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Abstract 
 

When continuous covariates are present, classical Pearson and deviance goodness-of-fit tests to assess 
logistic model fit break down. Many goodness-of-fit (GOF) tests such as Hosmer–Lemeshow tests can be 
used in these situations. Meanwhile, it is simple to perform and widely used, it does not have desirable 
power in many cases and provides no further information on the source of any detectable lack-of-fit. We 
propose a new strategy of grouping based on a very general partitional clustering in the covariate space to 
construct two goodness-of-fit test statistics. Many simulation studies are implemented and clinical data 
set is analyzed to examine the performance of the proposed strategy of grouping and the developed GOF 
test statistics. The results show that the proposed strategy of grouping and GOF test statistics based on it 
has a potential for use in practice as a recommended strategy of grouping and as GOF test statistics to 
assess the adequacy of the logistic regression model. 

 

Keywords: Continuous covariates; cluster analysis; goodness-of-fit test; logistic regression; strategy of 
grouping.   
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1 Introduction 
 
Nowadays, logistic regression model (LRM) is part of the standard empirical research and it is commonly 
employed in several disciplines including medical research, health research, and social research [1]. Overall 
goodness-of-fit (GOF) test for the LRM is considered as the principal activity in the modeling process. GOF 
test reflects whether the predicted values are an accurate representation of the observed values. GOF refers 
also to the adequacy of the fitted model. It is defined as an evaluation of how well model predicted outcomes 
agree with the observed data [2]. GOF test, on the other hand, widely referred to as lack-of-fit, because it is 
measuring how far the model is from the data; more than how much the model is good [3]. Omitted 
predictors, a misspecified form of the predictor, or an inappropriate link function can all result in poor 
fitting. 
 
Assessing GOF for the LRM is widely studied and many strategies of grouping and GOF test statistics based 
on them have been proposed in the last three decades. Two strategies of grouping were proposed by Hosmer 
and Lemeshow (HL) [4-5], deciles of risk and the fixed cut-off points respectively, to group the range of the 
estimated dependent variable. In order to construct GOF test, the ranked estimated probabilities are grouped 
into � groups according to either deciles of risk or prespecified fixed cut-off points. The test statistic is 
calculated by comparing the observed frequency (��) to the average predicted frequency (��) in the ��� 
group, � =  1, 2, . . . , �, via the familiar form of the statistic: 
 

���� = ∑
(�����)�

��

�
���                                                                                                                    (1) 

 
HL’s GOF test statistic is widely used due to its following properties: (a) it is naturally attractive and easy to 
compute; (b) it has sound support from simulation studies; (c) it is widely available in computer packages; 
and (d) In addition to these properties, lack of a better approach also contributes to its popularity. However, 
it has the following limitations [6-8]: (a) its limiting distribution has not been carefully derived; (b) it is a 
conservative test and has low power to detect specific types of lack-of-fit (such as nonlinearity in an 
explanatory variable); (c) it is highly dependent on how the observations are grouped; (d) if too few groups 
are used to calculate the statistic (for instance, five or fewer groups), it will almost always indicate that the 
model fits the data; and (e) when the HL GOF statistic indicates a lack of fit, it may be difficult to identify 
what types of subjects are not modeled well.  
 
Many other researchers proposed different strategies based on HL’s strategies of grouping such as [9] 
proposed a strategy of grouping based on assigning a score to the dependent variable categories. A chi-
squared type GOF test was proposed by Zhang [10] for LRM using the fixed cut-off points strategy of 
grouping and the case-control data. The deciles of risk strategy of grouping was used by [11] to construct the 
GOF test when the correlated or grouped binary data are analyzed by using the logistic generalized 
estimating equations (GEE) model. Also, the fixed cut-off points strategy of grouping was adapted by [12] to 
propose a data-driven strategy for grouping data and a new chi-square type GOF test statistic based on case-
control data for testing LRM by adapting the Zhang [10] test. 
 
Tsiatis [13] proposed different approach to partition the multidimensional space of covariates into � distinct 
groups, instead of grouping the observations by their predicted outcomes. An additive group effect for each 
group is added to the model to measure grouping lack-of-fit. A score statistic is used to test that all of the � 
grouping effects are zero. Tsiatis’ procedure is as follows: (a) the space of covariates matrix (��, ��, … , ��)′ 
is partitioned into �  distinct groups in P-dimensional space denoted by ��, ��, . . . , �� . The indicator 

functions �(�) (� = 1, 2, . . . , �) are defined by �(�) = 1 if (��, ��, … , ��)′ ∈ ��  and �(�) = 0  otherwise; (�) 
the model considered is: 
 

��(�� (1 − ��)⁄ ) = �′�� + �′��                                                                                                  (2) 
 

where �′ = (��, ��, . . . , ��), ��
′  = (1, ���, . . . , ��� ), ��

′  = (��
(�)

  , . . . , ��
(�)

 ), and �′  =  (��, ��, . . . , ��).  
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Note that �′��  models all the original covariates and �′�� models the regional shifts; (c) a score statistic is 
then constructed to test that ��: �� =  �� = · · · =  �� =  0. Tsiatis’s approach is conceptually elegant, but its 
lack a general rule for how to partition the covariate space, especially when continuous covariates are 
present. How to choose the number of distinct groups K has also remained largely unstudied. Many 
researchers proposed other strategies based on the idea of Tsiatis’s strategy of grouping such as [14] 
proposed strategy of grouping based on categories of the covariates and constructed GOF test statistics based 
on this strategy to assess the adequacy of the multinomial LRM.  
 
