ 1/λ 2i.e. 

( 1) 1

2

1 1 1
( ) ( 1) 0

2 2

r

c

r r
C erf e erfc at t t t tλλ λ

λ
− +− −

≈ + + = − ≈ − =
  (3.15) 

The analytical solution to the model can be derived as 

2
0 0 0 0

2 2

0 00

( ) ( ) ( ) ( )2
( , )

( ) ( )

u t J ur Y u Y ur J u du
C r t e

J u Y u uπ

∞

− −
= −

+∫
    (3.16) 

and the flux at the root surface r = 1 is  

2

2 2 2

0 00

4
( )

[ ( ) ( )]

u t du
F t e

u J u Y uπ

∞
−=

+∫%

      (3.17) 

 

 

 



 

According to (Richardson, 1993) 

1/ 2 1
( ) ( ) ...........

2
smallF t tπ −≈ + +% %

and large time flux approximation is 

arg

1 1
( ) 2[ ( )]

(4 ) 2 ( (4 ) 2 ) (4 ) 2 )
l eF t O

ln t ln t ln tγ γ γ
≈ − −

− − −
%

% % %

 

where γ ≈ 0.57722.. is Euler’s constant. Hence at the leading order without singularity at 

(by taking time shift t0=(1/4)e
γ

arg

2
( )

(4 ) 1)
l e

F t
ln e t

γ−
≈

+  

 

and the all time solution can be found by taking the uniform interpolation in the form 

arg

1/

arg

( ) ( )
( ) ,

( ) ( )

small l e

small l e

F t F t
F t

F t F t
α α

=
 + 

α is some positive number. Though it is not unique, but for the purposes of current research 

possibly quite satisfactory.  

 

Fig. 2. Comparison of numerical experiments with model (solid line) at large (3.20) and 

small time (3.18) approximations (dashed lines) together with interpolation 

American Journal of Experimental Agriculture, 1(4):

, 1993) the small time flux approximation is given by 

( ) ( ) ...........
      

and large time flux approximation is  

2 3

1 1
( ) 2[ ( )]

(4 ) 2 ( (4 ) 2 ) (4 ) 2 )
F t O

ln t ln t ln t

γ

γ γ γ
≈ − −

− − −% % %
   

is Euler’s constant. Hence at the leading order without singularity at 
γ
) the approximation can be written as 

      

and the all time solution can be found by taking the uniform interpolation in the form 

1/

( ) ( )
( ) ,

( ) ( )
α

         

is some positive number. Though it is not unique, but for the purposes of current research 

 
Fig. 2. Comparison of numerical experiments with model (solid line) at large (3.20) and 

small time (3.18) approximations (dashed lines) together with interpolation 

(3.21) for α = 3 (dotted-dashed line) 
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(3.18) 

(3.19) 

is Euler’s constant. Hence at the leading order without singularity at t=0 

(3.20) 

and the all time solution can be found by taking the uniform interpolation in the form  

(3.21) 

is some positive number. Though it is not unique, but for the purposes of current research 

Fig. 2. Comparison of numerical experiments with model (solid line) at large (3.20) and 

small time (3.18) approximations (dashed lines) together with interpolation 
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3.2.1.2 Approximations for λ <<1 

 

For λ<<1, we expect the region (where C is less than order 1) to be larger. The asymptotic 

behaviour of this system turns out to be mathematically similar to that of Oseen type of 

problems of flow past cylinder (Greenwood et al. 1997, Richardson 1995) and is derived in 

terms of two length scales r ≈1 and     r >>1. In the first case i.e. the inner (near root surface) 

expansion has ln r terms which make it impossible to satisfy the boundary condition. This is 

overcome by considering the variables of second case (Outer expansion) such that to the 

first approximation the radius of the root is negligible. Hence the first term in the outer 

expansion is the solution in the absence of the disturbance from the root. The second term in 

the outer expansion represents the disturbance to the far-field due to a thin root. By 

matching the inner and outer solutions, a uniformly valid approximation can be derived. 

