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Abstract: Distributed massive multiple-input multiple-output (D-mMIMO) is one of the key candi-
date technologies for future wireless networks. A D-mMIMO system has multiple, geographically
distributed, access points (APs) jointly serving its users. First of all, this paper reports on where to
position these APs to minimize the overall transmit power in actual deployments. As a second contri-
bution, we show that it is essential to take into account both the radiation pattern of the antenna array
and the environment information when optimizing AP placement. Neglecting the radiation pattern
and environment information, as generally assumed in the literature, can lead to a power penalty in
the order of 15 dB and 20 dB, respectively. These results have been obtained by formulating the AP
placement optimization problem as a combinatorial optimization problem, which can be solved with
different approaches where different channel models are applied. The proposed graph-based channel
model drastically lowers the computational time with respect to using an ray-tracing simulator (RTS)
for channel evaluation. The performance of the graph-based approach is validated via the RTS,
showing that it achieves 5 dB power saving on average compared with a Euclidean distance-based
approach, which is the most commonly used approach in the literature.

Keywords: distributed massive MIMO; energy efficiency; access point placement; shortest path;
ray-tracing simulator

1. Introduction

Distributed massive multiple-input multiple-output (D-mMIMO) is a technology that
incorporates both the massive multiple-input multiple-output (MIMO) [1] and distributed
antenna system [2] concepts. Due to the great potential regarding capacity and energy
efficiency, D-mMIMO has been considered a promising technology for the future gener-
ations of wireless networks [3,4]. A D-mMIMO system deploys multiple access points
(APs) that are connected to a central processing unit. By transforming the network from
one central AP with a very large array to multiple APs at different locations, the average
distance between the users to the nearest AP can be drastically reduced. Consequently,
significant transmit power savings can be achieved. The channels of the users to the access
infrastructure highly depend on the APs’ locations. Therefore, having a good AP placement
is essential for exploiting the potential of the D-mMIMO system [5]. This paper aims
to reduce the transmit power of the downlink by optimizing the AP placement. As an
additional benefit, given the reciprocity in the setup, the optimized AP placement will
reduce transmit power of the uplink as well.

When optimizing the AP placement, the environment information is an important
parameter. It provides insight on two key aspects:

(1) It includes information about the possible locations for deploying the APs.
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(2) It includes information regarding the objects, e.g., buildings, impacting the channel
gain (the average signal power received at a given user when considering unit
transmit power and including a potential antenna gain).

Regarding the first aspect, in practical scenarios, e.g., urban areas, APs are conveniently
deployed on the walls along the streets or at the roofs’ edges. It is unlikely that APs are
deployed, for example, in the middle of a street. The importance of the environment in this
perspective may be less evident when the coverage region is large, e.g., 1 km by 1 km. In
that case, modifying the generated AP placement by several meters to make the deployment
feasible will have little impact on the system’s performance. However, in future wireless
networks, the distance between APs and their users is going to shrink drastically due to the
increasing AP density [6]. In this case, the system’s performance becomes very sensitive to
the AP placement. Therefore, taking into account the environment information regarding
any feasible locations for APs deployment is important. Nevertheless, most existing
work is based on assumptions neglecting environment information [5,7–28]. In [7,10,11],
the authors considered a distributed antenna system in a cell where all the transmitters
and receivers are placed on a line. Another commonly used assumption is the circular
topology [8,9,12,15,17,19,20]. It considers that the APs are placed evenly on a circle. This
assumption was initially introduced to make the analysis of the optimization problem
tractable [8]. It simplifies the problem to finding an optimal radius for the circle. A few
earlier studies, e.g., [14,15,24,27], model the problem in a continuous way. They developed
different gradient-based heuristic algorithms. Some other researchers applied Lloyd’s
algorithm or k-means clustering-based approaches [11,18,21,25,28]. To the best of our
knowledge, only [29,30] take into account the environment information. The focus of these
studies, however, is on indoor and underground applications, respectively. This paper
focuses on outdoor deployments and takes into account environment information about
possible locations for deploying the APs.

Additionally, environment information regarding the possible AP locations is an
essential prerequisite when considering the radiation pattern of the arrays. In the literature,
the radiation pattern of the arrays in the APs is often ignored or assumed to be isotropic,
which is not realistic: even the radiation pattern of antenna arrays with dipole elements is
typically very directional in practice [31]. We have observed in our earlier work [5] that
the radiation pattern has a significant impact on the optimal AP placement. To incorporate
the radiation pattern, we need to take into account the broadside direction of the arrays at
different locations, which critically depends on the environment of the AP locations. When
deploying an AP on a wall, the AP can be installed in a less visible way [32] and catch less
wind, for aesthetics and deployment simplicity. The broadside direction of the array will
be perpendicular to the wall and towards the street. In this paper, we consider different
antenna types for the array and we deploy the APs on the walls of buildings.

For the second aspect, the obstacles in the environment, e.g., buildings, have a sig-
nificant impact on the channels. The channel models applied in the current literature for
optimizing the AP placement take a limited amount of environment information into ac-
count [8–28]. Specifically, large-scale fading is usually modeled based on certain statistical
distributions and the Euclidean distance between user locations and APs. Those models
work well for the traditional cellular systems where the coverage region is large. In that
case, the propagation distance between a base station and a user location is large and can
be well approximated by a statistical distribution parametrized by the Euclidean distance.
However, as coverage regions become small, the discrepancy between the propagation
distance and Euclidean distance becomes significant, and empirical propagation conditions
are highly location-specific. Therefore, those statistical models are no longer appropriate.