The deficiencies of the above strategies and GOF tests based on them motivated Pulkstenis, and Robinson 
[2] to propose a two-stage modification of the HL’s strategy of grouping where in the first stage all 
dependents are sorted by model-based estimated probabilities within each unique covariate pattern, as 
defined by only the categorical covariates, and then in the second stage creating two sub categories within 
each covariate pattern, essentially splitting the category in two cells based on the median of estimated 
probabilities ���  within each of the k row. This additional stratification basically doubles the number of 
covariate patterns to incorporate information related to all continuous covariates in the model. Model-based 
expected counts ����  are computed exactly as before, and the proposed test statistics are a Pearson chi-

square test given by: 
 

���
� = ∑ ∑ ∑

�����������
�

����

�
���

�
���

�
���                                                                                             (3) 

 
and the deviance which is calculated by comparing the expected and the observed counts in the resulting 
contingency table as: 
 

���
� = 2 ∑ ∑ ∑ ������� �

����

����
��

���
�
���

�
���                                                                                    (4) 

 
where k denotes covariate patterns, h denotes the sub stratification due to ordering by fitted probabilities, and 
j denotes the categories of the dependent variable. The degrees of freedom for these statistics are given by 
2� − � − 2 , where 2�  refers to the number of rows in the new stratification splitting each row of 
contingency table  and p is the number of categorical variables in the model. These GOF test statistics may 
be more powerful than the HL GOF test in some situations due to the fact that the structure of individual 
covariate patterns is kept intact rather than collapsed. The main limitations of these GOF test statistics are 
not recommended by authors when only continuous variables are modeled and HL GOF test would be 
preferable, or when only categorical variables are modeled and the standard Pearson or deviance chi-square 
would be appropriate.  
 
All the reviewed works above are based on the subjective grouping to either the space of the estimated 
response variable or the space of the covariates. Recently, Xie et al. [15] proposed to use hierarchical 
clustering analysis (specifically Ward’s Method) to group the space of the covariates into clusters of 
similarity. This has the advantage of identifying groups in which the observations are similarly profiled with 
respect to their covariate values. They assumed that (���, ���, ⋯ , ���) be the set of � covariate values for the 
���  observation, � = 1,2, ⋯ , �. They proposed to use Ward’s method of clustering to partition the space of 
the covariates into � groups, denoted by ��, ��, ⋯ �� , and they defined an indicator function for the ��� 

group by �(�) = 1 if (���, ⋯ , ���)′ ∈ �� , and 0 otherwise. Consequently, they proposed two GOF tests to 
assess the adequacy of LRM based on this strategy of grouping. The first GOF test is a Pearson chi-square 

statistic ( ��∗
�  ) similar to the HL GOF test to assess the lack-of-fit of LRM, given by: 

 

��∗
� = ∑ (�� − �����)��

��� �����(1 − ���)⁄                                                                                  (5) 
 
where �� is the number of observations in �� , ��  is the observed number of events/successes in �� , and 

��� = ∑ �����
��
��� ��⁄  is the average estimated probability in �� , which has ��  covariate patterns with �� 

observations in the ��� covariate pattern. For abbreviation the second proposed GOF test is exactly same as 
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Tsiatis’s GOF test which is discussed above. They considered the distribution of the proposed GOF test 
closes to chi-square distribution with �� = � − (� 2⁄ ) − 1 based on several assumptions about the true 
distribution of the observations and the parameter estimators.  
 
 Xie, et al. [15] pointed out that: (a) both GOF tests for decisions on model fit in their study are applicable to 
a wide range of model scenarios (data settings) when continuous covariates are present. (b) for all the 
simulation scenarios, the GOF tests show reasonably well-controlled type I error rate. (c) both GOF tests 
demonstrate at least equal, if not much higher power in detecting missing quadratic term or missing 
interaction term, as compared to currently widely used HL GOF test. (d) when both continuous and 
categorical covariates are present, the two GOF tests along with the HL GOF test outperform the Pulkstenis 
and Robinson tests in detecting missing quadratic term. But the Pulkstenis and Robinson tests appear to 
outperform the two proposed tests and the HL GOF test in detecting missing interaction term. (e) these 
comparisons provide an example in practice that both GOF tests demonstrate better properties. 
 
In spite of these good properties of the strategy of grouping and GOF tests proposed by Xie, et al. [15] they 
have some disadvantages such as: (a) hierarchical clustering has a general disadvantage since it contains no 
condition for reallocation of elements which may have poorly classified at an early stage in the analysis [16]. 
(b) the output of this method of clustering necessarily represent hierarchical relationship among the 
elements, thus this method of clustering does not appropriate to handling large data sets. (c) when both 
continuous and categorical covariates are present, the proposed strategy of Xie, et al. [15] treated the 
dichotomous and ordinal covariates as interval data. (d) as it was known that the Ward’s method is an 
automatic method in clustering the observation started with n clusters and end with one cluster or in reverse 
direction, Xie et al. [15] did not show how are they used the number of clusters K. (e) they recommended 
more studies for determining the degrees of freedom for the approximated Pearson chi-square statistic and 
for improving the clustering process by choosing another clustering method better than the method is used. 
 
All these strategies of grouping and GOF test statistics based on them have their limitations. These 
limitations of currently available strategies of grouping and GOF test statistics based on them are motivated 
us to propose a new strategy of grouping based on partitional clustering and constructing two GOF test 
statistics based on the proposed strategy to assess the adequacy of LRM. Consequently, the main objectives 
of this study are proposing a new strategy of grouping based on partitional cluster analysis, constructing two 
GOF test statistics of chi-square type (clustering chi-square ��

� and clustering chi-square deviance ��
�) based 

on the proposed strategy of grouping to assess the adequacy of the LRM and evaluating the performance of 
the proposed strategy of grouping and the developed GOF tests.  
 
