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Abstract 
 

This paper proposes a new meta-heuristic approach to solving continuous optimization problems using 21 
benchmark test cases. The African buffalo algorithm evolved from an understanding of this animal’s 
survival instincts and the search techniques they utilize in the African forests and savannahs. The African 
buffalo employs its exceptionally intelligent, cooperative and democratic attitude in its search for the 
optimal path to pasture. This enables it to get results faster than some other search agents. The African 
Buffalo Optimization (A.B.O) algorithm simulates the African buffalos’ behaviour by encapsulation in a 
mathematical model; which solves a number of continuous optimization problems. When compared to the 
Genetic Algorithm (GA),Chaotic Gray-coded Genetic Algorithm and the Improved Genetic Algorithm 
(IGA), the results obtained from African Buffalo Optimization show that the algorithm works well and 
can be extended to solving  other optimization problems like: path planning, scheduling, vehicle routing. 

 

Keywords: Numerical function optimization; African buffalo optimization (ABO); global optimization; 
multimodal; uni-modal. 

 

1 Introduction 
 
The never-ending demands for better ways of solving problems and cheaper ways of getting things done has 
led many researchers to investigate the field of optimization leading to the discovery of several optimization 
algorithms such as Ant Colony Optimization [1], Artificial Bee Colony [2], Genetic Algorithm [3], Particle 
Swarm Optimization [4], Differential Evolution (DE) [5] amongst many others. These techniques have been 
successfully applied to solve a number of problems in a few minutes: problems that was supposed to take 
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several months or even years. Some of these hitherto thought- to- be very difficult and time consuming 
problems include the travelling salesman’s problem [2], job scheduling [3] and vehicle routing [3].  
 
However, some of these algorithms have their drawbacks leading to scientific investigation with a view to 
solving the limitations in the popular algorithms. Some of the drawbacks of the above-listed algorithms 
include premature convergence [5] to complicated fitness function [2], inefficiency in the exploration of the 
search space [2], the use of several parameters [3], weakness in refining the search space at a later stage [4] 
and complex implementation strategies [6]. Some of these weaknesses informed the development of the 
African Buffalo Optimization algorithm. This algorithm draws its inspiration from observing a specie of 
African wild cows called African Buffalos in their quest for grazing pastures in the African forests. This 
animal is in competition with other herbivorous animals which most times require less intake of pastures 
than this large animal with big appetite. A lot of ingenuity is required if she is to survive the competition and 
sometimes the hostility of African lions and human hunters. This work is an attempt to model this animal’s 
ingenuity in navigating her way through several thousands of kilometers in the vast African forests with the 
sole aim of tracking the wet seasons in different locations where it could satisfy its appetite. 
 
African Buffalo Optimization (ABO) is an attempt to develop a user-friendly, robust, effective, efficient yet 
simple-to-implement algorithm that will demonstrate exceptional capacity in the exploitation and exploration 
of the search space. ABO attempts to solve the problem of pre-mature convergence or stagnation by ensuring 
that the location of the each buffalo is regularly updated in relation to the animal’s best previous location and 
the present location of the best buffalo location in the herd. In a situation, for instance, where the leading 
(best) buffalo’s location is not improved in a number of iterations, the entire herd is re-initialized. Tracking 
the best position and speed of each buffalo ensures adequate exploitation of the search space and tapping 
into the experience of other buffalos as well as that of the best buffalo enables the ABO to achieve adequate 
exploration. Similarly ABO ensures fast convergence with its use of very few parameters, primarily the 
acceleration constants lp1 and lp2. These constants enable the movement of the animals towards greater 
exploitation or exploration depending on the focus of the algorithm at a given iteration. 
   
The first section of this paper highlights the motivation for this research, the second introduces the African 
Buffalo Optimization (ABO) algorithm. This is followed by an explanation of the basic flow of the 
algorithm indicating the general working and movements of the buffalos in search for a solution. The third 
section highlights the Genetic Algorithm, Improved Genetic Algorithm and the Chaotic Gray-coded Genetic 
Algorithm. The fourth section of the paper discusses the methodology used in the and the fifth section 
presents the experimental results as well as a detailed analysis of the results obtained. This is followed by the 
Conclusion, recommendation for future research endeavours with the new algorithm references and 
Appendix. 
 

