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Abstract
Optical tomography is non-invasive diagnostic technique. Mathematically, it is related to the
evaluation of optical parameters from the equation of radiative transfer with diffused boundary
measurements. Since the radiative transfer equation in expressed in the form of phase space,
it is quite challenging to solve it computationally. In this paper, reconstruction is based on equation
of radiative transfer in frequency domain and termination criteria for forward problem is proposed as
ratio of residues. Directional and spatial variables of equation of radiative transfer are discretized
with discrete ordinate method and finite volume method respectively. The sparse structure of
matrices of complex valued algebraic equations is formulated.

Keywords: Optical Tomography; equation of radiative transfer; regularized least square; discrete
ordinate method; finite volume method; adjoint method.

*Corresponding author: E-mail: raheelmuzzammel@gmail.com

www.sciencedomain.org


Muzzammel & Ehsan; BJAST, 8(2), 194-203, 2015; Article no.BJAST.2015.197

1 Introduction
Optical tomography is a non-invasive medical
imaging method utilizing near infrared light to
explore biological tissue in order to estimate
qualitative or quantitative information about
the optical properties of the tissue. These
optical properties can be employed for diagnostic
purposes. Applications of optical tomography
include, for example, brain imaging [1] [2] [3],
breast imaging [4] [5] [6] and imaging of joints [7]
[8] [9].

Mathematically, it is related to the computation of
optical parameters for the equation of radiative
transfer. The confined validity of diffusion
approximation only to specific contexts is proved
by numerous theoretical and experimental
analyses. For example, when the scattering
features are more significant than the absorbing
features [10]. Hence, there are numerous
applications for which equation of radiative
transfer based reconstructions are required.
Examples are brain imaging, where the low
absorbing and low scattering cerebrospinal fluid
corresponds to non-diffusive light propagation;
imaging of joints [9], where clear synovial
fluid possesses non-diffusive light propagation
[11], and small animal imaging [12], where
small object dimensions (1-2 cm in diameter)
elaborate the drawbacks of the orthodox diffusion
approximation.

Algorithms are devised and experimentally
proved in biomedical imaging for two and
three dimensional problems employing a time
independent and time dependent equation of
radiative transfer [13] [14] [15] [16]. Though these

innovations are a vital achievement towards
practical implementation, but still appreciable
cross talks are observed between optical
reconstructions. The cross talk means that
purely scattering features are mainly mapped
with absorption features or vice versa. To
overcome cross talks, which may result in wrong
diagnosis, variety of data is required [17]. This
is made possible in the recent years by the
application of frequency domain measurements.
Since frequency domain measurements provide
information about both the phase and intensity of
the waves, so better separation of scattering and
absorption effects is expected [17] [18].

The paper is organized as follow. In section II,
the problem of optical tomography is formulated
in terms of equation of radiative transfer in
frequency domain. In section III, discretization
of equation of radiative transfer is presented.
Sparsification and Modified GMRES are devised
in section IV. Adjoint method for gradient
computation is described in detail in section V.
The implementation of the minimized procedure
based on quasi - Newton algorithm are covered
in section VI. Concluding remarks are offered in
section VII.

2 Problem Formulation

The equation of radiative transfer in frequency
domain describes the density of photon in the
phase space. The phase space is a function of
position x ∈ D ⊂ Rn and direction θ ∈ Sn−1

(Unit sphere in Rn) and equation is given by

T u ≡
(
iω

v
+ θ · ∇+ σa(x)

)
u(x, θ) + σs(x)(u(x, θ)

−
∫
Sn−1

k(θ, θ′)u(x, θ′)dµ(θ′)) = 0 in D × Sn−1

u(x, θ) = f(x, θ) on Γ− (2.1)

195



Muzzammel & Ehsan; BJAST, 8(2), 194-203, 2015; Article no.BJAST.2015.197

where i is
√
−1, n is 2, 3 is the space

dimensions, v ∈ R+ is the speed of light in the
medium, ω is modulation frequency of boundary
source f(x, θ), σa(x) ∈ L∞(D) is absorption
coefficient, σs(x) ∈ L∞(D) is the scattering
coefficient. u(x, θ) is unknown quantity and is
the radiant power per unit solid angle per unit
area perpendicular to direction of propagation at
x in the direction θ. dµ is the surface measure
on Sn−1. k(θ, θ′) is the scattering kernel that
describes the probability of photons travelling
in direction θ′ scatter into direction θ. It is a
positive function independent of x and satisfies
normalization condition. It is chosen as Henyey-
Greenstein phase function due to highly peak
forwardness of tissues given in [19].
In optical tomography, it is assumed that no
photon travels in an inward direction at the
boundary ∂D and boundary sets are given in
[19].