The paper is organized as follows. Proposed strategy of grouping and GOF test statistics are given in Section 
2. Thereafter in Section 3, we present some results of analyzing the simulation studies to evaluate the 
performance of the proposed strategy of grouping and the developed GOF test statistics. An application 
using real data set from the survival times of patients with prostate cancer who are randomly allocated to a 
treatment with an estrogen is presented in Section 4. Brief conclusions are presented in the last Section. 
 

2 Proposed Strategy of Grouping  
 
The proposed strategy of grouping is based on cluster analysis. The term “Cluster Analysis” consists of two 
main branches of clustering; Hierarchical and Partitional. Partitional clustering involves partitioning a given 
set of quantitative individuals or elements into a number of distinct groups, called clusters [17]. Also, [18] 
defined Partitional clustering as the process of organizing the quantitative elements in a dataset into clusters 
or groups so that the elements within the same cluster have a high degree of similarity, while the elements 
belonging to different clusters have a high degree of dissimilarity according to some defined similarity 
criteria. We construct GOF statistics based on the strategy of grouping combine the ideas of the partitional 
clustering to partition the quantitative covariates spaces in the first stage and to partition the categories of the 
observed dependent variable space in the second stage of the proposed strategy of grouping. The proposed 
strategy of grouping combined the ideas of partitional cluster technique (�-Means) [19] to partition the 
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spaces of the continuous covariates and the categories of the dependent variable to partition each group into 
two subgroups. The proposed strategy of grouping based on the mixed partitioning to divide the range of the 
covariates and the range of the observed and the estimated dependent variables into clusters of similarity. 
This enables us to avoid the subjective partitioning disadvantages, and has the advantage of identifying 
clusters which have the same observations with respect to their covariate and dependent variable values. 
  
Hence, suppose X is a matrix of � × � covariates and Y is a vector of binary dependent variable in the data 

set with two categories (0 or 1). �� =  ����, ���, ⋯ , ����
′
, � = 1, 2, ⋯ , �  and � = 1, 2, ⋯ , �  is the ��� 

covariate in the matrix. The proposed strategy of grouping attempts to partition the elements of the 
covariates in the matrix X of the covariates into � distinct clusters denoted by ��, ��, ⋯ , �� as follows: 
 

2.1 Select the Number of Clusters  
 
The first step is selecting the number of clusters (groups) because the proposed strategy of clustering is 
affected by the fundamental and unresolved problem in cluster analysis. The problem is how many clusters 
are present in a given data set? This problem was widely studied. Several methods are proposed to identify 
the number of clusters statistically from a given data set which includes methods such as the gap statistic 
[20]; a simulated annealing clustering based method [21]; cluster isolation criterion [22]; cluster stability 
[23] and Rand’s statistic [24]. All these methods are based on prior knowledge about the data without any 
constraint on this number; this means the number of clusters can be any number. Thus, there is no 
completely satisfactory method for determining the number of clusters for any type of cluster analysis. 
 
These methods are not suitable to use in the strategy of grouping because (a) choosing any number of 
clusters is irrelevant in constructing the GOF tests and (b) there are some constraints on the number of 
clusters (groups) when the chi-square type GOF tests are constructed. For example [25] stated that the 
smallest number of clusters K must be greater than or equal to 6 to ensure that 80% of the expected 
frequencies are greater than 5. Meanwhile [26] did not specify any number of clusters but instead he stated 
that “the important point is that K should be larger when n is large. But it is not recommended that one use 
a very large value of K, and a choice in the range 5-15 seems right”. Therefore, we will compare the results 
of multiple runs with different K number of clusters in the range 5-15 and choose the best one according to 
the above criterion (expected frequencies) and other two criteria (CC and R2) will discuss later. 
 

2.2 Partition the Space of Covariates  
 
In the second step we partition the space of covariates into � distinct clusters  ��, ��, ⋯ , �� using the idea of 
K-means cluster analysis [17-27]. The clustering is done on the basis of distance measures and according to 
the following basic requirements of the clustering process [28]: 
 

�
�) �� ≠ ∅,                        � = 1,2, ⋯ �                            

�) �� ∩ �� = ∅,                �, � = 1,2, … , � ��� � ≠ �   

�) � = ⋃ ��                                                                                              
�
���

�                                                              (6) 

 
then the association function �(��, ��) is defined as follows: 

 

�(��, ��) = �1   if  �� is allocated to ��� cluster 
0    otherwise                                       

�                                                                        (7) 

 
where �� is the ��� vector of covariates and �� is the ��� cluster. Then, the clustered covariates in this stage 
are used to fit the appropriate LRM to estimate the probabilities ���, for more details of how to estimate the 
probabilities see [25,29]. 
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2.3 Cross-classify the Observed Dependent Variable ��  and the Estimated 
Probabilities ��� 

 
In the last step of the strategy of clustering, a cross-classification table for the observed dependent variable �� 
and the estimated probabilities  ���  is created by partitioning each cluster into two parts based on the 
categories of the observed dependent variable ��  (0 and 1). Each observation then belongs to one of 2� 
distinct clusters as in Table 1.  
 