As suggested by [33], a propagation model which is based on real-world geographic
information is indispensable for realistic optimization of the AP placement. In [33], the
authors model the propagation environment using a ray-tracing simulator (RTS) together
with an iterative procedure for the AP placement optimization. An RTS considers multipath
radio propagation as rays, taking into account different radio propagation mechanisms,
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namely reflection, scattering, and diffraction [34]. Therefore, an RTS is able to accurately
simulate the channel gain considering the impact from the environment. However, using
an RTS for channel evaluation is computationally intensive [34], especially if this has
to be done for many potential AP locations and mobile users that may be anywhere in
the coverage zone. Therefore, it is not scalable to apply an RTS for the AP placement
optimization. The impact of buildings on the channel gain is also considered by [35,36]
where different pathloss exponent values for different scenarios together with the Euclidean
distance are utilized. However, estimating the pathloss exponent values for a large number
of scenarios is a cumbersome task. In this paper, we introduce a graph-based approach to
effectively capture environment information. Given that planning the AP placement is a
strategic level decision, elements in the environment that move or change within short time
intervals, e.g., cars, are not considered.

As illustrated in Figure 1, this study focuses on the modeling part of the AP placement
optimization problem.

Figure 1. The access point (AP) placement optimization problem includes two parts: problem model-
ing (the blocks within the dashed line) and solver development. This paper focuses on the problem
modeling part. We discuss different setups for the distributed massive multiple-input multiple-
output (D-mMIMO) system and different ways for modeling the environment. Four approaches
for calculating the channel gain at each user location have been considered: a ray-tracing simulator
(RTS)-based model and a Euclidean distance-based model, both of which are from the literature, and
two graph-based models which are proposed in this paper.

The contributions of this paper are as follows:

• We formulate the AP placement optimization as a combinatorial optimization problem.
This opens a new door for tackling the AP placement problem. Many combinatorial
optimization techniques such as integer programming [37] or meta-heuristics [38] can
be utilized for solving the actual problem.

• We propose a graph-based approach for modeling the physical propagation. The
approach effectively captures the obstacles in the environment and radiation pattern
of the arrays, taking into account the possible broadside direction of the arrays at
different potential AP locations.

• Based on an RTS, provided by Huawei Technologies (Gothenburg, Sweden), we
perform a numerical validation of the graph-based approach and the channel models
that have been introduced in the literature, considering different signal coverage
levels and antenna types. We demonstrate that it is essential to take into account the
radiation pattern of the arrays and environment information regarding the possible
user locations, AP locations, and radio wave propagation.

The rest of the paper is structured as follows. Section 2 details the considered D-
mMIMO system and formally describes the problem. Section 3 presents different ways
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to model the channel gain, including our proposed graph-based approach as well as
others mentioned in the literature. Section 4 discusses the simulation results and Section 5
concludes the paper.

Notation: An upper case letter in the default math font, e.g., V, represents a constant.
An upper case letter in mathcal font, e.g., R, is a set. Indices are denoted only using
subscripts in lower case, e.g., l in xl . Vectors are denoted by lower case letters in bold, e.g.,
x. The complex conjugate is denoted as (.)∗. The 2-norm of a vector is denoted as ‖.‖. The
integer part of a value is denoted by b.c. The total number of elements in a set, e.g., L, is
denoted as |L|. The imaginary unit,

√
−1, is represented by , and statistical expectation is

denoted by E{.}.

2. System Model and Problem Formulation

Figure 2 illustrates an example of an area that needs to be covered by the D-mMIMO
system to be deployed.

Figure 2. Example of an area to be covered by a D-mMIMO deployment. The dashed line indicates
the border of the coverage region. The black dots are the potential user locations that need to be
covered by the signal, hence a discretization of the continuous area into a grid. The D-mMIMO
system has multiple APs. The black dots next to buildings also indicate the potential locations for
deploying the APs.

2.1. System Setup

The number of APs in the D-mMIMO system is equal to T. These APs are used to
jointly serve each user in the coverage region. Each AP has a half wavelength-spaced
antenna array, hosting M elements. Two types of antenna elements are considered: patch
antennas and isotropic antennas. The radiation patterns for the two types of elements are
illustrated in Figure 3.

2.2. Potential User Locations

Each user is equipped with a single isotropic antenna. The black dots in Figure 2
illustrate the users’ possible outdoor locations. These locations are initially generated in a
way that they are one meter apart from each other and uniformly cover the region. The
points that are encapsulated by buildings are then excluded from the set of all considered
user locations in the region, which is denoted asR.
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(a) (b)

Figure 3. Elevation plane gain patterns (dBi) of the considered isotropic element and patch element.
(a) Isotropic antenna; (b) Patch antenna.

2.3. Potential AP Locations

The user locations next to a building are also potential locations for deploying the
APs of the D-mMIMO. The set of all potential AP locations in the region is denoted as L.
When installing an AP at a given location, we assume that the AP is installed vertically. The
broadside of the AP’s array is set with respect to the location. For simplicity, we consider
eight possible broadside directions, as illustrated in Figure 4a. The direction for mounting
an AP in each potential location is selected in a way that the broadside is perpendicular to
the building as much as possible, as illustrated in Figure 4b.

(a) (b)

Figure 4. (a) shows the eight possible broadside directions for the array when mounting an AP on a
wall. (b) is an example of the broadside directions for different potential AP locations. The dark gray
area represents a building. The black dots next to the building are the potential AP locations. The
blue arrows indicate the broadside directions for each potential AP location.

