
*Corresponding author: Email: obengdentehw@yahoo.com;

Archives of Current Research International
3(2): 1-12, 2016, Article no.ACRI.23169

ISSN: 2454-7077

SCIENCEDOMAIN international
 www.sciencedomain.org

Application of Linear Integer Programming to
Optimal Resources Allocation: A Case Study of

Mampong Municipal Assembly, Mampong-Ashanti

Nelson Opoku-Mensah1, W. Obeng-Denteh1*, Isaac Owusu-Mensah2
and Frimpong Wiafe3

1Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi,

Ghana.
2Department of Science Education, University of Education, Winneba, Mampong-Ashanti, Ghana.

3Department of Religious Studies, Kwame Nkrumah University of Science and Technology, Kumasi,
Ghana.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/ACRI/2016/23169
Editor(s):

(1) Yanpeng Li, Research Fellow, Department of Health Science Research, Mayo Clinic, USA.
Reviewers:

(1) Ette Harrison Etuk, Rivers State University of Science and Technology, Nigeria.
(2) Grienggrai Rajchakit, Maejo University, Thailand.

Complete Peer review History: http://sciencedomain.org/review-history/13147

Received 17 th November 2015
Accepted 18 th December 2015

Published 3 rd February 2016

ABSTRACT

The problem of allocating resources at the Mampong Municipal Assembly, Mampong-Ashanti with
the aim of minimizing unnecessary lapses during budget allocation for resources by the assembly
was considered. The problem was formulated as an Integer Linear Programming (ILP) problem
using the available data from the Municipal Assembly. It was found that out of the twelve different
locations considered and budget of Eight Hundred and Seventy Thousand Ghana Cedis, the
optimal number of classroom to be built was thirty three (33) representing a three 3-unit classroom
and four 6-unit classroom buildings at seven different locations within the Municipal at a minimum
budget of Eight Hundred and Seven Thousand Ghana Cedis (GH¢ 807,000) respectively. We
concluded that the Knapsack problem for selecting required sites in critical situations such as
construction of school buildings was useful and it can be applied to any situation where allocation of

Case Study

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

2

funds in the sector of educational development becomes a serious setback. All of this will be
achieved by using software called quantitative management which helps in solving and analyzing
such problems.

Keywords: Integer linear programming; resources; optimal; school buildings; allocation.

1. INTRODUCTION

It is a universal truth that education is key to
eradicating poverty in the modern society and
this cannot be overemphasized. In a developing
country like Ghana education will help citizens to
acquire the needed skills and knowledge. The
skill and knowledge acquired will make the
citizens functionally literate and productive to
facilitate poverty alleviation and promote the
rapid socio-economic growth.

Education is a fundamental human right for all
children and this right may not be realized in
Ghana if strategic measures are not put in place
to ensure adequate infrastructure provision to
schools, especially in rural communities. School
infrastructure is everything from electricity,
toilets, safe buildings, tables, chairs, libraries,
computer rooms, safe classrooms, sports fields,
laboratories for science experiments, running
water and fencing.

It is vital when we consider the fact that school
infrastructure or resources, impact on how well
teachers are able to teach and learners are able
to learn. Learners attending schools with better
infrastructure tend to perform better than learners
who come from schools under trees. Meanwhile,
the poor state of school infrastructure was
evident in the number of public schools under
trees. It is expected that all stakeholders
particularly Civil Society, Government, Municipal,
District and Metropolitans Assemblies ensure
that funds provided are put into proper use.

The government allocated funds for putting up
unit classrooms in these newly created
Municipals. This calls for a scientific way or
method that will help in the allocation of the
provided fund in the Municipal in putting up
schools in the community. The Municipal has
allocated some fund to build unit classroom and
must decide on which of these communities to
put up the structures. Modern society, with
advanced technology usually needs to make best
possible decisions, which example involve the
best possible use of resources or funds allocated
to the educational sector to minimize production
or guarantee full benefit of all.

Integer programs are beneficial because, if one
can solve them, then one is guaranteed to obtain
the best solution. However, this guarantee of
optimality has a computational tradeoff, and
integer programs currently may require
exponential times to solve. The computational
problems are so extreme that many integer
programs cannot be solved, even using
supercomputers [1].

The knapsack problem has been studied for
more than a century, with early works dating as
far back as 1897 for the reason that their direct
application to problems arises in industries and
also for their contribution to the solution methods
for integer programming problems. Quite a lot of
exact algorithms based on branch and bound,
dynamic programming and heuristics have been
proposed to solve the Knapsack Problems.