Three criteria are used to assess the efficiency of the proposed strategy of grouping. The first criterion is the 
frequency in each cluster (group) where [25] stated that it must be insure that 80% of the expected 
frequencies are greater than 5. The second criterion is the Clustering Criterion (CC) which is equal to the 
mean of the squared error or the mean of the distance measurement between the elements of data set and 
their cluster centers given by: 
 

�� =
�

�
∑ ∑ �(��, ��)‖�� − ��‖�

��∈��
�
���                                                                                     (8) 

 
where ‖. ‖ is the Euclidean norm, �� is the ��� vector of covariates, �� is the ��� cluster, ��  is the centriod of 
the ��� cluster �(��, ��) is as defined in Eq. (7) and � is the number of clusters (groups). The small value of 
the CC means the clustering process was efficient.  The third criterion is the dissimilarity criterion. The 
clustering process aims to produce disjoint or dissimilar clusters. Consequently, the third criterion is used to 
measure the dissimilarity between clusters is [20].  
  

�� = (��� − ���) ���⁄                                                                                                              (9) 
 

where ��� = ∑ ∑ ���� − ��̅�
�

��  is the total sum squares which are resulting from comparing ���  the 

individual observations for each variable against  ��̅ = ∑ ��̃� �⁄�  the grand mean for the ���  variable and 

��� = ∑ ∑ ∑ ����� − �̃���
�

��∈���  is the sum squared error resulting from comparing ���� the ��� element in 

the ���  variable of the ���  group against the ���  group mean �̃��  for the ���  variable. The value of ��  is 

interpreted as a measurement of dissimilarity between clusters. Therefore, we have a clustering process gives 
disjoint or dissimilar clusters when we have large value of ��. 
 

3 Construct the Proposed GOF Test Statistics 
 
The proposed strategy of clustering is an automatic process that often yields clusters (groups) with unequal 
sizes, where �� ≠ �� ≠ �� ≠ ⋯ ≠ ��; here �� is the number of observations in the ��� cluster. Then, the 
assumption of the groups with equal size is avoided. Consequently, the importance of large clusters must be 
considered by calculating the proportional weight of each cluster and using this weight to calculate the 
weighted observed and weighted estimated frequencies for each cell in Table 1. Therefore, the weighted 
observed frequency ��� of ��� category of dependent variable in ��� cluster is calculated as:  
 

��� = �� ∑ ��������
���

���
                                                                                                            (10) 

 
where ���� is the ��� observation of the dependent variable in the ���  category and in ��� cluster; ��� is the 

number of the observations into ��� category of dependent variable and  ��� cluster; ���� = 1 if ��  belong to 

g�� category in k��  cluster and 0 otherwise and  �� = �� �⁄  is the proportional weight of ��� cluster.     
 
Meanwhile, the weighted expected frequency ��� of ��� category in ��� cluster is calculated as follows:  
 

��� = �� ∑ ���������
���

���
                                                                                                           (11) 
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where ���� = 1 if  π�� belong to ��� category  in ��� cluster and 0 otherwise, �����  is the ���  observation of 

the estimated probability in the ��� category and in ��� cluster, and ��� is the number of observations of the 

estimated probabilities in the ���  category of the dependent variable and in ��� cluster. After that, a cross-
classification table consists of the weighted observed frequencies ��� which is calculated as in Eq. (10) and 

the weighted expected frequencies ��� which is calculated as in Eq. (11) is created as in Table 1.  
 

Table 1. Cross-classify the observed and the estimated dependent variables 
 

Clusters categories of Yi C1 C2 … CK 
0 
 

��� 
��� 

��� 
��� 

… 
… 

��� 
��� 

1 
 

��� 
��� 

��� 
��� 

… 
… 

��� 
��� 

 
The chi-square type GOF test statistics are constructed by comparing the weighted observed and the 
weighted expected frequencies in ��� category of dependent variable in ��� cluster. Hence, the first proposed 
GOF test statistic is the clustered chi-square ��

� which is calculated as follows: 
 

��
� = ∑ ∑ ���� − ����

�
�����

���
�
���                                                                                          (12) 

 
 and the second proposed GOF test statistic is the clustered deviance  ��

� is given: 
 

 ��
� = 2 ∑ ∑ ���

�
��� ������� ���⁄ ��

���                                                                                      (13) 

 
The proposed GOF test statistics ��

� and ��
�  are designed to allow us to assess the GOF of the LRM. They 

differ from the existing GOF test statistics in their construction based on efficient strategy of grouping and 
weighted observed and expected frequencies for each cluster. Hence, the criteria discussed above are used to 
investigate the performance of the proposed strategy of grouping as in simulation study 1, and the other 
simulation studies are used to investigate the performance of the proposed GOF test statistics. Also, clinical 
dataset is analyzed to investigate the performance of the proposed GOF tests as shown in the next Sections.  
 

4 Simulation Results and Discussion 
 
Extensive simulation studies are conducted to assess the performance of the proposed strategy of grouping 
and to investigate the properties of the proposed GOF tests. The objectives are to assess the adequacy of the 
proposed strategy of grouping to give disjoint groups, to assess the power of the GOF test statistics to detect 
a variety of departures from the LRM and to compare the performance of the proposed GOF test with some 
of existing GOF test (when appropriate). Both of the proposed GOF test statistics are based on the chi-square 
approach with additional stratification; it follows that both tests should follow asymptotically chi-square 
distribution with 2� − � − 2 degrees of freedom, where � is the number of clusters (groups) and � is the 
number of parameters in the model.  
 