2 Introducing the African Buffalo Optimization (ABO) 
 
African Buffalo Optimization (ABO) simulates the alert (‘maaa’) and alarm (‘waaa’) behavior of African 
buffalos in its foraging ventures. These are the two basic sounds of the African Buffalos with which they are 
able to organize themselves to search for food and defend themselves whenever they are attacked. The waaa 
soundis used to mobilize the buffalos to move on to explore the search space while the maaa sound tells the 
buffalos to stay on to exploit their environment since it is safe and has sufficient pastures. With these sounds, 
the buffalos are able to optimize their search for food source. The ABO is a population-based algorithm in 
which individual buffalos work together to solve a given problem. Each buffalo within the ABO algorithm 
represents an aggregate object containing a number of elements. The African Buffalo Optimization 
algorithm recognises the democratic nature of the buffalos and incorporates this into the algorithm. This is 
represented by Equation (1). In this equation, there is an interaction of the various buffalos with the leading 
(best) buffalo at a particular iteration, a comparison with each buffalos best ever location in relation to the 
target solution as well as a memory of each animals immediate past location. The interaction of these three 
elements leads to the waaa equation (2) where the animals move on to explore other locations depending on 
the result of the democratic equation (1). 



 
 
 

Odili and Kahar; BJMCS, 10(1): 1-12, 2015; Article no.BJMCS.17145 
 
 
 

3 
 
 

2.1 The Working of the ABO Algorithm 
 
The algorithm begins by initializing the population of animals through conscious allocation of random 
locations to each buffalo within the N-dimensional space. After this, the algorithm updates each buffalo’s 
fitness and determines the bpmax (individual buffalo’s personal location) and bgmax (the herd’s best location) 
in a particular iteration in relation to the optimal solution. If the present fitness is better than the individual’s 
maximum fitness (bpmax), it saves the location vector for the particular buffalo. If the fitness is better than the 
herd’s overall maximum, it saves it as the herd’s maximum (bgmax). Finally it updates the buffalos location 
and looks at the next buffalo in the population. At this point, if our global best fitness meets our exit criteria, 
it ends the run and provides the location vector as the solution to the given problem. Each element of the 
solution vector represents the independent variable of the given problem. The ABO algorithm is shown is 
Fig. 1. 
 

 
 

Fig. 1. The ABO algorithm 
 
A close look at the ABO algorithm in Fig. 1, shows that the algorithm’s democratic equation (1) has three 
parts, namely the first w.k represents the memory of the buffalos past location. This is a list of solutions that 
can be used as an alternative for the current local maximum location. There is a probability of choosing one 
of the target lists of solutions of the buffalo’s memory instead of the present herd’s maximum point. The 
second part lp1r2 (bgaxax.–m.k) indicates the cooperative and information-sharing part of the algorithm 
allowing each buffalo to tap into the experience of the entire herd in its search efforts and third lp2r2 
(bpmax.k - m.k) displays the intelligence of the animals and is a pointer to the buffalo’s personal experience. 
 

2.2 Controlling the Movement of the Buffalos 
 
Two main equations control the movement of buffalos within the search space and these are Equations (1) 
and (2) (refer Fig. 1). This democratic equation (1) provides for the decision to either stay on to exploit the 
environment further or to move on to explore other areas based on the collective intelligence of the herd 
after interacting with each other in a communal decision-making process [7]. The maaa equation (2) propels 
the buffalos to move on to explore other areas based on the outcome of democratic equation (1) after due 
consideration of the two competing forces (bpmax and bgmax). The λ parameter which defines the discrete time 
interval over which the buffalo must move is usually set to 1.0. The application of these two Equations 
results in a new location for the buffalos. 

1.Objective function  Tn21 x,...,x,x  )(f xx  

2. Initialization: randomly place buffalos to nodes at the solution 

space; 

3. Update the buffalos fitness values using Equation  (1) 

w.k +1 = w.k+ lp1r1(bgmax– m.k) + lp2r2(bpmax.k- m.k)                                        (1) 

where w.kand m.krepresents the exploration and exploitation 

moves respectively of the kth buffalo (k=1,2,………..N) ; lp1and lp2are learning 
factors; r1and r2are random numbersbetween [0,1]; 

bgmaxis the herd’s best fitness and bpmax, the individual buffalo’s best 

4. Update the location of buffalo k (bpmax.kand bgmax.k) using (2) 

. m.k+1= λ (w.k+ m.k).          (2) 