Renata and Grazia [2] offered an exact approach
based on the optimal solution of sub-problems
limited to a subset of variables. Each sub-
problem is faced through a recursive variable-
fixing process that continues until the number of
variables decreases below a given threshold
(restricted core problem). The solution space of
the restricted core problem is split into
subspaces, each containing solutions of a given
cardinality. Each subspace is then explored with
a branch-and-bound algorithm. Pruning
conditions are introduced to improve the
efficiency of the branch-and-bound routine.

The purpose of this paper is to model a real-life
problem in developing sites for unit classroom at
Mampong Municipal as a 0-1 knapsack
problem, and propose branch-and-bound
algorithm and to determine the maximum number
of unit classrooms required to be built on
selected sites and also results of the findings will
be analyzed and interpreted.

The Mampong Municipal with Mampong as its
capital is geographically located on the northern
part of the region and shares boundary with
Atebubu, Sekyere East, AfigyaSekyere and
Ejura-Sekyere Dumasi to the north, east, south
and west respectively. The Municipal is located
within longitude 0.05° and 1.30° W and latitudes

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

3

6.55° and 7.30°N covering a total land area of
2346 ��� in the Ashanti Region of Ghana. It has
about 220 settlements with about 70% being
rural. The rural areas are mostly found in the
Afram Plains portion of the Municipal where
Communities with less than fifty (50) people are
scattered here and there.

The Municipal is generally low lying and
gradually rising through rolling hills stretching
southward towards Mampong. The highest point
is 2400 m whilst the lowest is 135 m above mean
sea level. It is fairly drained by several streams
and rivers like Afram, Sene, Sasebonso, and
Kyirimfa.

2. MATERIALS AND METHODS

The mathematical model will be formulated using
linear programming based on the data provided
at the budget office of the Mampong Municipal
Assembly. The computer software package that
will be used to solve and analyze the data is the
Quantitative Management (QM software).

2.1 The Model

Michel, Perrot and Vanderbeck [3] considered
the multiple-class integer knapsack problem with
setups. Items are partitioned into classes whose
use imply a setup cost and associated capacity
consumption. Item weights are assumed to be a
multiple of their class weight. The total weight of
selected items and setups is bounded. The
objective is to maximize the difference between
the profits of selected items and the fixed costs
incurred for setting-up classes. The authors
showed the extent to which classical results for
the knapsack problem can be generalized to
these variants with setups. In particular, an
extension of the branch-and-bound algorithm of
Horowitz and Sahni [4] is developed for problems
with positive setup costs. Yan and Chen [5]
developed a model that help Taiwanese intercity
bus carriers in timetable settings and bus routing
or scheduling. The model employs multiple time-
space networks that can formulate bus
movements and passenger flows and manage
the interrelationships between passenger trip
demands and bus trip suppliers to produce the
best timetables and bus routes or schedules.
Kosuch, Le Bodic & Lisser [6] studied the
stochastic knapsack problem with expectation
constraint. The item weights are assumed to be
independently normally distributed. The authors
solved the relaxed version of this problem using

a stochastic gradient algorithm in order to
provide upper bounds for a branch-and-bound
framework. The 0-1 knapsack problem is a linear
integer-programming problem with a single
constraint and binary variables. The knapsack
problem with an inequality constraint has been
widely studied, and several efficient algorithms
have been published. Balasubramanian and
Sanjiv [7] considered the equality-constraint
knapsack problem, which has received relatively
little attention. The authors described a branch-
and-bound algorithm for this problem, and
present computational experience with up to
10,000 variables. An important feature of this
algorithm is a least-lower-bound discipline for
candidate problem selection.

2.2 Linear Programming

Linear programming is a mathematical method
for determining a way to achieve the best
outcome (such as maximum profit or lowest cost)
in a given mathematical model for some list of
requirements represented as linear relationships.
Linear programming is a specific case of
mathematical programming (mathematical
optimization).

More formally, linear programming is a technique
for the optimization of a linear objective function,
subject to linear equality and linear inequality
constraints. Its feasible region is a convex
polyhedron, which is a set defined as the
intersection of finitely many half spaces, each of
which is defined by a linear inequality. Its
objective function is a real-valued affine
function defined on this polyhedron. A linear
programming algorithm finds a point in the
polyhedron where this function has the smallest
(or largest) value if such a point exists.