In all simulation studies, a given model is assumed for both the true underlying linear predictor and the joint 
distribution of the covariates. Random sample of � vectors of uncorrelated covariates in each replication was 

generated, and ��
′�  computed for each independent sampling unit. The response �  was determined by 

comparing the underlying model �(��) = ������
′�� �1 + ������

′ ����  to a uniform random variable 

���~�(0,1)�, assigning ��  =  1 if �� ≤ �(��) and 0 otherwise, � =  1, 2, . . . , �. This process gives a matrix 

X of � × � covariates and Y is a vector of binary dependent variable in the data set with two categories (0 or 
1). The proposed strategy of grouping attempts to partition the elements of the covariates in the matrix X 
into � distinct clusters denoted by ��, ��, ⋯ , ��  in the first stage and in the second stage the categories of the 
dependent variable are used to partition the observations of each cluster into two sub clusters. Therefore, the 
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following simulation studies are implemented under the null hypothesis that the fitted model is the correct 
model to provide the above objectives.  
 

4.1 Assess the Performance of the Proposed Strategy of Grouping  
 
The idea of this simulation study is taken from [6] with some modification. Two data settings are considered 
to examine the performance of the proposed strategy of grouping when the following fitted LRMs are the 
correct model: 
 
Model (1)  
 

      �������(��)� = �� + ����� + �����                                                                                         (14)       
                            

Model (2)   
 

         �������(��)� = �� + ����� + ����� + �����                                                                          (15)                        
 
These models represent an increasing in complexity according to the number of covariates and differ in the 
distributions. The first model in Eq. (14) consists of only continuous covariates  ��~�(−6,6)  
and  ��~�(0,2). The second model in Eq. (15) consists of discrete covariate ��~�������(6) in addition to 
the covariates in the first model to evaluate the effect of the discrete covariate on the strategy of clustering. 
Therefore, these models represent the expected cases that may occur in practice.  
 
The distribution of �(��)  is considered as a transformation of the distribution of �� . For example the 
Uniform distribution � (− 6, 6) produces a symmetric distribution with mostly small or large probabilities; 
while the covariate has a highly skewed right distribution such as the ��(4) distribution results mostly small 
but a few large probabilities. Other choices for the distribution produce a more uniform distribution of 
probabilities [6]. The � values are chosen in these models according to the following properties [29]: (a) the 
signs of � determine whether �(��) is increasing or decreasing as �� increases. (b) When � → � the curve of 
�(��) is flatten to a horizontal straight line. (c) When � = � Y is independent of X. (d) for quantitative X 
when � > � the curve of �(��) have the shape of the cumulative distribution function (���) of the logistic 
distribution. 
  
According to these considerations we choose the distributions of the covariates. Also, we choose the beta 
coefficients of the models according to these characteristics. Consequently, the beta coefficients are chosen 
as �� = 0,  �� = 0.8, �� = 0.75,  and �� = 0.60 to give approximately same importance for the covariates. 
In this simulation study, the performance of the proposed strategy of grouping is assessed. Therefore, the 
first step is generating sample of size � = 200 values of the covariates according to their properties in both 
data settings. The proposed strategy of grouping is used to partition the covariates space into � clusters in 
the first step. The results in Table 2 show the values of the criteria (frequency of each cluster, cluster 
criterion CC and dissimilarity criterion ��) for � = 5, 10 or 15 in both models. 
 
These criteria will be used to evaluate the performance of the proposed strategy of clustering. All these 
criteria show that the value of CC decreases when the number of clusters � increases, on the other hand, the 
value of  �� increases when the number of clusters � increases. These results also show that the number of 
clusters � = 15 is inappropriate to be used in construction of GOF test of chi-square type because it gives 
more than one frequency less than 5 in spite of the low value of CC and a high value of ��. 
 
At the same time these results show that the number of clusters � = 10 shows a potential use where all the 
three criteria agree that this number is the best to be used in constructing a chi-square type GOF tests. In 
brief, these results (large frequency in each group, small value of CC and large value of ��) show that the 
proposed strategy of clustering has adequate efficiency to give separate clusters (groups) regardless of the 
number of clusters or the number of covariates. 



 
 
 

Hussain and Nassir; BJMCS, 10(1): 1-16, 2015; Article no.BJMCS.18616 
 
 
 

9 
 
 

4.2 Assess the Performance of the Proposed GOF Tests (��
� ��� ��

�) 
 
The performance of the proposed GOF tests  (��

� and ��
�)  is assessed in the second step. Extensive 

simulation studies were conducted to assess the power of the proposed GOF tests (��
� and ��

�) to detect the 
particular types of departure from LRMs under a relatively wide variety of data settings. The power of a 
statistical test is the probability that it will correctly lead to the rejection of a false null hypothesis [30], and 
also, he defined the statistical power as the ability of a test to detect an effect, if the effect actually exists. 
Conventionally a test with a power greater than 80% is considered statistically powerful [31]. The detection 
power of the proposed GOF test statistics are evaluated by simulating data from several LRMs, and then the 
models are fitted with purposely exclude terms.  
 

Table 2. The results of conducting the strategy of clustering on both models and � = ���  
 

Model 1: �������(��)� = �� + ����� + ����� 

*��= 
K 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CC �� 

5 42 43 26 35 54           1.08 0.87 
10 21 14 21 11 30 16 18 27 17 25      0.76 0.94 
15 18 8 17 04 14 03 14 22 22 15 10 6 13 23 11 0.59 0.96 

Model 2:  �������(��)� = �� + ����� + ����� + ����� 

5 44 23 35 52 46           1.38 0.75 
10 20 21 21 23 07 24 21 05 24 34      1.12 0.85 
15 14 17 29 12 19 12 15 17 01 19 06 12 12 10 05 0.98 0.89 

*�� is the clusters and the number in each cell represent the frequency of each cluster.        
 ** K=Number of clusters 