λ is a unit of time 

5. Is bgmaxupdating. Yes, go to 6. No, go to 2 

6. If the stopping criteria is not met, go back to algorithm step 3 

7. Output best solution. 
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It should be observed that equation (1) aside from the memory part (w.k), has two other controlling features, 
namely, the global maximum (bgaxax.) and the personal maximum positions (bpmax): each defining the 
representative influence over the animal’s location. The algorithm subtracts the dimensional element m.k 

from the maximum vector and then multiplies this by a random number (r1, r2) usually between 0.0 to 0.6 
and a learning/acceleration parameter (lp1, lp2). Using the random numbers between 0.0 to 0.6 has so far 
proved effective in obtaining fast convergence. Further research is on-going to get figures that may yield 
better results. The sum of these products is then added to the speed for the given dimension of the sector. 
This procedure is performed for each element of the speed vector. It should be emphasized that the random 
numbers give an amount of randomness in the path to help the animals move throughout the search space. It 
does this by randomly giving more or less emphasis to the global (bgmax) or personal maximum solutions 
depending on the need for more exploration or exploitation respectively as the algorithm progresses. 
 

2.3 African Buffalo Optimization (ABO) for Global Optimization 
 
Modern day problems in engineering, social science, business, medicine, and applied sciences are getting 
more complex. In mathematical term, these problems are no longer linear, quadratic or mono-modal but are 
now multimodal. The domains of the problems cum their objective functions are often multimodal with 
peaks, valleys, channels, and flat hyper-planes of different heights. Solving these types of problems, which 
are classified as global optimization problems, to their optimal solutions has become a true challenge [8]. 
 
In order to explore the potentials of the proposed algorithm-the African Buffalo Optimization- it is necessary 
to investigate her capacity to search the different types of solution spaces ranging from the mono-modal to 
multi-modal, constrained to unconstrained, separable and non-separable solution spaces [9,10]. A mono-
modal function f(x) has a single extreme, that is to say, it has a single minimum or a single maximum within 
the range that is specified for x. Similarly, a function is said to be multimodal if such a function has more 
than one peak, either on the minimum or the minimum sides. Furthermore a function is said to be separable 
if it can be written as a sum of ‘p’ functions of just one variable. Functions that are non-separable are more 
difficult to optimize. This is due to the fact that accurate search directions depend or two or more elements 
within the search space (or solution vector). The situation gets messier in a case of a multi-modal function 
[11,12]. The last issue that poses a problem to optimization algorithms is the case of multiple dimensions. 
This is because the number of local optima increases with the increase in problem dimensions [13]. 
 
Such benchmark multimodal functions test the capacity of algorithms to escape local minima or extreme. If 
the exploration capacity of an algorithm is below par, such algorithm will be stacked in some local minima. 
Among the functions, we shall investigate includes those that have flat surfaces. Such functions pose some 
challenges to algorithms as they provide insufficient information to enhance the search [14]. 
 

3 Review of Other Similar Algorithms 
 
3.1 Chaotic Gray-coded Genetic Algorithm  
 
In order to reduce the computational amount and improve computational precision for nonlinear 
optimizations, Xiahua Yang et al. [15] developed the Chaos Gray-coded Genetic Algorithm (CGGA), in 
which initial population are generated by chaos mapping with the aid of newer chaos mutation and Hooke–
Jeeves evolution operators As the search range shrinks, the CGGA slowly traces the optimal result through 
the excellent individuals obtained through the algorithm until convergence.  
 

3.2 Improved Genetic Algorithm 
 
Concerned by what they perceived as the weaknesses of the Genetic Algorithm, J. Andre, P. Siarry and T 
Dognon proposed what they called Improved Genetic Algorithm [16]. The main aim of this algorithm is to 
enhance the working of the standard Genetic Algorithm resulting from the refinement of the evolution 
processes. In validating their algorithm, it was tested on a number of benchmark numerical functions.  
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3.3 Genetic Algorithm 
 
Genetic Algorithm imitates the process of natural selection, evolution, inheritance, cross and mutation to 
arrive at solutions to optimization problems [17]. It belongs to the group of algorithms called Evolutionary 
Algorithms (EA). 
 