Linear programs are problems that can be
expressed in canonical form:
 maximize c�x subject to Ax ≤ b

 and x > 0 , where x represents the vector of
variables (determined), c and b are vectors of
(known) coefficients, A is a (known) matrix of
coefficients, and �. �� are the matrix transpose.
The expression to be maximized or minimized is
called the objective function (cTx in this case).
The inequalities Ax ≤ b is the constraints which
specify a convex polytope over which the
objective function is to be optimized. In this

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

4

context, two vectors are comparable when they
have the same dimensions. If every entry in the
first is less-than or equal-to the corresponding
entry in the second then we can say the first
vector is less-than or equal-to the second vector.

2.3 Complete Linear Programming Model

Combining the aforementioned components into
a single statement gives:

������� !" ��#���� � = % &'�'
(

')*

+,-. &/ /! % �0'�' 1≤=≥3 -0 , 5!" � = 1 … �
(

')*

 0 ≤ �' ≤ ,' 5!" . = 1 … #

The constraints, including non-negativity and
simple upper bounds, define the feasible region
of a problem.

2.4 Assumptions of Linear Programming

For a problem to be realistically represented as a
linear program, the following assumptions should
hold:

(i) The constraints and objective function
are linear.

(a) This requires that the value of the

objective function and the response of
each resource expressed by the
constraints are proportional to the level
of each activity expressed in the
variables.

(b) Linearity also requires that the effects of
the value of each variable on the values
of the objective function and the
constraints are additive. In other words,
there can be no interactions between the
effects of different activities; i.e., the level
of activity X1 should not affect the costs
or benefits associated with the level of
activity X2.

(ii) Divisibility: The values of decision
variables can be fractions. Sometimes
these values only make sense if they are
integers; then we need an extension of
linear programming called integer
programming.

(iii) Certainty: The model assumes that the
responses to the values of the variables
are exactly equal to the responses
represented by the coefficients.

(iv) Data: Formulating a linear program to
solve a problem assumes that data are
available to specify the problem.

2.5 Knapsack Problem

The knapsack problem is one of the most studied
problems in combinatorial optimization, with
many real-life applications. For this reason, many
special cases and generalizations have been
examined.

Common to all versions are a set of # items, with
each item 1 ≤ . ≤ # having an associated
profit 8' and weigh t9' . The objective is to pick
some of the items, with maximal total profit, while
obeying that the maximum total weight of the
chosen items must not exceed : . Generally,
these coefficients are scaled to become integers,
and they are almost always assumed to be
positive.

The knapsack problem in its most basic form:

������� % 8'�'
(

')*

Knapsack problems appear in real-world
decision-making processes in a wide variety of
fields, such as finding the least wasteful way to
cut raw materials, selection of capital
investments and financial portfolios, selection of
assets for asset-backed securitization, and
generating keys for the cryptosystem. One early
application of knapsack algorithms was in the
construction and scoring of tests in which the
test-takers have a choice as to which questions
they answer. For small examples it is a fairly
simple process to provide the test-takers with
such a choice. For example, if an exam contains
12 questions each worth 10 points, the test-taker
need only answer 10 questions to achieve a
maximum possible score of 100 points. However,
on tests with a heterogeneous distribution of
point values, that is, different questions are worth
different point values, it is more difficult to
provide choices. Feuerman and Weiss [8]
proposed a system in which students are given a

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

5

heterogeneous test with a total of 125 possible
points. The students are asked to answer all of
the questions to the best of their abilities. Of the
possible subsets of problems whose total point
values add up to 100, a knapsack algorithm
would determine which subset gives each
student the highest possible score.

2.6 0-1 Knapsack Problem

The most common problem being solved is the
0-1 knapsack problem, which restricts the
number �0 of copies of each kind of item to zero
or one.

Mathematically the 0-1-knapsack problem can be
formulated as:

Let there be # items, �* to �(where �0 has a
value ;0 and weight 90 . The maximum weight
that the bag can carry is : . It is common to
assume that all values and weights are
nonnegative. To simplify the representation, it is
assumed that the items are listed in increasing
order of weight.

������� % ;0�0
(

0)*

+,-. &/ /! % 90�0 ≤ :,
(

0)*
�0 ∈ =0, 1>

Maximize the sum of the values of the items
in the knapsack so that the sum of the
weights must be less than the knapsack's
capacity.

A similar dynamic programming solution for
the 0-1 knapsack problem also runs in pseudo-
polynomial time. Assume 9*, 9�, … , 9(, : are
strictly positive integers. Define �?�, 9@ to be the
maximum value that can be attained with weight
less than or equal to 9 using items up to �.