 
4.2.1 The detection power of omitting the quadratic term  
 
In the first data setting, we use the idea of the data setting that was modified by Xie et al. [15] from the one 
used in Hosmer et al. [6] to investigate the effect of deleting a quadratic term in a continuous covariate on 
the performance of the proposed GOF tests. The model has two continuous covariates (�� and ��) and the 
quadratic term of �� as follows: 
 

�������(��)� = �� + ����� + �����
� + �����                                                                           (16) 

 
where ��~�(−3,3) , we used three different distributions for ��: ��~�(−1,1), ��~�(0,4)  and 
 ��~����(4,2). The values of the coefficients of the model are defined as in the above modified study. 
These values are chosen as: �� = −3.2324,  �� = 0.5583, �� = 0.5002 and  �� = 1.  In this simulation 
study we assess the effect of deleting the quadratic term ��

� from the model on the performance of the new 
GOF test statistics and compare the performance of the proposed GOF tests with the performance of and HL 

GOF test (����) and the GOF tests proposed by Xie et al. [15] using these reduced models. Table 3 shows the 
test size (type I error rates) and the percent of times each of the tests rejected the hypothesis of fit (test 
power) at the � =  0.05 level using sample sizes � = 200 and � = 500 with 500 replications. 

 
The results in Table 3 show that the estimated Type I error rates for the proposed GOF tests (��

� and ��
�) 

appear to be on the conventional side for the supposed level � = 0.05 of the test in both sample sizes and for 
all the distributions. These results also show that HL GOF test does not control the Type I error in both 
sample sizes and in most distributions. In this case, HL GOF test has an inflated Type I error rates in both 
sample sizes and most distributions. Furthermore, these results show that the estimated Type I error rates for 

the Pearson chi-square type statistic ��∗
�  which is proposed by Xie et al. [15] appears to be on the 

conventional side for the supposed level � = 0.05 of the test. Meanwhile the score test statistic �∗ which is 
proposed by Xie et al. [15] has inflated Type I error rates in both sample sizes and most distributions.   
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According to these estimated Type I error rates, it is important to make detection power comparisons 
between the proposed GOF tests and the other tests. Consequently, Table 3 shows the results for different 
distributions. For all these distributions, the detection powers of the two proposed GOF tests are higher than 
the detection power of HL GOF test. This is in addition to the lack of control on the Type I error of this test. 
Meanwhile, the detection powers of the proposed GOF tests are similar to the detection powers of chi-square 
test proposed by Xie et al. [15] but higher than the detection powers of the score test T*, in spite of the 
detection powers for �∗ test when the distribution is uniform in both sample sizes are questionable according 
to their Type I error rates. 
   

Table 3. Type I error rates and detection powers when the quadratic term is omitting 
 

Original model a: �������(�)� = −�. ���� + �. ������ + �. ������
� + �� 

Fitted Model: �������(�)� = −�. ���� + �. ������ + �� 

  Type I error rates (Test size) Test power (%) 
 n=200 n=500 n=200 n=500 
��~b U N Beta U N Beta U N Beta U N Beta 

��
� � 0.01 0.02 0.01 0.01 0.01 0.01 100 99.9 100 100 100 100 

��
� � 0.01 0.01 0.01 0.01 0.01 0.01 100 100 100 100 100 100 

����
d 0.07 0.06 0.06 0.05 0.05 0.06 11.7 34.3 16.7 18.6 66.3 21.6 

��∗
� d 0.04 0.02 0.04 0.02 0.02 0.03 85.7 99.9 29.6 99.9 99.9 58.2 

�∗d 0.07 0.04 0.07 0.06 0.05 0.06 89.3 100 34.5 100 99.9 64.3 
a Parameters are chosen in a way that the quadratic term effect has high impact in the prediction function  

(Xie et al. [15]) 
b U is uniform distribution; N is normal distribution; Beta is Beta(4,2) distribution. 

c ��
� is the proposed clustered chi-square GOF test statistic, ��

� is the proposed clustered chi-square deviance. 
d ��∗

�  is the Pearson chi-square GOF test statistic and �∗ is the score statistic both GOF tests proposed by Xie et al. [15] 

����is the Hosmer and Lemeshow  test statistic, their values in the table calculated by Xie et al. [15] 
 

In general, the detection powers of the proposed GOF tests are somewhat higher than that of HL GOF test 
and somewhat similar to the detection powers of Xie et al. [15] GOF tests. The increase in the sample size 
and the skewness in the distribution of the deleted quadratic terms do not affect the detection powers of the 
proposed GOF tests but the detection powers of other GOF tests are increased as sample size increases. The 
skewness in the distribution of the deleted quadratic term decreases the detection powers of other GOF tests 
and inflated the Type I error rates. The proposed GOF tests maintain higher or at least equal power as the 
other GOF tests. 
 

4.2.2 The detection power of omitting the interaction between dichotomous and continuous variables 
 
The idea of the second model is taken from [2] to investigate the performance of the new GOF test statistics 
and the ability to detect the omission of the interaction between dichotomous and continuous variables. The 
model is given by: 
 

�(�, �) = �� + ��� + ��� + ����                                                                                        (17) 
 
where � ∼ �(−3;  3) and d is Bernoulli with � = 0.5. Parameters were chosen at specified values �� =
0.10, �� = 0.10, �� = 0.20 and �� = 0.20 + � where � =  0.10;  0.30;  0.50 or 0.70. These values of � 
allow a series of models that increase in the strength of the interaction. The dependent variable Y is 
simulated by comparing an independently simulated covariate �~�(0,1) with the true logistic probabilities 

�(�, �) = �����(�, �)� �1 + �����(�, �)���  which is estimated from fitting the LRMs in Eq. (17) and the 

rule: � =  1 if � ≤ �(�, �) and � =  0 otherwise. According to these properties four LRMs differ in the 
strength of the interaction are fitted with omitting the interaction term to investigate the performance of the 
proposed GOF test statistics ��

� and ��
�. The performance of the proposed GOF test statistics is compared to 

the HL GOF test ����  and Pulkstenis-Robinson GOF test statistics ( ���
�  and ���

� ) using these reduced 
models. The data is generated with the above model and then the model is fitted with omitting only the 
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interaction term. A total of 500 iterations were performed for sample sizes � = 100 and � = 500 subjects 
and the detection powers are provided in Table 4. 
 