3.4 Experiments Benchmark Functions 
 
For the purpose of this study, a total of 20 benchmark functions were investigated. The benchmark functions 
investigated in this study includes: f1, f3, f5n, f10n, f15n, Branin, Gold Price, Hosc45, Brown1,Camelback6, 
Shubert, Hartman1, Hartman2, PShubert1, PShubert2, Brown1, Shekel2, Shekel3, Brown3, Quartic and 
Rosenbrock [13,18]. A brief description of each of the twenty-one benchmark test functions may be helpful 
in order to enable us appreciate them better. This is done in the Appendix by the end of this paper. 
 

4 Methodology 
 
The effectiveness of an algorithm is measured by its ability to be efficient in searching the solution space, 
speed, convergence rate, and robustness [17]. This paper, in testing the robustness, therefore, examines the 
capacity of the African Buffalo Optimization (ABO) to search diverse search spaces ranging from mono-
modal to multi-modal, separable to non-separable search spaces. In testing for speed, we consider the 
average number of functional evaluation required to obtain the optimal solution vis-à-vis that of other 
algorithms. Similarly, the convergence rate is tested by comparing the optimal solution obtained by the ABO 
with the benchmark result of the different global optimization test functions with the aim of bring out the 
Relative Error percentage. A comparative lower relative error is a hallmark of good algorithm. This is 
calculated using the formula:  
 

Relative error (%) =  
|�����������|

����
× 100 (%)                                                                                        (3) 

 
Where relative error is set by the optimum error, OptABO is the optimal result obtained by ABO after 10 runs, 
and OptR is the optimum result of the benchmark optimization functions. However, in a situation where the 
OptR is 0, we will simply use the equation: 

 
Relative error (%) =  |������ − ����| × 100 (%)                                                                                (4) 

 
Also included in this work is the Success Rate of the ABO which is a measure of how many times (in 
percentage) the algorithm is able to obtain the optimum result for each test function.  
 

5 Experiment and Results 
 
The experiments were performed using a desktop computer running Windows 7, 64-bit Operating System, 
Intel Core [TM], i7-3770 CPU@ 3.4GHz, 3.4GHz, 4GB RAM. These benchmark function equations were 
coded in MATLAB programming language and were run using MATLAB 2012b tool. The data obtained 
from the experiment with the ABO was compared with results obtained from similar experiments using the 
Genetic Algorithm (GA) and the Improved Genetic Algorithm (IGA). Comparative data are obtained from 
[16,15].  
 
In Table 1, N = number of variables required by each test function, E (%) = Relative Error, Opt = benchmark 
Optimal Result obtained by the particular algorithm, AFE= Average number of Function Evaluation, S (%) = 
percentage Success, UN = Uni-modal and Non Separable, MS= Multimodal and Separable, US=Uni-modal 
and Separable.  
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Table 1. ABO experimental results comparison with GA and IGA 
 