Thus �?�, 9@ can be defined recursively as
follows:
 ����?�, 9@ = �?� − 1, 9@ if 90 > 9 (the new item

is greater than the existing weight limit).

.

The solution can then be found by calculating �?#, :@. To do this efficiently we can use a table
to store preceding computations.

2.7 Branch and Bound

The basic concept underlying the branch-and-
bound technique is to divide and conquer. The
process contains dividing (branching) original
large problem into smaller sub problems and
bounding the best solution in the subsets.

The steps are;

(i) Solve the problem without integer
restrictions,

(ii) If the solution is integer , then this must be
the solution to integer problem,

(iii) If these variables are not integer valued,
the feasible region is divided by adding
constraints restricting the value of one of
the variables that was not integer valued,

(iv) Bounds on the value of the objective
function are found and used to help
determine which sub-problems can be
eliminated and when the optimal solution
has been found,

(v) If a solution is not optimal, a new sub-
problem is selected and branching
continues.

Branch and bound (BB or B&B) is a
general algorithm for finding optimal solutions of
various optimization problems, especially in
discrete and combinatorial optimization. A
Branch-and-Bound algorithm consists of a
systematic enumeration of all admissible
solutions, where large subsets of fruitless
candidates are discarded en masse, by using
upper and lower estimated bounds of the
quantity being optimized.

3. DATA COLLECTION AND ANALYSIS

In an effort to develop the educational
infrastructure in the Municipal, the Assembly
proposed a budget of BC¢870,000.00 for the
development of lands and the construction of
Unit classroom buildings. These buildings are to
be constructed at twelve different towns within
the Municipal, whose estimated capacities in
terms of the number of unit classrooms and
development cost are given in Table 1. The
respective towns to be considered within the
Municipal are Kofiase, Kyekyewere, Asaam,
Benim, Atonsuagya, Yonso, Apaah, Adidwan,
Nyinampong, Abuontem, Nkwanta and Penteng.

A unit classroom is made up of the number of
study rooms, an office, a store, staff common
room and a toilet facility. The type of unit

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

6

classroom to be built in each town was based on
the population, existing educational
infrastructures. All three unit classrooms are for
JHS, six unit classroom is for the lower and
upper primary schools, and the nine unit
classroom is for both primary and JHS. The
difference in the cost for the same unit classroom
was due to different construction works to be
done on the various lands. Appendix 1 provides
the breakdown of the budget of associated cost
for each unit classroom for the various locations.

Table 1. Respective towns with their budget

allocations

Towns Capacity
(unit classroom)

Cost
(GH¢ 1000)

Kofiase 3 83
Kyekyewere 6 169
Asaam 9 270
Benim 3 75
Atonsuagya 3 103
Yonso 6 145
Apaah 3 97
Adidwan 6 139
Nyinampong 3 73
Abuontem 6 149
Nkwanta 9 267
Penteng 6 143

The dilemma here is to choose suitable locations
in such a way that the optimal capacity would be
attained without exceeding the budget allocated
for project.

With a link to the Knapsack Problem model, the
holding capacity of the resource maximum value
is the Assembly’s budget. The various items to
be measured are the different sites (lands) that
can be developed for the project, the weight of
any item is the cost of developing and
construction of the project and the value of each
item is the capacity of each site.

The problem can therefore be modeled as:

F������ % &0�0
(

0)*

Where;
 G = Total capacity &0 = Capacity of each item or site �0 = Number of sites developed 90 = Cost of developing a site

Thus,
 ������� G = 3T* + 6T� + 9TX + 3TY + 3TZ+ 6T[+ 3T\ + 6T] + 3T^+ 6T*_ + 9T** + 6T*�

 +,-. &/ /! 83T* + 169T� + 270TX + 75TY+ 103TZ + 145T[+ 97T\+ 139T] + 73T^ + 149T*_+ 267T** + 143T*� ≤ 870

A Branch and Bound algorithm model is applied
to carry out the computation of the model. The
items to be considered are twelve (which means # = 12� consisting of Kofiase, Kyekyewere,
Asaam, Benim, Atonsuagya, Yonso, Apaah,
Adidwan, Nyinampong, Abuontem, Nkwanta and
Penteng.