2.4. Signal Power at Each Potential User Location

As mentioned earlier, the decision on the AP placement happens at a strategic level. It
involves a lot of uncertainty. Therefore, the impact of imperfect channel state information
is not considered. To simplify the calculation of the average received signal power, we
assume the availability of perfect channel state information and maximum ratio precoding,
thereby ensuring that the signals from the APs coherently combine at user locations. When
simultaneously sending signals from distributed APs, the received signal yi at location i is
calculated as

yi = ∑
l∈L

xl

M

∑
m=1

hilmw∗ilms + ni, (1)

where the binary variable xl equals one if an AP is deployed at a location l and zero
otherwise. We denote the channel response between a user location i and an antenna
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element m in the array of AP l as hilm. The information signal s is precoded by applying
the precoding weight

wilm =
hilm√

∑l∈L xl ∑M
m=1 |hilm|2

, (2)

which determines the spatial directivity of the transmission. The additive white Gaussian
noise ni has zero mean and variance σ2.

The transmit power in the information signal E
{
|s|2
}

equals the total transmit power
in the system TpT. The average received signal power p̃Ri at a user location i is defined as

p̃Ri = E
{
|s|2
}
E


(

∑
l∈L

xl

M

∑
m=1

hilmw∗ilm

)2
 = TpT ∑

l∈L
xl

M

∑
m=1
|hilm|2. (3)

We denote the average channel gain between an AP l and a location i by β̃il and
compute it as

β̃il = E
{

M

∑
m=1
|hilm|2

}
. (4)

The average received signal power can then be expressed as

p̃Ri = TpT ∑
l∈L

β̃il xl . (5)

Different ways of modeling β̃il are discussed in Section 3.

2.5. Mathematical Formulation

We aim to reduce the transmit power by optimizing the AP locations, while providing
the desired signal coverage in terms of minimum average received signal power at all
potential user locations. In other words, we target to use the minimal amount of transmit
power while ensuring that the users receive sufficient signal power wherever they are within the
covered region. In order to formulate the AP placement optimization problem, we define the
following decision variables: the transmit power per AP pT; xl = 1 if an AP is deployed at
a location l, otherwise xl = 0; zi = 1 if a user location i is covered with sufficient signal,
zi = 0 otherwise. In addition to the aforementioned parameters, we define PMIN to denote
the minimum required average received signal power at each user location and V ∈ [0, 1] to
denote the signal coverage level in percentage (V = 0 corresponds to zero signal coverage
and V = 1 corresponds to full signal coverage). The AP placement optimization problem
can then be formulated as Equations (6)–(9). The notation utilized for the formulation is
given in Table 1.

Table 1. Notation.

Parameters

L set of potential AP locations in the region
R set of potential user locations in the region
T total number of APs in the D-mMIMO deployment
PMIN minimum average received signal power, required at each user location
V signal coverage level as a percentage

Variables

pT non-negative, transmitted power per AP
xl binary, equals one if an AP is deployed at location l
zi binary, equals one if user location i is covered with sufficient signal
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Transmit power minimization:

minimize pT (6)

subject to

Placement selection:

∑
l∈L

xl = T (7)

Average received signal power:

TpT ∑
l∈L

β̃il xl ≥ PMINzi ∀i ∈ R (8)

Signal coverage calculation:

∑
i∈R

zi ≥ V|R| (9)

Objective function (6) minimizes the transmit power per AP. Constraint (7) guarantees
that T locations are selected for AP deployment. Constraints (8) ensure that the average
received signal power at a covered user location is not lower than the minimum required
amount PMIN. Constraint (9) ensures the desired signal coverage level.

3. Different Channel Models

This section discusses three different ways of modeling the average channel gain (β̃il)
between AP location l and user location i. Section 3.1 discusses a model that is based on the
Euclidean distance between the locations. Section 3.2 introduces our proposed graph-based
approach for modeling the channel gain. Section 3.3 calculates the channel gain based on
channels that have been simulated with an RTS.

3.1. Euclidean Distance-Based Model

Let us denote the channel gain from AP location l to user location i as βil . Considering
the generic statistical model commonly applied in existing studies [14,39] and the radiation
pattern of the array in the AP (the user has a single isotropic antenna), we calculate βil as

βil = GTθil

ζ

d2
il

10χil‖fSil‖2, (10)

where θil is the angle of user location i regarding the broadside direction of the array at AP
location l and GTθil is the antenna gain from the AP at location l in the direction of user
location i. Parameter ζ is the free space loss factor [40] determined by the wavelength. The
power loss due to the propagation distance is represented by 1

d2
il

, where two is the pathloss

exponent and dil is the Euclidean distance between user location i and AP location l. We
model the shadowing as 10χil , where χil is a zero mean Gaussian random variable with a
given variance. Each entry of the small-fading vector fSil is an independent and identically
distributed Gaussian random variable with zero mean and unit variance. Considering
Equation (10), the average channel gain is defined as

β̃il = E{βil} = GTθil

ζ

d2
il
E{10χil}E

{
‖fSil‖2

}
(11)

The distributions of shadowing and small-scale fading in the model are commonly
assumed to be independent of AP location l and user location i [14]. The constant ζ is also
independent of the user location and the AP location. Therefore, we can state that the
constant ζ ′ equals

ζ ′ = ζE{10χil}E
{
‖fSil‖2

}
, (12)
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and reformulate Equation (11) as

β̃il = ζ ′
GTθil

d2
il

. (13)

Regarding Constraints (8), the value for ζ ′ has no impact on the optimal AP placement.
This is consistent with the conclusion made in [14]. We only use Equation (13) for calculating
the AP placement and then evaluate the required transmit power with an RTS. Therefore,
we simply set ζ ′ to one in our experiments.