S/N Function 
name  

Opt R N 
 

Xte ABO 
 

GA IGA CGGA 

     Opt E (%) AFE S (%) Opt E (%) AFE S (%) Opt E (%) AFE S (%) Opt E (%) AFE S (%) 
f1 Branin 0.3978 2 MN 0.3978 0 152 100 0.3978 0 8125 81 0.3978 0 2040 100 0.3978 0 300 100 
f2 Brown1 2 20 UN 2.2725 6.8 8039 87 43.6281 861.2 6844 0 8.5516 327.5 12864 0 1.9987 0.065 319 100 
f3 Brown3 0 20 UN 0.0010 1 4000 99 1.3060 13 8410 5 0.6746 67.5 106857 5 0.06952 69.5 70129 82 
f4 Camelback6  -1.03163 2 MN -1.0316 0 582 100 -1.0316 0 1316 98 -1.3163 0 2040 98 -1.0316 0 301 100 
f5 Gold Price 3 2 MN 3.0000 0 103 100 3.0000 0 8185 59 3.003 0.003 1316 100 3.0008 0.0003 305 100 
f6 Hartman3 -3.8627 3 MN -3.8627 0 91 100 -3.8625 0.000 1993 94 -3.8611 0.04 1680 100 -3.8677 0.12 337 100 
f7 Hartman6 -3.3223 6 MN -3.3223 0 231 100 3.3065 4.7 19452 23 -3.3138 0.2 53792 100 -3.3195 0.008 400 100 
f8 Quartic -0.3523 2 US 0.3523 0 116 100 0.3523 0 8181 83 .0.352 0 3168 100 -0.3523 0 308 100 
f9 Hosc45 1 10  2.0000 100 145 50 1.9951 99.9 11140 0 1.0094 9 126139 92 1.0000 0 307 100 
f10 Rosenbrock 0 2 UN 0.0000 0 127 100 7.39 - - - - - - - - - - - 
f11 Shekel5 -10.1532 4 MN -10.1532 0 150 100 -10.1349 1.7 7495 1 -10.149 0.4 36388 97 -10.1520 0.011 600 100 
f12 Shekel7 -10.4029 4 MN -10.4029 0 228 100 -10.1677 2.3 8452 0 -10.383 1.2 36774 08 -10.3873 1.5 600 100 
f13 Shekel10 -10.5364 4 MN -10.5364 0 280 100 -104034 0.1.5 8521 0 -10.514 0.21 36772 100 -10.5208 1.5 719 100 
f14 Shubert -186.7309 2 MS -186.7309 0 33 100 -186.7310 0.0005 6976 93 -186.73 0.002 2364 100 -186.7309 0 359 100 
f15 F1 -1.2323 1 MS -1.2323 0 44 100 -1.2323 0 5566 100 -1.2323 0 784 100 -1.2323 0 300 100 
f16 F3 -12.0313 1 MS -12.0313 0 46 100 -12.0312 0.0009 5347 100 -12.031 0 744 100 -12.3123 2.3 300 100 
f17 F5n 0 20 MS 0.0140 1.4 763 87 0.4735 47.3 8725 0 0.0001 0.01 99945 100 0.0000 0 867 100 
f18 F10n 0 20 MS 0.0000 0 720 100 7.8352 783.5 9298 0 0.0001 0.01 11392 49 0.0000 0 1860 100 
f19 F15n 0 20 MS 0.0000 0 794 100 0.5212 52.1 9541 0 0.0003 0.03 102413 100 0.0000 0 859 100 
f20 PShubert1 -186.7309 2 MS -185.049 0.9 33 0 -186.7300 4.8 7192 63 -186.69 0.03 8853 100 -186.7309 0 509 100 
f21 PShubert2 -186.7309 2 MS -185.226 0.8 33 0 -186.7310 0.54 7303 59 -186.71 0.015 4116 100 -186.7309 0 429 100 

S/N= Serial number; N= Number of variables; Xte= Characteristics; OptR= Optimal result obtained by a given algorithm; E (%) = Relative error percentage; AFE = Average number of function evaluation; S (%) = Percentage of successful runs
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The table above shows the capacity of the ABO to search different search spaces at a competitive rate of 
performance. Using the Global Relative Error percentage rate as a benchmark, it is obvious that ABO 
performed well in relation to the other the other three algorithms. While the Global Error percentage rate of 
GA is 93%, that of IGA is 3.9%, CCGA is 0.8% and ABO is 5.6%. This is obtained by simply obtaining the 
mean of all Relative Error Percentage. Similarly, it should be observed that ABO obtained the global optimal 
in  15(f1,f4,f5,f6, f7,f8, f10-16, f18, f19)and 99% accuracy in other 3(f3,f20,f21) test cases out of the 21 test functions, 
GA obtained the optimal result in 5(f1, f4, f5, f8, f15)of the test cases and very near optima in other 4(f6, f13, f16,  
f21)cases obtaining about 99%. The CCGA obtained the optimal result in 11 benchmark cases (f1, f4, f8, f9, f14, 
f17-21) and 99% accuracy in four other functions (f2, f5,f7, f11).In total, GA obtained the optimal result in 10 
test functions. The IGA obtained above 99% in 16 (f1, f4, f5, f6, f7, f11, f12, f13, f14, f15,f16,f17,f18, f19, f20, f21) out of 
the 21 test functions. From this analysis, ABO slightly outperformed the IGA with 18 optimal or near 
optimal results to CGA’s 15 and IGA’s 16. The least performer here is the GA which was able to obtain the 
99% optimal result in nine cases. This good performance of the ABO is traceable to its ability to search both 
locally and globally at the same time using the path-relinking technique [18]. Another factor for its success 
is the excellent information exchange between the best buffalo bgmax with other buffalos during the search 
process. 
 