Restrictions are imposed for optical parameters,
i.e., σa and σs in order to avoid negative values
by the introduction of space parameter given
in [19]. As a result, the forward problem
is well posed and a unique solution u(x, θ)
is attained. Limited information is extracted
from the mapping of the incoming flux at the
boundary into the outgoing flux because only
angular averages of outgoing flux are attainable
conventionally. Mathematically, it means that
the spatial resolution is highly confined. This
is the main hurdle behind the employment of
uniqueness and stability constraints of inverse
transport theory [20]. As consistency is required
with the accessible evaluation technologies so
an evaluation operator with slight modification is
acquainted and is defined in [19] [21].

The estimation of the unknown absorption and
scattering coefficients (σa,σs) ∈ Q within the
domain D when the distribution of the light
sources and the evaluated data z on ∂D are
given is known as the inverse problem and is
given by

GΛf = z. (2.2)

Generally, the inverse problem is severely ill-
posed. To overcome ill-posedness, uniqueness
of reconstruction should hold. Solution of (2.2)
can be obtained by solving following least square

formulation.

min
1

2
||GΛf − z||2Z (2.3)

Extra evenness limitations are imposed on the
coefficients to stabilize the least square problem
by the introduction of space parameter Qad given
in [19]. The following regularized least square
functional can be introduced [21].

Fα(σa, σs) :=
1

2
||GΛf−z||2Z+

α

2
J (σa, σs) (2.4)

where

J (σa, σs) =
∑

p={a,s}

||σp||2H1(D)

where the last term is called a regularization
term and α is the regularization parameter. The
L-curve method is applied to choose the optimal
regularization parameter α in Fα(σa, σs) [19] [22]
[23]. Search for a pair (σa, σs) that minimizes the
least square functional Fα(σa, σs). Fα(σa, σs)
should have atleast one minimum. However the
uniqueness of reconstruction is not guaranteed
because Fα(σa, σs) is not strictly convex.

Inverse problem in optical tomography is
implemented with a minimization approach relied
on gradient evaluation. It is, therefore, required to
evaluate the Fréchet derivative of the least square
functional Fα(σa,σs) [19] [21]. However, it is not
economical to evaluate the Fréchet derivatives
directly because the optical features are infinite
dimensional. Therefore, the adjoint method is
adopted for the differentiation.

3 Discretization of Radiative
Transfer Equation

3.1 Discrete Ordinate Method
A discrete ordinate method was developed by
Chandrasekhar in 1950 [24]. In this method
[25], total scalar flux is approximated and is
described as the integral of u(x, θ) over the Sn−1

by following quadrature rule.∫
Sn−1

u(x, θ)dµ(Θ) =

J∑
j=1

nju(x, θj) (3.1)
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where θj is the jth direction and nj is the associated weight.

3.2 Finite Volume Method
Cell centred version of finite volume method is implemented to discretize spatial variables [19] [21].
Consider a mesh of Rn, M , consisting of polyhedral bounded convex subsets of Rn. This mesh M
covers the computational domain D. Let C ∈ M be a control cell (an element of mesh M ). ∂C is its
boundary. Vc is its Lebesgue Measure. Now the unknown quantity u(x, θj) is assumed constant in
control cell C and is defined as u(x, θj) ≡ ucj on C. Integration over cell C along with the application
of Divergence theorem, Lebesgue surface measure on boundary of cell C and result in the following
expression.

∑
i

∫
SC,i

θj · nc(x)ujdγ(x) + (σt +
iω

v
)Vcu(x, θj) = Vcσs(x)

J∑
j′=1

nj′kjj′u(x, θj) (3.2)

for 1 ≤ j ≤ J , where nC(x) denotes the outward normal to ∂C at point x ∈ ∂C, dγ(x) denotes the
surface Lebesgue measure on ∂C. The flux

∫
SC,i

θj · nC(x)ujdγ(x) can be approximated by First-
order upwind technique given in [19] [21]. Hence the full discretization of discrete ordinate equation
is given as: ∑

i

FCj,i + (σCt +
iω

v
)VCu

C
j = VCσ

C
s

J∑
j′=1

nj′kjj′u
C
j′ (3.3)

4 Sparsification and Modifi-
ed GMRES

4.1 Sparsification
The discrete transport equations are collected
on all control cells. As a result, following
system of complex-valued algebraic equations
are obtained.