The weights of each item are 9* = 83, 9� =169, 9X = 270, 9Y = 75, 9Z = 103, 9[= 145, 9\ =97, 9] = 139, 9^ = 73, 9*_ = 149, 9** =267, 9*� = 143 whiles the values of each item
are T* = 3, T� = 6, TX = 9, TY = 3, TZ = 3, T[=6, T\ = 3, T] = 6, T^ = 3, T*_ = 6, T** = 9, T*� = 6
and the maximum available budget fund : =870.

Note: For locations

X1: Kofiase X7: Apaah
X2: Kyekyewere X8: Adidwan
X3: Asaam X9: Nyinampong
X4: Benim X10: Abuontem
X5: Atonsuagya X11: Nkwanta
X6: Yonso X12: Penteng

4. RESULTS OF THE ANALYSIS

Results of the analysis in obtaining maximum
number of unit classroom buildings at selected
location in the Municipal are shown in the tables
below. The tables provide a breakdown of the
associated cost in building the unit classroom.
The optimal selection of unit classrooms yielded
eight hundred and seven thousand Ghana Cedis
(GH¢807,000). The amount is able to construct a
three 3-unit classroom building at Kofiase, Benim
and Nyinampong and four 6-unit classroom
building at Yonso, Adidwan, Abuontem and
Penteng respectively. Thus the total number of
classroom to be built out of budget is 33. This
means that out of the total budget of Eight
Hundred and Seventy Thousand Ghana Cedis
(GH¢ 870,000) which was proposed by the
Assembly, an excess amount of Sixty Three
Thousand Ghana Cedis (GH¢ 63,000) was left.

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

7

This excess amount can be used to undertake
other project in the Municipal.

4.1 Sensitivity Analysis on the Whole
Solution

The Sensitivity Analysis is often used for integer
linear programming problem than the Linear
Programming (LP) problem. That is, a very small
change in one of the coefficients in the
constraints can cause a reasonably large change
in the optimal value. In the case of our study, any
time there is a change in any of the amount of
the budget allocation, and then the integer linear
program problem has to be resolved with slight
variation in the coefficients before an optimal
solution is chosen for implementation.

5. CONCLUSION

The research sought to use the Knapsack
problem for selecting required sites in critical
situations such as construction of school
buildings. However, it can be applied to any
situation where allocation of funds in the sector
of development becomes a serious problem. A
minimum amount of eight hundred and seven
thousand Ghana cedis (GH¢807,000) was
obtained in construction of a three 3-unit and four
6-unit classroom buildings at seven different
locations within the Municipal to enhance the
educational development.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Dahl G. An introduction to convexity,

polyhedral theory and combinatorial
optimization. University of Oslo,
Department of Informatics; 1997.

2. Mansini R, Speranza MG. An exact
algorithm for the multidimensional
knapsack problem; 2009.

Available:http://ideas.repec.org/a/eee/ejore
s/v196y2009i3p909-918

3. Michel S, Perrot N, Vanderbeck F.
Knapsack problems with setups; 2009.

Available:http://ieeexplore.ieee.org/xpl/free
abs

4. Horowitz E, Sahni S. Computing partitions
with applications to knapsack problems.
Journal of ACM. 1974;21:277-292.

5. Yan S, Chen HL. A scheduling model and
a solution algorithm for inter-city bus
carriers. Transportation Research Part A:
Policy & Practice. 2002;36:805.

6. Kosuch S, Le Bodic P, Leung J, Lisser A.
On Stochastic Bilevel Programming
Problem with Knapsack Constraints; 2009.

Available:http://www.kosuch.eu/stefanie/ve
roeffentlichungen

7. Balasubramanian R, Sanjiv S. An
algorithm for the 0-1 equality knapsack
problem. Journal of the Operational
Research Society. 1988;39:1045–1049.

8. Available:https://en.wikipedia.org/wiki/Kna
psack_problem

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

8

APPENDIX 1

Breakdown of budget allocations for various sites

Item Description X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
A Preliminaries 5,450 2,623 17,463 4,320 8,450 1,545 5,950 2,689 2,761 1,823 17,263 2,435
B Excavation and

Earthworks
2,2032 35,891 50,499 20,214 16,532 28,321 19,532 37,105 18,282 33,891 50,490 27,134