 

1. Rescaling, the space variable r to large scale variable R by r = R/σ and time variable τ  by 

t=τ /σ2
  where σ << 1. To find concentration gradient far away from the root surface we 

choose σ = e
−1/λ 

<<1 for λ <<1 so the diffusion equation will be 

 

1 C C
R

R R R τ

∂ ∂ ∂ 
= 

∂ ∂ ∂ 
         (3.22) 

 

At  the root surface r = 1 gives  R = σ << 1, we find that far away from the root, the root acts 

as an infinitely thin line sink at the origin. This suggests that we should look for a similarity 

type solution with similarity variable η = R
2
/ (4τ). The solution satisfying the far-field boundary 

condition C → 1 as η → ∞ is the outer expansion of the problem and given by: 

2

1 11 ( ) 1 ( )
4

R
C BE BEη

τ
= + = +        (3.23) 

Where 
1( )

y
e

E dy
yη

η
∞ −

= ∫  and the unknown coefficient B is determined from the solution that 

is valid in the near root surface. 

 

2. For inner expansion we again rescale the space variable near root surface region, i.e.,      

r = Rσ, and keeping long time-scale variable τ, we have 

21
( )

C C
r

r r r
σ

τ

∂ ∂ ∂
=

∂ ∂ ∂
        (3.24) 

The leading O(σ0
) solution satisfying the root surface boundary condition at r = 1, is given by     

2C C(1,  ) + F (  ) ln  + O( )rτ τ σ≈      (3.25) 

 

In order to satisfy the boundary condition at the root surface we choose F (τ ) = λC(1, τ ).   
C(1, τ ) and F (τ) can be determined via matching with the outer solution. 
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To match the above solutions in the overlap region, we expand the outer solution at the 

small, near root surface, limit and the expansion at small argument η limit will be  

 

E1(η) ≈ −γ − ln η + O(η), for η << 1      (3.26) 

 

Thus, the outer solution at the inner limit will be 

1 2
2

R R
C B ln Oγ

τ τ

    
≈ + − − +    

    
     (3.27) 

which is equal to the inner solution. So by, matching the O(ln R) terms in the expansions we 

find that 

( )
2 ( ) ( ) . . ( )

2

F
B F i e B

τ
τ τ τ− = = −       (3.28) 

and matching the remaining leading order terms we get 

( )
(1, ) 1 2 ( ) 2 (2 )

2

F
C ln ln

τ
τ γ σ τ = − − − +       (3.29) 

 

The flux F in terms of root surface pollutant concentration can be estimated as                   

F(τ) = λC(1, τ), so the root surface Pollutant  concentration is given by 

1
2 2

1
(1, )

1 ( ( ) (4 ))
C

ln ln
γ

τ
λ σ τ

=
− + −

      (3.30) 

 

Scaling back into the natural time variable σ2τ = t, after introducing the small time shift         

t0= (1/4)e
γ 
such that C(1, t) = 1 at t = 0, we get 

1
(1, )

1 (4 1)
2

C t

ln e t
γλ −

=

+ +

       (3.31) 

To obtain the approximation of the flux we use this approximation to the root surface 

concentration and substitute it into the full non-dimensional flux condition F= λC1/(1 + C1) 

where C1= C∞
 
 C(1, t). Hence we obtain 

2

( )
1 (4 1)

C
F t

C ln e tγλ

λ
∞

−
∞

≈
+ + +

      (3.32) 

 

The results of numerical experiments in comparison to the approximations derived, are 

shown in Fig. 3.  The solution agrees reasonably well with the numerical experiments 

conducted with the full non-linear model. The slight error at larger times is due to the leading 

order approximation of the non-linear boundary condition.  
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Fig. 3. Comparison of numerical experiments (solid line) with the full non-linear model 

 and asymptotic approximation (dashed line) given by (3.27) for C∞
  = 0.1 and 

 λ = 0.1. 