These results indicate that all GOF test statistics have detection powers that increase with both sample size 
and the strength of the interaction. Also, for this simulation study, the proposed GOF test statistics ��

� and 
��

�  have somewhat higher detection powers than the other GOF test statistics. 
 

Table 4. Simulated powers of detection from fitting model in Eq. (17) with omitting interaction term 
�� 

 

Original model: �(�, �) = �� + ��� + ��� + ���� 
Fitted model: �(�, �) = �� + ��� + ��� 
Sample size � = ��� � = ��� 
Interaction  
coefficients 

�� = �� = 
0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 

Statistics         

��
�  5.8 4.9 5.0 3.2 4.8 5.4 4.0 1.8 

���� 4.3 3.9 3.0 5.2 5.8 4.2 6.0 6.8 

���
�  6.2 15.4 23.8 40.4 9.0 29.2 65.5 96.2 

���
�  9.2 16.2 22.8 37.4 9.4 28.6 64.6 95.6 

��
�  18.6 20.4 28.2 30.0 52.6 67.2 72.8 80.4 

��
� 12.2 23.4 24.6 26.6 49.2 63.4 62.0 65.6 

 

4.2.3 The detection power of omitting the main effect term 
 
In addition to the ability to detect the omission of the interaction term, it is of interest to evaluate the power 
to detect the omission of the main effect term. This was done by generating data from the following model 
[2] and then the model is fitted after excluding ����: 
 

������(��) = �� + ���� + ���� + ���� + ���                                                                      (18) 
 

In this model the regression coefficients are chosen as �� = −0.25, �� = 0.75, �� = −2.75, �� = 0.5, 
�� = 0.25, ��~�(−6, 6) and �~�(−2, 2). The dependent variable Y is simulated as in the above simulation 
studies. A total of 500 replications were performed for sample sizes of � = 200; � = 400 and � = 800 
elements and the detection powers are provided in Table 5. 
 

Table 5. Powers of detection from fitting the model in Eq. (18) after omitting the main effect �� 
 

Original model: ������(��) = �� + ���� + ���� + ���� + ��� 
Fitted model: ������(��) = �� + ���� + ���� + ��� 
Statistics � = ��� � = ��� � = ��� 

���� 4.6% 3.4% 3.4% 

���
�  4.8% 6.6% 5.6% 

���
�  5.2% 7.0% 5.8% 

��
� 7.8% 10.2% 15.7% 

��
� 6.2% 9.8% 12.3% 

 
The results given in Table 5 indicate that none of these GOF tests are particularly powerful to detect this 
kind of misspecification in the model. 
 

4.2.4 The detection power of a misspecification link function 
 
Lastly, we examined the ability to detect a misspecification of the link function by generating data from the 
following complimentary log-log model and incorrectly fitting a logit model [2]: 
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����−���(1 − �)� = �� + ���� + ���� + ���                                                                     (19) 
 
where �� = −1.0 , �� = 0.5 , �� = −0.5 , �� = 0.10 , ��~�(−6,6)  and �~�(0,15) . A total of 500 
replications were performed for sample sizes of � = 200;  � = 400 and � = 800 elements and the power 
of detection from fitting the model in Eq. (19) with a misspecification link function are provided in Table 6. 
 

Table 6. Simulated power of detection from fitting the model in Eq. (19) with a misspecification link 
function 

 

Original model: ����−���(� − �)� = �� + ���� + ���� + ��� 

Fitted model: �����(��) = �� + ���� + ���� + ��� 
Statistics � = ��� � = ��� � = ��� 

���� 4.6% 3.4% 3.4% 

���
�  4.8% 6.6% 5.6% 

���
�  5.2% 7.0% 5.8% 

��
� 7.8% 10.2% 15.7% 

��
� 6.2% 9.8% 12.3% 

 
The results given in Table 6 again indicate a fairly low power to detect this type of lack-of-fit in the model. 
 

5 Clinical Data Set  
 
As an example in real situation, the survival times of 501 patients with prostate cancer who are randomly 
allocated to a treatment with an estrogen are considered. This data set was considered by several authors 
such as [32-33] and more recently by [34]. In this data set, the value of the outcome variable status classifies 
the cause of death as 1 = cancer (the event of interest) and 0 = other. The patients are considered treated if 
they received at least 1 mg of estrogen daily and the other covariates as described in Table 7. This data set 
will be used to assess the performance of the proposed strategy of grouping based on partitional clustering in 
the first step and in the second step the performance of the developed GOF tests is assessed as in the 
following subsections. 
 