XU = YU + Z (4.1)

where X ∈ CNJ×NJ is discretized streaming
collision operator, Y ∈ CNJ×NJ is discretized
streaming scattering operator, Z is discretized
boundary source f(x, θ), U ∈ CNJ×1 consists of
the values of u(x, θ) on the cell C in the direction
θj and is systematized as: U = (u1, ..., uJ)T

with Uj =
(
u1
j , ..., u

N
j

)T ∈ CN . The matrices
X and Y are sparse block matrices. X is a block
diagonal matrix that can be written as:

X =

 X1

. . .
XJ

+

 W0

. . .
W0


(4.2)

where the discretization of the advection operator
X is represented by Xj ∈ CN×N and is defined
by Xu := θj · ∇u. From a first order upwind
scheme, Aj does not contain more than N × NE
non zero elements. NE denotes the total number
of edges (surfaces in three dimensions) of each
control cell. Matrix W0 ∈ CN×N is diagonal:

W0 =

 V1(σ1
t + iω

v
)

. . .
VN (σNt + iω

v
)


(4.3)

where σit ≡ σia + σis for (i = 1, · · · , N). The
matrix Y can be expressed as direct product of
two smaller matrices:

Y = K⊗E0 (4.4)

with E0 ∈ CN×N a diagonal matrix given by,

E0 =

 V1σ
1
s

. . .
VNσ

N
s


and K ∈ CJ×J a dense matrix with component

(K)jj′ = ηj′kjj′
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In realistic applications, the number of
orientations J � the number of constituents of
spatial mesh N . The matrix K is not symmetric
unless ηj is assumed to be constant. Hence, the
matrix X−Y is neither symmetric nor positive
definite.

4.2 Modified GMRES Algorithm

A preconditioned modified generalized minimal
residual algorithm algorithm is chosen to solve
the forward problem [26] [27] [28]. The modified
GMRES algorithm is terminated if the relative
residues are sufficiently small. The termination
criteria is

||Rk||l2
||R0||l2

≤ 10−10 (4.5)

where Rk = Z− (X−Y)Uk and R0 = Z− (X−
Y)U0. Hence,

||Z− (X−Y)Uk||l2
||Z− (X−Y)U0||l2

≤ 10−10

where U0 is the initial guess, Uk is the U
value at the k-th GMRES iteration. Termination
criteria based on the ratio of residues increases
the accuracy of data obtained from modelled
parameters in forward problem. Relationship
of guess measurements and measurements
obtained after performing k iterations is
determined as this ratio sets the criteria for true
values.

5 Discrete Adjoint Problem
The discrete adjoint problem is designed to
compute the gradient of discrete objective
function with respect to the optical properties
on each cell [21]. For simplification, let σa ∈
RN×1 denotes the absorption coefficient vector,
i.e., (σ1

a, ..., σ
C
a , ..., σ

N
a )T . Let σs ∈ RN×1

denotes the scattering coefficient vector, i.e.,
(σ1
s , ..., σ

C
s , ..., σ

N
s )T . The discretized objective

function required to minimize is of the form given
as;

Fα(σa, σs) =
1

2

Nd∑
d=1

(PdU− zδd)2 +
α

2
J (σa, σs)

(5.1)
where number of detectors employed for each
source are Nd, zδd denotes the calculation of
the source, δ denotes the level of noise in the
calulations. Pd ∈ R1×N is evaluation operator
in discrete form that averages outgoing flux over
Sn−1
+ . The regularization term in discrete form is

given in [19]. Differentiating (5.1) with respect to
σCa

∂Fα
∂σCa

=

Nd∑
d=1

(PdU− zδd)Pd
∂U

∂σCa
+
α

2

∂J
∂σCa

(5.2)

simultaneously, differentiating (4.1) with respect
to σCa and then rearranging results in

∂U

∂σCa
= −(X−Y)−1 ∂(X−Y)

∂σCa
U (5.3)