 

3.2.2  Analytic solutions for the limit 1C∞ ≥  

 

We will now investigate the case when the Pollutant far-field concentration is large, i.e.,  and 

thus C0>> Km. we rescale C =C∞ C, so the equation and boundary conditions 

become 

1
( ),

C C
r

t r r r

∂ ∂ ∂
=

∂ ∂ ∂
                (3.33) 

1,
( 1/ )

C C
at r

r C C C

λ

∞ ∞

∂
= =

∂ +
              (3.34) 

 and           (3.35) 

The solution to this model can be found using Laplace transformations 

2
0 1 0 1

2 2 2

0 1 1

( ) ( ) ( ) ( )2
( , ) 1 (1 ) .

( ) ( )

u t J ur Y u Y ur J u
C r t e du

C u J u Y u

λ

π

∞
−

∞

−
= + −

 + 
∫    (3.36) 

with small time approximation given by 

( ) 2
3 11 1

( , ) 1 2 .....
42 2

r tt r r
C r t ierfc i erfc

C r rt t

λ

∞

 +− −
= − − + 

  
  (3.37) 

and Large time approximation is  

2

4 1
( , ) 1

2

t
C r t ln O

C tr

λ
γ

∞

 
= + − +  

 
      (3.38) 

where γ ≈ 0.57722.. is Euler’s constant. 

 

1C∞ ≥

1C as r→ → ∞
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3.2.2.1 Approximate solution for λ >> 1 

 

If λ >> 1 mean that there is a boundary layer near the root surface r =1 where ∂C/∂r >>1. 

Therefore, we define t=T /λ2 
and r = 1 + R/λ. Hence, the equations (3.33) and (3.34) 

becomes 

2

2

1
,

C C C

T R R Rλ

∂ ∂ ∂
= +

∂ + ∂ ∂
       (3.39) 

together with the boundary conditions 

1 0, 1 ,
C

at R and C as R
R

∂
= = → → ∞

∂
     (3.40) 

and the initial condition 

C = 1 at T= 0 for 0 < R < ∞.        (3.41) 

The solution to equations (3.39)-(3.41) taking 1/(λ + R) << 1,  is given by  

2 / 4
( , ) 1 2( )

2 2

R TT R R
C R T e erfc

Tπ
−= − −      (3.42) 

In particular, at R = 0, i.e., r = 1, we have C = 1 − 2(T /π)
1/2

, which implies that C = 0 when    

Tc= π/4 and hence tc≈ π/(4λ2
) for λ>> 1. Hence we can find approximation for pollutant 

concentration and flux for time t<tc=π/4λ2 
as  

(1, ) (1 2 )
t

C t C λ
π

∞= −        (3.43) 

F(t)=C∞λ     and for t ›tc  we have 

 
( 1)

1
r

C erfc
λ

π
π

−
≈ −          (3.44) 

 

 
Fig. 4. Comparison of numerical experiments (solid line) with the full non-linear model 

(3.1)-(3.3) and asymptotic approximation (dashed line) given by 3.43) for C∞ = 

100 and λ = 1000. C(1, t) is the root surface Pollutant  concentration. 
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3.2.2.2 Approximate solution for λ <<1 

 

For the case λ<< 1we have ∂C/∂r| r=1 ≈ λ<< 1, we expect the region, where C is less than 

order 1, to be larger. Similar to Section 3.1.2 we use the Oseen type expansion to find the 

approximate solution.  