In comparing the three best performing algorithm in Table 1, that is the ABO, CCGA and IGA one fact 
emerged, i.e., IGA performs better in Multimodal search spaces more than in Uni-modal space. A look at the 
Table reveals that IGA’s and CCGA’s worst performance is in f3where they obtained Relative Error of 
67.7% and 69.5% respectively: that is a Uni-modal environment. Same applies to f9, whereas it best 
performance are in f1,f4, f7, f15,f16: all multi-modal search environments except Quartic. The ABO, however is 
more robust as it is able to obtain optimal result in 15 test cases as pointed out earlier in different search 
environments ranging from Multi-modal Non Separable cases to Multimodal Separable, Uni-modal, Non-
Separable to Uni-modal, Separable. This is a mark of good algorithm performance. Similarly, though the GA 
was unable to obtain optimal results in some of the test cases, its robustness is encouraging. It obtained 
results in varying search spaces. 
 
Another interesting discovery is the correlation between the performances of the algorithms in relation to the 
number of variables. It is obvious that the algorithms performed better in test functions that have very few 
variables. For instance all the algorithms obtained optimal result in f15 and f16 which has both one variable 
each. They follow the same trend in their performance in numerical test functions that have two variables 
each. This can be seen in their excellent or near-excellent performances in f1, f4, f5, f8, f14, f20 and f21. In the 
same vein, the posed a good performance in f6 that uses three variables: f11, f12, and f13 that use four variables 
and f7 that uses six variables. From test functions that use up to 10 variables or more, they began 
experiencing varying levels of difficulties in obtaining the optimal result. Of particular interest is f2and f3 
where the algorithms had their worst performances. The cases in f17, f18 and f19 are not much different. The 
only slight exception here is CGGA. Based on this observation, it could be safely said that the more the 
number of variables required to solve a problem, the more difficult it is for the algorithms to obtain optimal 
solutions. 
 
Again, let us look at the speed at which these algorithms obtain results. Since speed is a function of the 
programming expertise of the programmer, programming language as well as the hardware configuration 
[8,17], the speed evaluation shall be done through the assessment of the Average Functional Evaluation 
(AFE) of the different algorithms in obtaining optimal result. A close look at Table shows clearly that ABO 
is the fastest in virtually all test cases. Another fast performer is the CCGA which was faster than the ABO 
in two test cases (f2, f4). The speed of ABO is significant because cost is a function of speed and since the 
ABO is faster, it is more cost effective. The speed of ABO is traceable to its simplicity and use of very few 
parameters in its search process. This way it utilizes less CPU resources. 
 
Finally, in evaluating the efficiency of the algorithms, we assess the Success Rate of each algorithm and 
compare with the others. Here, the ABO performed well achieving 100 % success in 15 of the 21 test cases, 
the IGA obtained 100% success in 13 and the least performer is GA 100% success rate in two cases only. 
The best performer judging by this criterion is the CGGA which scored 100% in all cases except one. 
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However, the data in Table shows that IGA is another consistent performer securing 0% and 5% just in two 
cases with the ABO securing 0% in two cases compared to the GA’s 0% in six cases. 
 

6 Conclusion 
 
This study proposed a novel algorithm called the African Buffalo Optimization (ABO) and used it to 
determine the global optimal results of 21 benchmark numerical function optimization problems ranging 
from multimodal to uni-modal, separable to non-separable search spaces. The results obtained was used to 
compare the results from Genetic Algorithm (GA) and the Improved Genetic Algorithm (IGA). The 
outcomes displays the excellent performance of the ABO. More the consistency of the ABO performance 
attests to its robustness as can be seen from the test cases. It is, therefore, safe to conclude that the ABO is a 
worthy addition to the ever-growing number of optimization algorithms 
 

7 Future Work 
 
Since this work covered only 21 test functions, it is the authors desire that this algorithm should be used to 
test other benchmark functions and comparisons of such results made with other algorithms not covered in 
this study. 
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APPENDIX 
 
[1.] Branin RCOS Function. (Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal) 
 

 f(x) = �
����.���

�

��� +
���

�
− 6�

�

+ 10 �1 −
�

�
� + 10 

 
with domain −5 ≤ x1≤ 10, 0 ≤ x1≤ 15. It has three global minima at (x1, x2) = ({−π, 12.275}, {π, 2.275}, {3π, 
2.425}), f(x) = 0.3978873. 
 