C Concrete works 6,482 14,473 15,841 4,361 11,182 8,923 11,482 12,254 5,938 9,473 15,841 8,374
D Block works 4,216 5,987 17,499 4,321 9,916 5,579 9,216 8,065 4,200 4,787 17,500 5,372
E Roofing to summary 3,788 9,321 10,377 3,680 4,738 6,819 4,288 8,910 3,370 8,421 10,380 8,934
F Carpentry works 9,160 8,880 10,044 7,670 9,660 6,621 9,360 8,790 6,423 7,820 10,040 10,009
G Joinery/Walling 2,508 18,914 20,433 2,452 3,208 18,091 3,008 20,027 3,342 18,464 20,421 15,782
H Metal works 8,531 8,927 18,844 7,462 9,831 6,892 9,031 610 6,443 5,927 18,717 7,280
I Plastering work/floor 3,777 17,342 19,321 2,992 8,077 14,510 7,277 15,828 2,934 16,842 19,322 14,489
J Painting/decoration 3,527 9,272 10,372 3,341 4,427 4,752 3,727 6,410 3,531 5,672 10,373 6,730
K External works 5,112 5,973 12,213 4,670 6,312 3,989 5,512 6,800 4,520 5,423 12,213 6,645
L Construction of ramps 1,587 1,939 9,852 1,382 2,237 789 1,787 605 1,363 1,489 9,853 4,849
M Electrical works 4,259 5,490 18,479 4,540 6,359 5,258 4,359 8,512 4,950 5,440 17,847 5,344
N Surplus Amount 2,571 24,028 38,763 3,595 2,071 32,911 2,471 2,395 4,943 23,528 36,740 19,623
 Total 83,000 169,000 270,000 75,000 103,000 145,000 97,000 139,000 73,000 149,000 267,000 143,000

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

9

APPENDIX 2

Optimal solutions for the various iterative stages (output from QM software)

Iteration Level Added
constraint

Solution
type

Solution
value

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

Cost

 Optimal 33 1 0 0 1 0 1 0 1 1 1 0 1 807
1 5 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 1 1 0 1 807
2 6 X1<= 0 Integer 33 0 0 0 1 1 1 0 1 1 1 0 1 827
3 7 X4<= 0 Integer 33 1 0 0 0 1 1 0 1 1 1 0 1 835
4 8 X10<= 0 Sub optimal 30 1 0 0 1 1 1 0 1 1 0 0 1 761
5 9 X9<= 0 Integer 33 1 0 0 1 1 1 0 1 0 1 0 1 837
6 10 X6<= 0 Sub optimal 30 1 0 0 1 1 0 0 1 1 1 0 1 765
7 11 X12<= 0 Sub optimal 30 1 0 0 1 1 1 0 1 1 1 0 0 767
8 12 X8<= 0 Sub optimal 30 1 0 0 1 1 1 0 0 1 1 0 1 771
9 6 X5<= 0 Integer 33 0 0 0 1 0 1 1 1 1 1 0 1 821
10 7 X4<= 0 Integer 33 0 0 0 0 1 1 1 1 1 1 0 1 849
11 8 X10<= 0 Sub optimal 30 0 0 0 1 1 1 1 1 1 0 0 1 775
12 9 X9<= 0 Integer 33 0 0 0 1 1 1 1 1 0 1 0 1 851
13 10 X6<= 0 Sub optimal 30 0 0 0 1 1 0 1 1 1 1 0 1 779
14 11 X12<= 0 Sub optimal 30 0 0 0 1 1 1 1 1 1 1 0 0 781
15 12 X8<= 0 Sub optimal 30 0 0 0 1 1 1 1 0 1 1 0 1 783
16 7 X5<= 0 Integer 33 1 0 0 0 0 1 1 1 1 1 0 1 829
17 8 X10<= 0 Sub optimal 30 1 0 0 0 1 1 1 1 1 0 0 1 783
18 9 X9<= 0 Integer 33 1 0 0 0 1 1 1 1 0 1 0 1 859
19 10 X6<= 0 Sub optimal 30 1 0 0 0 1 0 1 1 1 1 0 1 787
20 11 X12<= 0 Sub optimal 30 1 0 0 0 1 1 1 1 1 1 0 0 789
21 12 X8<= 0 Sub optimal 30 1 0 0 0 1 1 1 0 1 1 0 1 793
22 7 X10<= 0 Integer 33 1 0 0 1 1 1 1 1 1 0 0 1 858
23 9 X5<= 0 Integer 33 1 0 0 1 0 1 1 1 0 1 0 1 835
24 10 X6<= 0 Sub optimal 30 1 0 0 1 1 0 1 1 0 1 0 1 789
25 11 X12<= 0 Sub optimal 30 1 0 0 1 1 1 1 1 0 1 0 0 791
26 12 X8<= 0 Sub optimal 30 1 0 0 1 1 1 1 0 0 1 0 1 795
27 9 X6<= 0 Integer 33 1 0 0 1 1 0 1 1 1 1 0 1 862