As indicated by Equation (13), the average channel gain received at a user location
i from an AP location l is only characterized by the Euclidean distance between both
locations. As such, it does not consider the local environment information, for example
buildings, causing obstruction or not. Consequently, the estimated θil may not correspond
to the direction of the highest power. This is illustrated in Figure 5, using the same map
as in Figure 2. The two highlighted dots in Figure 5 represent a user location and an AP
location. The blue arrow represents the broadside direction of the array at the AP location.
The green straight line indicates the Euclidean distance between the user location and the
AP location. The orange polyline in Figure 5 illustrates one of the possible propagation
paths from the AP location to the user location. As shown in Figure 5, the Euclidean
distance-based model ignores the building between the user location and the AP location.
For both the angle of departure and length, the green line significantly deviates from the
orange polyline. The channel gain may be severely overestimated if we estimate it based
on the green line.

Figure 5. The limitations of the Euclidean distance-based model. The blue arrow represents the broad-
side direction for the array at the AP location. The green straight line indicates the Euclidean distance
between user location i and AP location l. The orange polyline indicates a possible propagation path
from AP location l to user location i.

3.2. Graph-Based Models

Motivated by the limitations of the Euclidean distance-based channel model, we
introduce a novel way of modeling the channel gain based on a graph. The rationale behind
is as follows: When sending a signal from an AP to a location, the user at that location will
receive the signal from different directions, which are referred to as multipath components.
Among them, there may be one or two dominant ones, which can be approximated based
on a non-obstructed path from the AP location to the user location. Based on this reasoning,
we introduce a graph-based approach for modeling the channel gain. Instead of using the
Euclidean distance dil , we consider a value `il , which is computed based on a path between
a user location i and an AP location l. Given that the angle θil for the antenna gain also
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depends on the propagation paths, we directly incorporate the antenna gain into `il . For
the graph-based models introduced in this section, we define the average channel gain as

β̃il = ζ ′
1
`2

il
. (14)

The details of the methods for finding the shortest paths to be utilized in calculating
`il are presented in Section 3.2.2. Before going into these details, we first introduce a
graph-based model for the environment.

3.2.1. A Graph for Capturing the Environment

Figure 6 illustrates an example of the graph that we use to capture the environment
in a given map. The nodes in the graph are one meter apart and directly connected to
their neighbor nodes via edges. Each node within the coverage region, the dashed line in
Figure 6, is associated with a generated location mentioned in Section 2. Due to the grid
structure, each node is associated with at most eight edges.

Figure 6. An example of the graph for capturing environment information on the map. The nodes in
the graph are one meter apart and directly connected to their neighbor nodes via edges. The figure
on the right zooms in on the graph. The highlighted lines illustrate the eight edges that connect a
node with all of its neighbor nodes. The dashed line in the left figure indicates the coverage region.
Each node within the coverage region is associated with a generated location mentioned in Section 2.

Utilizing this graph, we aim to approximate the average channel gain based on a
non-obstructed path from the AP locations to user locations. We determine the value of
parameter `il by computing all the best found paths between each location i ∈ R and
location l ∈ L. The procedure for computing the paths is presented in the next section.

3.2.2. Algorithm for Searching Paths

The shortest path problem is well known, and many efficient algorithms are avail-
able in the literature for solving this problem, e.g., Dijkstra’s algorithm [41], A* search
algorithm [42] and Floyd–Warshall algorithm [43]. Due to the nature of the graph and
the paths that we need to search for, we base our implementation on Dijkstra’s algo-
rithm [41]. Algorithm A1 in Appendix A presents the pseudocode of our pathfinding
method. Algorithm A1 includes two sub-procedures: Algorithms A2 and A3. The pseu-
docode and further details of these algorithms are provided in Appendix A as well. We use
Algorithm A1 to search for a path from each AP location l ∈ L to location i ∈ R that gives
the lowest value for `il . Our hypothesis behind the algorithm is that when sending a radio
wave from a location l to a location i, the propagation path loss during will increase with
(1) increased propagation distance between the two locations, (2) reflections, scattering
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and diffraction due to obstacles, and (3) when there is a mismatch between the angle of
departure and the broadside direction of the AP at location l. We try to incorporate these
three effects into parameter `il . A smaller `il corresponds with a higher average received
signal power at location i.

3.2.3. Two Graph-Based Models

Based on Algorithm A1, two models are introduced.

• Shortest path-based model: this model does not consider the pathloss due to angular
changes. Hence, penalty(.) in Algorithm A1 is fixed to one.

• Angular penalty-based model: this model takes into account the pathloss, e.g., due to
diffraction. Hence, penalty(.) is calculated via Algorithm A3.

3.3. RTS-Based Model

The Euclidean distance-based model and the two graph-based models can compute
the average channel gain in seconds. However, those models cannot accurately capture
information about the environment. The average channel gain computed via those models
is an approximation of the real one. Given that an RTS is able to accurately capture
environment information [34], this section introduces an RTS-based approach. The RTS is
provided by Huawei Technologies (Gothenburg, Sweden). We use the approach to evaluate
the solutions generated by the other, less complex, channel models. The RTS considers
a set of evenly spaced sub-carrier frequencies within a given bandwidth. The average
channel gain for the RTS-based model is computed as

β̃il =
∑ f∈F ∑M

m=1 |hilm f |2

|F | , (15)

where hilm f is the channel response between user location i and antenna m of the array
of the AP at location l when frequency f is used. Set F includes all the sub-carrier
frequencies within the considered bandwidth. As mentioned in Section 1, the RTS-based
model is computationally intensive. In Section 4, two methods are applied to simplify the
computation.