[2.] Brown1 (20 variables):f (x) =∑i∈J(xi−3)2+∑i∈J(10−3(xi−3))2−(xi−xi+1) + e20(xi−xi+1)where J = {1, 3, . . . , 
19}, −1 ≤xi≤4 for 1 ≤i ≤20 and x = [x1, . . . , x20]T. . The global minimum is located at xi= 0, f(x) = 2. 
 
[3.] Brown3 Function. (Continuous, Differentiable, Non-Separable, Scalable, mono-modal) f (x) 
=∑ (��

�)(�� + 1) + 1)(��
� + 1� ��

��� ) subject to −1 ≤ xi≤ 4. The global minimum is located at xi= 0, f = 0. 
 
[4.] Camel Function – Six Hump (Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal) 
f30(x) = (4-2.1��

�+��
�/1/3)��

�  +x1x2 + (4��
�− 4) ��

�subject to −5 ≤ xi≤ 5. The two global minima are located at 
(x1, x2)= ({−0.0898, 0.7126},{0.0898,−0.7126, 0}), f = −1.0316. 
 
[5.] Goldstein Price Function (Continuous, Differentiable, Non-separable, Non-Scalable, Multimodal) f = [1 
+ (x1 + x2 + 1)2(19 − 14x1+3x21− 14x2 + 6x1x2 + 3x2)] × [30 + (2x1− 3x2)2(18 − 32x1 + 12x21+ 48x2− 36x1x2 
+ 27x2)] subject to −2 ≤ xi≤ 2. The global minimum is located at xi= f(0,−1), f = 3. 
 
[6.] Hartman 3 Function (Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal) f(x) = 
∑ ��

�
���  exp (−∑ ��� (�� − ��)�

���
2 

 
subject to 0 ≤ xj≤ 1, j ∈ {1, 2, 3} with constants Aij , pij and ci are given as 

 
A = Aij =  (3   10   30 
 0.1 10  35 

3  10 30 
 0.1       10  35) 
 

P= Pi = (0.3689 0.1170 0.2673 
 0.4699 0.4837 0.7470 
 0.1091 0.8732 0.5547 
 0.03815      0.5743 0.8828) 
 
The global minimum is located at x= f(0.1140, 0.556, 0.852), f(x) ≈ −3.862782 
 
[7.] Hartman 6 Function. (Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal) f(x) = 
∑ ���

���  exp              (−∑ 2  

 
subject to 0 ≤ xj≤ 1, j ∈ {1, · · · , 6} with constants aij, pij and ci are given as 
 
(10 3   17       3.8    1.7   8  (1 
0.05  10       17        0.1        8        14   c=ci=       1.2 
 3 3.5    1.7    10        17     8  3 
17         8        0.05     10         0.1   14)  3.2) 
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P = Pi = 
 

(0.1312   0.1696  0.5569   0.0124   0.8283   0.5586 
 0.2329    0.4135   0.8307 0.3736   0.1004   0.9991 
0.2348 0.1451 0.3522  0.2883   0.3047   0.6650 
0.4047 0.8828 0.8732 0.5743   0.1091   0.0381) 

 
The global minima is located at x = f(0.201690, 0.150011, 0.476874, 0.275332, ... 0.311652, 0.657301), 
f(x∗) ≈ −3.32236. 
 
[8.] Quartic Function (Continuous, Differentiable, Separable, Scalable). f(x) =∑D  ixi

4 + random[0, 1) subject 
to −1.28 ≤ xi ≤ 1.28.  
 
i=1   The global minima is located at x∗= f(0, · · · , 0), f(x∗) = 0. 
 
[9] Hosc45: 10 f(x)= 2 - ∏ xi /n! where x= (x1…10) and 0≤xi≤i  i  =1with the f(x*) = 1 

 
[10.] Rosenbrock Function (Continuous, Differentiable, Non-Separable, Scalable, 
Mono-modal) f(x) = ∑D-1 [100 [(xi+1 − x2i )2 + 
         i=1 

(xi −1)2]] subject to −30 ≤ xi ≤ 30. The global minima is located at x∗= f(1, · · · , 1), f(x∗) = 0. 
 
[11.] Shekel 5 (Continuous, Differentiable, Non-Separable, Scalable, Multimodal) 
 

f(x) = −∑ 1/�
��� ∑ (�� − ���)�

���
2 + ci 

 
where A=A(Aij) = 

4 4 4 4    0.1 
1 1 1 1    0.2 
8 8 8 8     C=C1 =   0.2 
6 6 6 6    0.4 
3 7 3 7    0.4 

 
subject to 0 ≤ xj≤ 10. The global minima is located at x∗= f(4, 4, 4, 4), f(x∗) ≈ −10.1499. 
 