 

Thus, after rescaling to large time and space variables τ and R, i.e.,  t = τ /σ2 
and r = R/σ with 

σ << λ << 1 and σ = e
−1/λ

, we find that the outer similarity solution satisfying boundary 

conditions 

 

2

1( , ) 1 ( ),
4

R
C R BEτ

τ
≈ +        (3.45) 

Where 1 ( )
y

x

dy
E x e

y

∞
−= ∫         

and the unknown coefficient B is determined from the solution that is valid in the near root 

surface. Similar to the 1C∞ <<  case, the inner long time solution is given by  

 

C(r, τ ) ≈ C(1, τ ) + λ ln(r) + O(σ2
)      (3.46) 

 

By expanding the outer solution for small argument and matching ln(R) terms in the inner 

and outer expansions we find that B = − λ /2. The matching of the leading order terms gives 

(1, ) 1 (4 ).
2

C t ln e tλλ −≈ −        (3.47) 

Thus, the critical time when the root surface pollutant concentration has reached zero is 

given by 

2
1

4
ct e

γ
λ

+

=  i.e., the concentration at the root. For the case λ<< 1 we have  

∂C/∂r| r=1 ≈ λ<< 1, we expect the region, where C is less than order 1, to be larger. Similar to 

Section 3.1.2 we use the Oseen type expansion to find the approximate solution. Thus, after 

rescaling to large time and space variables τ and R, i.e., t = τ /σ2 
and r = R/σ with σ << λ << 1 

and σ = e
−1/λ

, we find that the outer similarity solution satisfying boundary conditions 

 

2

1( , ) 1 ( ),
4

R
C R BEτ

τ
≈ +        (3.45) 

Where 1 ( )
y

x

dy
E x e

y

∞
−= ∫         

and the unknown coefficient B is determined from the solution that is valid in the near root 

surface. Similar to the 1C∞ <<  case, the inner long time solution is given by  

 

C(r, τ ) ≈ C(1, τ ) + λ ln(r) + O(σ2
)      (3.46) 
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By expanding the outer solution for small argument and matching ln(R) terms in the inner 

and outer expansions we find that B = − λ /2. The matching of the leading order terms gives 

(1, ) 1 (4 ).
2

C t ln e tλλ −≈ −        (3.47) 

Thus, the critical time when the root surface pollutant concentration has reached zero is 

given by 

2
1

4
ct e

γ
λ

+

=  i.e., the concentration at the root surface drops to zero on exponentially 

large time scale. 

The approximation becomes invalid when
2 2 /

e
λτ σ −≤ = . But if we choose C (1, t) = 1 for      

t = 0, i.e., t0= (1/4) e
γ
,  

we arrive at 

(1, ) [1 (4 1)]
2

C t C ln e tλλ −
∞= − +       (3.48) 

The approximation to the flux, which is given in this approximation by F(t) = λC∞, is even 

worse than the approximation to the root surface concentration (Fig. 5). This is due to the 

leading order approximation of the nonlinear boundary condition. 

 

 
 

Fig. 5. Comparison of numerical experiments (solid line) with the full non-linear model 

and asymptotic approximation (dashed line) given by (3.48) 

 

4. CONCLUSION 

 

In this paper the derivation of the model for pollutant uptake, initially developed by Nye, 

Tinker and Barber is presented together with its non-dimensionalisation and mathematical 

analysis at different dimensionless parameter limits. We estimated the critical time tc after 
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which the pollutant flux into the root starts decreasing due to the deficiency of pollutants at 

the root surface. This critical time is relatively large for the case when the far-field 

concentration c0is much larger than the Michaelis-Menten uptake coefficient Km, and also 

when the dimensionless pollutant uptake coefficient  

1

m

m

F a

DK
λ

φ
=   

is very small compared to the far-field concentration. When the pollutant uptake coefficient λ 

is large compared to the far-field concentration C∞, the flux starts decaying very rapidly after 

a short transition time, which is approximately of order 1/λ
2
, and in the case of the small 

uptake coefficient λ, the decrease in root surface Pollutant concentration takes place over 

the exponentially large time-scale, more specifically of order e
2/λ

 corresponding to times 

larger than the average vegetative period of agriculturally important plants. 
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