4. Simulation Results

In this section, six questions are investigated:

Q1: Where are the user locations that have a high impact on the total transmit power?
Q2: With the optimized AP placement, what is the relation between the total number of

APs and the performance of the D-mMIMO system?
Q3: Is it important to take the radiation pattern of the arrays into account when optimiz-

ing the AP placement?
Q4: Is it essential to take more environment information into account when optimizing

the AP placement?
Q5: Does the angular penalty-based model perform better than the Euclidean distance-

based model?

Our analysis considers five distinctive maps, maps 1–5, which are discussed in
Section 4.1, and two scenarios with different antenna elements.

Scenario I: isotropic antennas are used in each AP.
Scenario II: patch antennas are used in each AP.

For each scenario, 11 signal coverage levels are considered. The parameter setup is
summarized in Table 2.
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Table 2. Parameter settings.

General:

Minimum required transmit power (PMIN) −94 dBm
Center frequency 2.6 GHz
Total number of antennas in the system 128
Signal coverage levels (V) 100%, . . . , 91% and 90%

RTS:

Height of each AP 30 m
Height of each user location 1.5 m
Bandwidth 100 MHz
Total number of sub-carrier frequencies 10

Figure 7 illustrates the procedure for executing the experiments. For a given channel
model, we first use it to generate the average channel gain via Equations (11), (14) or (15).
Then the optimal AP placement is generated by solving Formulations (6)–(9) with the
generated β̃il . Noticeably, we always optimally solve Formulations (6)–(9) regarding the
considered solutions space, the set of potential AP locations. In this way, we eliminate the
impact of the efficiency of the solver on the results. The approach that is used to solve the
formulation is detailed in Section 4.2. For each generated optimal AP placement, except the
ones generated via the RTS-based channel model, we use the RTS-based model to compute
the channels, which are regarded as the ground truth. Then the total transmit power (T.pT)
for the AP placement is calculated based on the channels generated via the RTS-based
model. The experiments are executed on a machine with 20 Intel Xeon(R)W-2155 CPU @
3.30 GHz processors, one NVIDIA Quadro P6000 GPU, and Windows Server 2016 system.

Figure 7. The procedure for executing the experiments with different channel models.

4.1. Reducing Potential User Locations

The generated user locations are one meter apart, as mentioned in Section 2. The total
number of the generated user locations is large. Considering a 100 m by 100 m coverage
region, for example, the total number of the user locations within the coverage region
is more than 5000, which results in a long computational time when running the RTS to
validate the AP placements. This motivates us to find a way of reducing the total number
of user locations.

We hypothesize that, for a given user location that is fully surrounded by eight user
locations, the user location will surely receive sufficient power if the other eight locations
have received sufficient power. This implies that we only need to consider the signal
coverage for locations that are not fully surrounded by other locations. The user locations,
which are either next to a building or on a boundary of the considered coverage region, are
the essential user locations. To test this hypothesis, we calculate the total required transmit
power via the RTS-based model using a four-AP D-mMIMO system for 10 randomly
generated AP placements. Two antenna types and two maps are considered. The targeted
signal coverage level is 100%.

The result of this simulation is illustrated in Figure 8, where a full coverage region
means that all the user locations are included, while a simplified coverage region only
includes essential user locations. Figure 9 gives an example for the heatmaps of the average
received signal power p̃Ri in dBm at each location when considering an AP placement on
map 1. The red spots in Figure 9 represent the APs, and the orange spot indicates the user
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location that receives the overall lowest power. The results in Figures 8 and 9 confirm
that the total transmit power and the user location that receives the overall lowest power
for each AP placement remain very similar when we consider a full coverage region or
simplified coverage region. This implies that most of the essential locations have been
included in the simplified coverage regions.

(a) (b)

Figure 8. Comparison between the full coverage region and simplified coverage region regarding
the total required transmit power. When considering a full coverage region or a simplified one, the
total transmit power simulated via the RTS is very similar. This confirms that the simplified coverage
region contains the user locations which receive the overall lowest channel gain. (a) Map 1; (b) Map 5.

(a) (b)

Figure 9. Comparison between the full coverage region and simplified coverage region regarding
the heatmaps of the average received signal power at user locations. The red spots are the APs. The
orange spots are the user locations that receive the overall lowest signal power. (a) Full; (b) Simplified.

The required computational time is given in Table 3, demonstrating that the simplified
coverage region results in a 4 to 8 times lower computational time compared to the full one.
Therefore, we use the simplified coverage regions approach in RTS experiments and when
solving Formulations (6)–(9).
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Table 3. Computation time (s) of RTS for evaluating all the channels for an AP placement considering
the full or simplified coverage regions. Different AP placements, antenna types, and maps are tested
in the experiments. The first column is for the indexes of AP placements.