[12.] Shekel 7 (Continuous, Differentiable, Non-Separable, Scalable, Multimodal) 
 
f(x) = −∑ 1/�

��� ∑ (�� − ���) + ���
���  

 
4 4 4 4    0.1 
1 1 1 1    0.2 
8 8 8 8    0.2 
6 6 6 6 , c=c1=  0.4 
3 7 3 7    0.4 
2 9 2 9    0.6 
5 5 3 3    0.3 

 
subject to 0 ≤ xj≤ 10. The global minima is located at x∗= f(4, 4, 4, 4), f(x∗) ≈ −10.3999. 
 
[13.] Shekel 10 (Continuous, Differentiable, Non-Separable, Scalable, Multimodal) 
f132(x) = −∑ 1/��

��� ∑ (�� − ���)2 + ���
���  
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where A = [aij ] = 
 

4   4   4  4   0.1   

1   1   1  1   0.2 
8   8     8 8   0.2 
6   6   6  6   0.4 
3     7     3  7  c=ci =  0.4 
2   9  2 9   0.6 
5   5 3 3   0.0 
8  1  8  1   0.7 
6  6  6 2   0.5 
7 3.67  3.6,   0.5 

 

subject to 0 ≤ xj≤ 10. The global minima is located at x∗= f(4, 4, 4, 4), f(x∗) ≈ −10.5319.   
      

[14.] Shubert Function (Continuous, Differentiable, Separable, Non-Scalable, Multimodal)f(x) = ∏ ∑ cos((j 
+ 1) xi+j) i=1  j=1, subject to −10 ≤ xi ≤ 10, i ∈1, 2,,n. The 18 global minima are located at 
x∗= f({−7.0835, 4.8580}, {−7.0835,−7.7083},      

{−1.4251,−7.0835}, { 5.4828, 4.8580}, 
{−1.4251,−0.8003},     { 4.8580, 5.4828}, 
{−7.7083,−7.0835}, {−7.0835,−1.4251}, 
{−7.7083,−0.8003}, {−7.7083, 5.4828}, 
{−0.8003,−7.7083}, {−0.8003,−1.4251}, 
{−0.8003, 4.8580}, {−1.4251, 5.4828}, 
{5.4828,−7.7083}, {4.8580,−7.0835}, 
{5.4828,−1.4251}, {4.8580,−0.8003}), 
f(x∗) ≃ −186.7309. 
 

[15.] F1 (1 variable): 
f(x)=2(x−0.75)2+sin(5πx+0.4π)−0.125, where 0≤x≤1, with the f(x*) = -1.1232286 
 
[16.] F3 (1 variable): 
f(x)=−5i=1{i sin[(i+1)x+i]}, where−10≤x≤10 with the f(x*) = -12.0312494 
 

[17.] F5n (20 variables): 
f(x)=(π/20)×10 sin2(πy1)+[(yi−1)2×(1+10 sin2(πyi+1))]+(y20−1)2where x = [x1,...,x20]T,−10≤xi≤10 and 
yi=1+0.25(xi−1), 
with the f(x*) = 0 
 

[18.] F10n (20 variables):f(x)=π20×10sin2(πx1) +19i=1[(xi−1)2×(1+10sin2(πxi+1))]+(x20−1)2 where x 
=[x1,x2,...,x20]T and−10≤xi≤10 with the f(x*) = 0 
 

[19.] F15n (20 variables):f(x) =(1/10)sin2(3πx1) +19i=1[(xi−1)2(1+sin2(3πxi+1))] + 
(1/10)(x20−)2[1+sin2(2πx20)] where x=[x1,x2,...,x20]T and −10≤xi≤10, with the f(x*) = 0 
 

[19/20.] Pshubert 1 and 2: f (x,y) = {∑i=1((i cos i+1) x + i.) } x {∑ (� cos � + 1)�
��� y+ 1)} +β(x+1:42513)2 (y 

+1 0:80032)2 

where -10 ≤ x ≤ 10 and -10≤ y≤ 10. Β = 0.5 for Pshubert1, β =1 for Pshubert2 
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