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

10

Iteration Level Added
constraint

Solution
type

Solution
value

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

Cost

28 10 X12<= 0 Integer 33 1 0 0 1 1 1 1 1 1 1 0 0 864
29 11 X8<= 0 Integer 33 1 0 0 1 1 1 1 0 1 1 0 1 868
30 7 X5<= 0 Integer 33 0 0 1 1 0 1 0 1 1 0 0 1 845
31 8 X5<= 0 Integer 33 0 0 1 0 0 1 1 1 1 0 0 1 867
32 9 X5<= 0 Integer 33 0 0 1 1 0 1 1 1 0 0 0 1 869
33 8 X5<= 0 Integer 33 1 0 1 0 0 1 0 1 1 0 0 1 853
34 9 X5<= 0 Integer 33 1 0 1 1 0 1 0 1 0 0 0 1 855
35 9 X5<= 0 Integer 33 0 0 1 0 0 1 0 1 0 1 0 1 846
36 9 X5<= 0 Integer 33 1 0 1 1 0 0 0 1 0 1 0 1 859
37 10 X5<= 0 Integer 33 1 0 1 1 0 1 0 1 0 1 0 0 861
38 11 X5<= 0 Integer 33 1 0 1 1 0 1 0 0 0 1 0 1 865
39 9 X5<= 0 Integer 33 0 0 1 1 0 0 0 1 1 1 0 1 849
40 10 X5<= 0 Integer 33 1 0 1 0 0 0 0 1 1 1 0 1 857
41 10 X5<= 0 Integer 33 0 0 1 1 0 1 0 1 1 1 0 0 851
42 11 X5<= 0 Integer 33 1 0 1 0 0 1 0 1 1 1 0 0 859
43 11 X5<= 0 Integer 33 0 0 1 1 0 1 0 0 1 1 0 1 855
44 12 X5<= 0 Integer 33 1 0 1 0 0 1 0 0 1 1 0 1 863
45 7 X5<= 0 Integer 33 0 0 0 1 0 1 0 1 1 0 1 1 842
46 7 X5>= 1 Integer 33 0 0 0 0 1 1 0 1 1 0 1 1 870
47 8 X5<= 0 Integer 33 0 0 0 0 0 1 1 1 1 0 1 1 864
48 9 X5<= 0 Integer 33 0 0 0 1 0 1 1 1 0 0 1 1 866
49 8 X5<= 0 Integer 33 1 0 0 0 0 1 0 1 1 0 1 1 850
50 9 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 0 0 1 1 852
51 9 X5<= 0 Integer 33 0 0 0 0 0 1 0 1 0 1 1 1 843
52 9 X5<= 0 Integer 33 1 0 0 1 0 0 0 1 0 1 1 1 856
53 8 X7<= 0 Integer 33 0 0 0 1 0 0 1 1 0 1 1 1 870
54 10 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 0 1 1 0 858
55 11 X5<= 0 Integer 33 1 0 0 1 0 1 0 0 0 1 1 1 862
56 9 X5<= 0 Integer 33 0 0 0 1 0 0 0 1 1 1 1 1 846
57 10 X5<= 0 Integer 33 0 0 0 0 0 0 1 1 1 1 1 1 868
58 10 X5<= 0 Integer 33 1 0 0 0 0 0 0 1 1 1 1 1 854
59 10 X5<= 0 Integer 33 0 0 0 1 0 1 0 1 1 1 1 0 848
60 9 X7>= 1 Integer 33 0 0 0 0 0 1 1 1 1 1 1 0 870