AP Placements

Map 1 Map 5

Isotropic Patch Isotropic Patch

Full Simplified Full Simplified Full Simplified Full Simplified

0 4354 974 4237 998 9615 1682 9876 1741

1 4279 1098 4274 1017 9415 1639 9616 1638

2 4255 1061 4209 975 8939 1536 9054 1593

3 4481 1014 4411 1067 9253 1693 9353 1821

4 4340 1007 4296 981 10,189 1697 10,407 1943

5 4386 1031 4465 1013 10,174 1652 10,379 1676

6 4423 1063 4432 1008 9795 1716 10,027 1741

7 4359 1007 4307 977 9756 1679 9863 1733

8 4158 1064 4240 985 10,118 1861 10,513 1832

9 4349 1021 4316 1020 10,029 1689 10,578 1680

Figure 10 illustrates the simplified coverage regions for the five maps, generated as
follows. The data of a selected region is exported from OpenStreetMap. The RTS is used to
generate the coverage region, adding 2 m’s padding around each map for easier processing
of the buildings on the map. Then we keep 3 m’s margin between the borders of the map
and the coverage region.

(a) (b) (c)

(d) (e)

Figure 10. The simplified coverage regions of the five maps used in the experiments. (a) Coverage
region: 90× 86 m2; (b) Coverage region: 80× 80 m2; (c) Coverage region: 90× 85 m2; (d) Coverage
region: 103× 104 m2; (e) Coverage region: 99× 95 m2.
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4.2. Reducing Potential AP Locations

We aim to find the optimal AP placement with the RTS as a benchmark to evaluate
the solutions obtained by using the other channels models. Therefore, we evaluate all the
channels for each potential AP location. However, the RTS still requires around 400 s to
simulate the channels for each potential AP location, resulting in several days to compute
the channels for all the potential AP locations in one coverage region. Therefore, we
reduce the total number of analyzed AP locations to 100 by selecting one location every
b |L|99 c locations. Hence, the set of the 100 selected locations, denoted by L′, has a similar
distribution as the AP locations in L. We further also use the L′ in Formulation (6)–(9),
which allows us to enumerate all the possible solutions in around one minute. Therefore,
we simply solve the problem by the enumeration procedure instead of a more sophisticated
solver.

Noticeably, the reason for reducing the potential AP locations is because the RTS is
computationally not scalable. The latter does not apply to the novel approaches presented
in this paper.

4.3. Analysis with Perfect Environment Information

In this section, we investigate Q2 and Q3, which are related to the total number of APs
in the D-mMIMO system and the radiation pattern. We do the analysis using the RTS-based
model instead of the other models for the AP placement optimization. In this way, we
eliminate the impact of imperfect environment information on the results. The relevance of
environment information regarding the channel gain is further analyzed in Section 4.4.

4.3.1. Impact of the Number of APs in the D-mMIMO

We consider a D-mMIMO system with 128 antennas in total (see Table 2). We assume
that each AP has the same number of antennas. This section investigates the question of
how to decide on the number of APs in the system. We generate optimal placements via
the RTS-based model for three cases: (a) four APs, (b) two APs, and (c) one AP.

The average relative power saving between different configurations over all the maps
is illustrated in Figure 11. For example, the full blue line in Figure 11 represents the average
relative power saving of using the system with four APs compared with the system with
one AP, using isotropic antennas. The results show that the total number of APs has a huge
impact on the system’s performance. The system achieves the best performance when it
has four APs. On average, it saves around 22–32 dB transmit power compared with the
one-AP system and 9–15 dB power compared with the two-AP system. In future research,
it may be interesting to study potential further enhancements by deploying more APs.

Figure 11. Impact of the total AP number on the D-mMIMO system’s performance (128 antennas
in total) with optimized AP placements on the average relative power saving when the D-mMIMO
system is equipped with four APs compared with one or two APs over all the maps.
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4.3.2. Value of Radiation Pattern Information

In most of the current literature on optimizing the AP placement, the radiation pattern
of the arrays is assumed to be isotropic, which is, however, unrealistic. This section analyses
how power savings are impacted by taking the radiation pattern into consideration. We
consider a D-mMIMO system with four 32-element APs. All antenna elements are patch
antennas. Two sets of AP placements are generated for each of the five maps. The solutions
in set 1 are generated without considering the radiation pattern, while set 2 takes into
account the patch antennas. The solutions in set 2 and set 1 are compared in Figure 12,
demonstrating an average power saving ranging from 15 dB to 24 dB. This confirms the
significance of taking into account the radiation pattern of the antennas, consistent with [5].

Figure 12. Significance of considering radiation pattern for AP placement optimization. The average
relative power saving when generating AP placements considering the radiation pattern compared
with the situation where we do not consider the radiation pattern, using patch antennas.

As mentioned in Section 1 considering environment information regarding the poten-
tial AP locations is a preposition of considering the radiation pattern. Therefore, the results
also imply that it is essential to consider environment information for the AP placement
optimization problem.

4.4. Different Channel Models

This section assesses Q4 and Q5. We analyze the value of environment information
regarding channel gain for the AP placement optimization. We also compare our proposed
channel models with the Euclidean distance-based model, which is commonly used in the
literature. We consider a four-AP D-mMIMO system and four channel models discussed
in Section 3. The heatmaps for the received power simulated via the RTS when using
the AP placement generated by the different channel models for map 5 are illustrated
in Figure 13. The heatmaps suggest that the Euclidean distance-based model, which
represents the commonly applied model in the literature, generates a low-quality AP
placement compared with the other models. The main reason here is that the Euclidean
distance-based model ignores the building blocks when estimating the angle of departure
for the arrays. Figure 13 demonstrates that environment information is very important
when considering the radiation pattern of the arrays.
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(a) (b)

(c) (d)

Figure 13. Heatmaps of the RTS-simulated received signal power at user locations when using the
optimal AP placements generated using different channel models for map 5, using patch antennas.
The red spots are the APs. The orange spots are the user locations that receive the overall lowest signal
power. (a) Euclidean distance-based model; (b) Shortest path-based model; (c) Angular penalty-based
model; (d) RTS-based model.