Table 7. Description of the risk factors in the clinical data set 
  

Variable name Description Code 
Pat-ID Patient number  
Status (Y) The cause of death 1= cancer 

0= others 
Treat (X1) treatment  estrogen (mg) 0.0 (Placebo) 

0.2 
1.0 
5.0 

Ftime (X2) follow-up time (month)  
Age (X3) age ( year)  
Wtind (X4)  weight index=wt(kg)-ht(cm)+200  
SBP (X5) Systolic Blood Pressure/10  
Shem (X6) Serum Hemoglobin (g/100ml)  
Size (X7) Size of Primary Tumor (cm^2)  
SPAP (X8) Serum Prostatic Acid Phosphates  
HCD (X9) History of Cardiovascular Disease 0= has not 

1=has 
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5.1 Assess the Performance of the Proposed Strategy of Clustering 
 
We used the proposed strategy of grouping to partition the space of the continuous covariates in this data set 
for different number of clusters � =  5, 10 or 15  and assess the performance of this strategy based on the 
criteria discussed above. The results in Table 8 present the estimated values of these criteria.  
 

Table 8. The criteria of assessing the performance of the proposed strategy of clustering in clinical 
data set  

 

�� 
K 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CC �� 

5 58 169 27 129 118           0.79 0.33 
10 7 72 85 90 73 61 44 16 43 10      0.71 0.50 
15 35 30 35 5 17 24 7 87 1 37 44 86 1 37 55 0.64 0.56 

 
The results in Table 8 show the values of the criteria which are used to assess the performance of the 
proposed strategy of grouping in this data set. All these results show that the values of CC decreased and the 
values of �� increased when the number of clusters K increased. Also all these results show that the number 
of clusters � = 15 is not suitable to be used in constructing GOF tests of chi-square type because it gives 
more than one frequency less than 5 in spite of it gives a smaller value of CC and higher value of ��. At the 
same time these results show that the number of clusters � = 10 shows a potential use where all these 
criteria agree that this number is the best to be used in constructing GOF tests of chi-square type. In brief 
these results show that the proposed strategy of clustering has adequate efficiency to give separate clusters 
(groups) with a moderate number of clusters. 
 

5.2 Assess the performance of the proposed GOF tests 
 
The performance of the proposed GOF tests (��

� and ��
�) is assessed in the second step. In order to do this, 

the outcome variable status (�) classified the cause of death as 1 = cancer (the event of interest) and 0 = 
others.  The objective of this study is to model this outcome as a function of various covariates. Thus, two 
LRMs are candidates to associate this outcome variable with the different covariates in this clinical data set 
as follows:  
 
Model 1  
 

 �������(��)� = �� + ����� + ����� + ����� + ����� + ����� + ����� + �����                                 (20)                        
 

Model 2 
    

�������(��)� = �� + ����� + ����� + ����� + ����� + ����� + ����� + ����� + �����  + �����    (21)                                                       
 
where �(��) = ��(�� = 1|��) and the covariates X are described as in Table 8. Model 1 represents the 
relationship between outcome variable and the continuous covariates in the data set. Model 2 represents the 
relationship between the outcome variable and the combined covariates (continuous and categorical).  Since 
Model 1 is nested in Model 2, the likelihood ratio test was used to compare the two models and the result 
showed that Model 1 is a significant departure from Model 2 (� − ����� = 0.0223). Table 9 represents the 
decisions of the proposed GOF tests along with the HL GOF test to assess these two models. 
 
The results in Table 9 show that while the HLGOF test accepts the two models, both of the proposed GOF 
tests reject Model 1, but none of these GOF tests finds evidence to reject Model 2. These decisions to reject 
Model 1 are also supported by the likelihood ratio test, which indicates that Model 1 is nested in Model 2.  
Also, these results show, based on clinical considerations and the original analysis of this data set, that 
Model 2 with all the covariates is an adequate model to associate the outcome variable status with the 
covariates in this clinical data set. 
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Table 9. Decisions of the three GOF tests on the three LRMs at � = �. �� in the clinical data set 
 

GOF tests Decisions on different models 
Model 1 Model 2 

��
� Reject Not reject 

��
� Reject Not reject 

���� Not reject Not reject 

 

6 Conclusions 
 
The results from implementing the simulation studies and analyzing the clinical data set assist to conclude 
that the proposed strategy of grouping has adequate efficiency in giving separate clusters. It is more flexible 
in determining the number of clusters. It is appropriate to construct the GOF test statistics of chi-square type. 
It helps to avoid the problems with the similarity measurements in the categorical data and it does not need 
to convert the continuous covariates, so that the information is not lost.   
 
On the other hand, two GOF test statistics ��

�  and ��
�  are constructed based on the proposed strategy of 

grouping. The results from conducting the simulation studies and analyzing the clinical data set assist to 
conclude that the proposed GOF test statistics have a wide range of detection to detect any departure in the 
fitting model from the true model. They have adequate power of detection higher than the existing GOF test 
statistics for different factors such as sample size and the departure from the true model. They have a high 
power of detection when the simple LRM (with one covariate) or multiple LRM (with more than one 
covariate) are used to fit the data set and they have adequate performance when the sample size is large. 
 
In this paper, the problems of partitioning the space of the covariates and developing GOF tests are studied 
for the binary LRM. Thus, for improvement and future works the strategy of clustering and the GOF test 
statistics based on it can be adapted to apply to the other logistic regression models, such as ordinal or 
multinomial LRMs. Also, another area of research is adapting this strategy of grouping and the GOF test 
statistics for use in the other GLMs such as Poisson regression model and log-linear model. The proposed 
strategy is based on partitioning the range of continuous covariates using �-means and multiple comparisons 
to determine the appropriate number of clusters �. Further study may result in a better or optimal rule in 
determining K and choice of clustering method. Another future study, a partitional clustering process may be 
developed to cluster the combined data set (continuous and categorical) covariates at the same time, when 
both continuous and categorical covariates are present. Adapting the strategy of clustering to partition the 
data set with categorical covariates only is also, another area of future work. 
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