Substitute (5.3) in the equation (5.2). Hence,

∂Fα
∂σCa

= −
Nd∑
d=1

(
PdU− zδd

)
Pd(X−Y)−1 ∂(X−Y)

∂σCa
U +

α

2

∂J
∂σCa

(5.4)

Now a new state variable V ∈ CN×1 called adjoint variable of U and adjoint solution of (4.1)is given
by

−
Nd∑
d=1

(PdU− zδd)Pd(X−Y)−1 = VT . (5.5)

Rearranging (5.5) and substituting in results in

∂Fα
∂σCa

= VT ∂(X−Y)

∂σCa
U +

α

2

∂J
∂σCa

. (5.6)

Similarly, differentiating (5.1) with respect to σCs yields

∂Fα
∂σCs

= VT ∂(X−Y)

∂σCs
U +

α

2

∂J
∂σCs

. (5.7)
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Table 1: Compressed Row Storage Scheme Expense [19].

Method
Nature Possibility Matrix Advantage

of Matrix of Storage Stored
I X-Y Yes X-Y Less Memory
II X-Y No X, W0, K and E0 Less Memory

The expressions of
∂Fα
∂σCa

and
∂Fα
∂σCs

can be

extended to the multiple sources. Let the sources
be Ns.

Fα(σa, σs) =

Ns∑
s=1

FNs
α (σa, σs) (5.8)

The matrices
∂(X−Y)

∂σCa
and

∂(X−Y)

∂σCs
are not formed explicitly in the evaluation

of VT ∂(X−Y)

∂σCa
U and VT ∂(X−Y)

∂σCs
U

respectively. This is because, these matrices
have very simple sparse structures according
to (4.2) and (4.4). Instead of this, a matrix
free method is implemented given in [19] [21].

Hence,
∂Fα
∂σCa

and
∂Fα
∂σCs

can be evaluated without

construction of any intermediate matrices.

6 Numerical Implementation

The Quasi Newton optimization algorithm is
implemented to compute the regularized least
square problem (RLS). In realistic applications,
the convergence rate is much faster than
non linear conjugate gradient method with the
employment of The Fletcher-Reeves or the
Polak-Ribiére [14] [29]. Gauss Newton method
without the confinement on constraints generally
fails in frequency domain reconstruction because
the extreme non linearity slows the convergence
rate [29] [30].

Figure 1: The Evaluation Expense of Numerical Implementation [19].
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Figure 2: The illustration of numerical computation with regularized least square
and Quasi Newton method[19].

Figure 3: Continuation method for minimizing the expense of L curve method [19].

With σ denoting the vector of discretized
optical properties, the quasi Newton methods
can be characterized by the following iterative
process.

σk+1 = σk + αkpk (6.1)

where k ∈ N. pk is a descent direction. The
BFGS algorithm chooses pk to be the solution

of an approximated solution of Newton type
optimality equation pk = Hkgk, αk is a step
length, gk is the gradient of the least square
functional and is given by; gk = −∇σFα(σk), Hk
is the inverse Hessian matrix of Fα at step k. The
computation of real inverse Hessian matrices is
very time consuming. Hence, the limited memory
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BFGS algorithm chooses to approximate Hk by
the following updating rule [29].

Hk+1 = WT
k HkWk + ρksks

T
k (6.2)

where Wk = I − ρkyks
T
k and I is the identity

matrix, sk = σk+1 − σk, yk = gk+1 −
gk, ρk = 1

yT
k
sk

. To enforce limitations on
optical parameters, the relation pk = Hkgk is
changed little by the implementation of a gradient
projection method [29] [31] [32].

7 Conclusion

A better optical image reconstruction method
is devised. This method considers all the
possible errors related to the collection of data.
Computation time is significantly reduced by
devising sparse structures of complex valued
algebraic matrices as low significant data is
ruled out. Termination criteria based on the
ratio of residues increases the accuracy of data
obtained from modelled parameters in forward
problem.The frequency domain reconstruction
reduces crosstalk between absorption and
scattering parameters hence the shortcomings
of the diffusion approximation of the radiative
transfer equation are overcome. It provides a
very useful diagnostic approach in modelling
strongly absorbing regions such as large blood
filled spaces e.g brain haematoma, low scattering
void like inclusions such as spaces filled with
cerebrospinal fluid, amniotic fluid or synovial fluid
and optically relatively thin media such as fingers
and small animals imaging.
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