The average relative power saving when using the shortest path-based model, angular
penalty-based model, and the RTS-based model compared with the Euclidean distance-
based model over all the maps is illustrated in Figure 14. The result in Figure 14a, for
example, corresponds to the scenario where we use isotropic antennas.

In general, the power saving in Figure 14 is higher when using patch antennas instead
of isotropic antennas. This is consistent with the results in Figure 13. Additionally, Figure 14
indicates that the setup generated via the RTS-based model requires the least power
compared with the setups found with other models (for all the scenarios). It saves around
20 dB compared with the Euclidean distance-based model. This is expected given that
the RTS-based model is regarded as the ground truth in this paper. It accurately captures
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environment information. The results further confirm the importance of considering
environment information regarding channel gain for the AP placement optimization.

(a) (b)

Figure 14. Comparison of different channel models. The average relative power saving when using
the AP placements generating via the shortest path-based model, angular penalty-based model or
the RTS-based model compared with the Euclidean distance-based model. (a) Isotropic; (b) Patch.

As mentioned in Table 3, the RTS-based model requires around 1000–2000 s to evaluate
all the channels for each AP placement in a simplified coverage region. Table 4 lists the
average time that is required for different channel models to evaluate the channels for
all the possible AP placements in a simplified coverage region. As shown in Table 4, the
RTS-based model requires very long computational time. Therefore, it is interesting to
consider the other models for the AP placement optimization. The two graph-based models:
the shortest path-based model and the angular penalty-based model are proposed in this
work. These models take around one minute to generate the average channel gain β̃il for all
the possible AP locations. As suggested by Figure 14, using the AP placements generated
via the two graph-based models, particularly, the angular penalty-based model, power
saving is achieved compared with the Euclidean distance-based model in most situations.
The average relative power saving of using the angular penalty-based model is around 5 dB
compared with the Euclidean distance-based model. This is consistent with the fact that
the two graph-based models contain more environment information than the Euclidean
distance-based model. The results in Figure 14 also suggest that, in general, the angular
penalty-based model performs better than the shortest path-based model. This implies that
it is important to take the pathloss due to scattering into account when optimizing the AP
placement.

Table 4. The average time required by different models to evaluate the channels for all the possible
AP placement in a simplified coverage region.

Channel Models Time (min)

Ray-tracing simulator (RTS)-based model Around 600
Euclidean distance-based model 1.2
Shortest path-based model 1.2
Angular penalty-based model 1.2

Moreover, Figure 14 indicates that the average relative power saving is correlated with
the coverage level. The reason is that the required power at a coverage level is determined
by the location which receives the lowest power among all the covered locations. The
location is more sensitive to the local environment when the coverage level is high. So, it
requires a channel model to include more local environment information to accurately find
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the particular location when the coverage level is high. This explains why the performance
of the Euclidean distance-based model and the two graph-based models is dependent on
the coverage level.

5. Conclusions

In this paper, we focus on reducing the transmit power of a D-mMIMO system by
optimizing the AP placement. Although we have only considered the downlink, given
the reciprocity between downlink and uplink, the optimized AP placement will also relax
transmit power requirements for the users. We formulate the AP placement problem as a
combinatorial optimization problem. A simplified coverage region is applied, which results
in significantly less computational time while having little impact on the solutions. With
this approach, we have analyzed the performance of the D-mMIMO using an RTS-based
model for optimizing the AP placement. Different antenna types and signal coverage levels
are considered. Our results have demonstrated the significance of environment information,
feasible locations for deploying APs and radiation patterns, which are commonly neglected
in the existing studies. The consideration of the radiation pattern leads to a power saving
of around 15–24 dB. Furthermore, using four APs instead of one or two APs in the system
brings a power saving of more than 22 dB and 9 dB, respectively. Additionally, a power
saving of around 20 dB is achieved by evaluating the channels with perfect environment
information. The RTS-based model precisely captures environment information and gener-
ates a very good AP placement, however, it is computationally intensive and not scalable.
For this reason, we have introduced a graph-based approach to effectively approximate
the channel gain. The performance of this approach has been evaluated via the RTS. The
results show that the graph-based approach saves around 5 dB power compared with the
Euclidean distance-based approach, which represents the commonly applied model in the
literature.

Nevertheless, this work has some limitations which can be addressed in future work.
The gap between the transmit power when using the graph-based approach and using
the RTS-based model is still large. Therefore, the graph-based approach requires further
improvement. This may be achieved by applying some ideas from existing geometric
models, e.g., [44]. In addition, we assume that all the system’s APs jointly serve each
user. However, this is computationally intensive in practice. It would be necessary to
investigate the tradeoff between computational effort and energy efficiency regarding the
total number of APs that jointly serve each user out of all the APs in the system. Other
than these, we assume the signals from different APs are combined coherently at each
user location, which is an ideal case. It is also worthwhile to check the performance of the
graph-based approaches in the worst case where signals are combined non-coherently at
each user location. Finally, this work does not focus on the solver development for the AP
placement optimization problem, yet has formed a bridge between the problem and the
combinatorial optimization. Combinatorial optimization techniques can be explored in the
future to develop an efficient solver for the problem.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Access point
MIMO Multiple-input multiple-output
D-mMIMO Distributed massive multiple-input multiple-output
RTS Ray-tracing simulator

Appendix A

This section elaborates on the algorithms that are used for computing the paths in
the two graph-based channel models. In Algorithm A1, set L includes all the nodes
corresponding to the potential AP locations. graph is the graph, including all the nodes and
connections between the nodes. Vector gT includes the antenna gain for different directions.
Line 1 initializes set D, which is used to store all the calculated `il and return this set at the
end of the algorithm. Lines 2–27 iterate over each node src (potential AP location) in set
L and compute the best paths between src and each node in the graph. In each iteration,
set Q is used to store all the nodes that need to be explored. It initially only includes node
src (line 3). More nodes are added to it on line 22. Each explored node is removed from
Q on line 14. When Q becomes empty on line 12, an iteration is completed. Lines 4–11
initializes the vectors. Each d[n] in vector d stores the value of parameter `il — i is node n
and l corresponds to node src. The lower the d[n], the better the path is from node src to
node n. dist[n] is the length of the best found path between nodes src and n. penalties[n] is
the product of all the angular change penalties involved in the best found path between
nodes src and n. prev[n] is the previous-hop node in the best found path between nodes
src and n.

On lines 12–26, each node in Q is explored. It starts by getting a node i in Q on line 13
that is associated with the minimum value d[i]. The reason for selecting the minimum d[i]
is to reduce the computational time of Algorithm A1. Then, each neighbor node j of node i
is explored (lines 15–26). Function length(i, j) on line 16 gives the distance between nodes
i and j. Line 17 checks whether node i is the initial node of the path, which means that
it is associated with a potential AP location. Function antennaGain(src, j, gT) on line 18
calculates the antenna gain from node src (potential AP location) to the direction of node
j via Algorithm A2, where function broadside(src) gives the broadside direction at the
potential AP location of node src. Then, the reciprocal of the square root of the antenna
gain is incorporated into alt. The reason for using the reciprocal and square root is due
to the relation between the propagation distance and antenna gain when calculating the
channel gain.

If node i is not the initial node, line 20 incorporates the angular change penalty into alt.
The angular change penalty is calculated with the function penalty(.) using Algorithm A3
which will be detailed later. On line 21, if the new value is better than the current value
for d[j], the data related to node j is updated on lines 22–26. After each iteration, new
computed vector d is added to set D on line 27. Finally, after running Algorithm A1, `il is
extracted from D for each i ∈ R and l ∈ L.
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Algorithm A1: The algorithm for searching paths.
Require: L, graph, gT

1 D ← ∅
2 for each src ∈ L do
3 Q ← [src]
4 for each node n ∈ graph do
5 d[n]← ∞
6 dist[n]← null
7 penalties[n]← null
8 prev[n]← null

9 d[src]← 0
10 dist[src]← 0
11 penalties[src]← 1
12 while Q not empty do
13 i← n ∈ Q with min d[n]
14 Remove i from Q
15 for each neighbor j of i in graph do
16 alt = dist[i] + length(i, j)
17 if i == src then
18 alt = alt×

√
1

antennaGain(src,j,gT)

19 else
20 alt = alt× penalty(src, i, j, prev)× penalties[i]

21 if alt < d[j] then
22 Add j to Q
23 d[j] = alt
24 dist[j] = dist[i] + length(i, j)
25 penalties[j] = penalty(src, i, j, prev)× penalties[i]
26 prev[j] = i

27 Add d to D
28 return D

Algorithm A2: Antenna gain calculation.
Require: src, j, gT

1 δ = angle(src, j)− broadside(src)
2 if δ < 0 then
3 δ = δ + 8

4 return gT[δ× 45°]

Algorithm A3 calculates the penalty for each direction change when Algorithm A1
searches a path. The penalty considered here is motivated by the radio wave propagation
pathloss due to diffraction. Function angle(i, j) on line 2 returns the edge direction from
node i to node j. As illustrated in Figure 4a, there are only eight possible angles. Considering
that a diffraction angle is between 0° and 180°, lines 2 and 3 calculate the angular change (δ)
when going from node prev[i] to node j via node i. If δ is larger than zero, lines 5–6 calculate
the penalty. Function de2rad(δ) converts the angle δ in degree to radian. Penalty κ(δ) on
line 6 is calculated via Equation (A1) which involves the Fresnel integral F(vF), calculated
via Equation (A2) [40]. The Fresnel parameter vF in the Fresnel integral is calculated
via Equation (A3). Assuming a wedge is present at node i that causes the diffraction,
parameters dTX and dRX in Equation (A3) represent the distance between node prev[i] and
the wedge, and the distance between node j and the wedge, respectively. We simplify both
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dTX and dRX to be one. For more details about diffraction, interested readers are referred to
Chapter 4.3 of the book by [40].

Algorithm A3: Angular change penalty calculation.
Require: i, j, prev

1 κ = 1
2 δ = |angle(i, j)− angle(prev[i], i)|
3 δ = 45°×min{δ, 8− δ}
4 if δ > 0° then
5 δ = de2rad(δ)
6 κ ← Equation (A1)

7 return κ

κ = |1
2
− exp(π/4)√

2
F(vF)|−1 (A1)

F(vF) =
∫ vF

0
exp(π

t2

2
)dt (A2)

vF = δ

√
2dTXdRX

λ(dTX + dRX)
(A3)
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