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

11

Iteration Level Added
constraint

Solution
type

Solution
value

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

Cost

61 11 X5<= 0 Integer 33 1 0 0 0 0 1 0 1 1 1 1 0 856
62 11 X5<= 0 Integer 33 0 0 0 1 0 1 0 0 1 1 1 1 852
63 12 X5<= 0 Integer 33 1 0 0 0 0 1 0 0 1 1 1 1 860
64 7 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 1 1 0 1 818
65 9 X9<= 0 Integer 33 0 1 0 0 1 1 0 1 0 1 0 1 848
66 7 X10<= 0 Integer 33 0 1 0 0 1 1 1 1 1 0 0 1 869
67 9 X5<= 0 Integer 33 0 1 0 0 0 1 1 1 0 1 0 1 842
68 9 X5<= 0 Integer 33 0 1 1 0 0 1 0 1 0 0 0 1 866
69 7 X10>= 1 Integer 33 0 1 1 0 0 0 0 1 0 1 0 1 870
70 9 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 0 0 1 1 863
71 10 X5<= 0 Integer 33 0 1 0 0 0 0 0 1 0 1 1 1 867
72 11 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 0 1 1 0 869
73 7 X5<= 0 Integer 33 1 1 0 0 0 1 1 1 1 0 0 1 849
74 8 X7<= 0 Integer 33 1 1 0 0 1 1 0 1 1 0 0 1 855
75 9 X5<= 0 Integer 33 1 1 0 0 0 1 0 1 0 1 0 1 828
76 9 X5<= 0 Integer 33 1 1 0 0 0 0 1 1 1 1 0 1 853
77 10 X7<= 0 Integer 33 1 1 0 0 1 0 0 1 1 1 0 1 859
78 10 X5<= 0 Integer 33 1 1 0 0 0 1 1 1 1 1 0 0 855
79 11 X7<= 0 Integer 33 1 1 0 0 1 1 0 1 1 1 0 0 865
80 11 X5<= 0 Integer 33 1 1 0 0 0 1 1 0 1 1 0 1 859
81 12 X7<= 0 Integer 33 1 1 0 0 1 1 0 0 1 1 0 1 865
82 7 X5<= 0 Integer 33 1 1 0 1 0 1 0 1 1 0 0 1 827
83 8 X1<= 0 Integer 33 0 1 0 1 1 1 0 1 1 0 0 1 847
84 9 X9<= 0 Integer 33 1 1 0 1 1 1 0 1 0 0 0 1 857
85 10 X6<= 0 Sub optimal 30 1 1 0 1 1 0 0 1 1 0 0 1 785
86 11 X12<= 0 Sub optimal 30 1 1 0 1 1 1 0 1 1 0 0 0 787
87 12 X8<= 0 Sub optimal 30 1 1 0 1 1 1 0 0 1 0 0 1 791
88 8 X5<= 0 Integer 33 0 1 0 1 0 1 1 1 1 0 0 1 841
89 9 X5<= 0 Integer 33 1 1 0 1 0 1 1 1 0 0 0 1 851
90 9 X5<= 0 Integer 33 0 1 1 1 0 0 0 1 1 0 0 1 869
91 9 X5<= 0 Integer 33 0 1 0 1 0 0 0 1 1 0 1 1 866
92 10 X5<= 0 Integer 33 0 1 0 1 0 1 0 1 1 0 1 0 868
93 9 X5<= 0 Integer 33 0 1 0 1 0 1 0 1 0 1 0 1 820

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169

12

Iteration Level Added
constraint

Solution
type

Solution
value

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

Cost

94 10 X6<= 0 Sub optimal 30 0 1 0 1 1 0 0 1 0 1 0 1 778
95 11 X12<= 0 Sub optimal 30 0 1 0 1 1 1 0 1 0 1 0 0 780
96 12 X8<= 0 Sub optimal 30 0 1 0 1 1 1 0 0 0 1 0 1 784
97 9 X5<= 0 Integer 33 1 1 0 1 0 0 1 1 0 1 0 1 855
98 10 X7<= 0 Integer 33 1 1 0 1 1 0 0 1 0 1 0 1 861
99 10 X5<= 0 Integer 33 1 1 0 1 0 1 1 1 0 1 0 0 857
100 11 X7<= 0 Integer 33 1 1 0 1 1 1 0 1 0 1 0 0 863
101 11 X5<= 0 Integer 33 1 1 0 1 0 1 1 0 0 1 0 1 861
102 12 X7<= 0 Integer 33 1 1 0 1 1 1 0 0 0 1 0 1 867
103 9 X5<= 0 Integer 33 1 1 0 1 0 0 0 1 1 1 0 1 831
104 10 X1<= 0 Integer 33 0 1 0 1 1 0 0 1 1 1 0 1 851
105 11 X12<= 0 Sub optimal 30 1 1 0 1 1 0 0 1 1 1 0 0 791
106 12 X8<= 0 Sub optimal 30 1 1 0 1 1 0 0 0 1 1 0 1 795
107 10 X5<= 0 Integer 33 0 1 0 1 0 0 1 1 1 1 0 1 845
108 10 X5<= 0 Integer 33 1 1 0 1 0 1 0 1 1 1 0 0 833
109 11 X1<= 0 Integer 33 0 1 0 1 1 1 0 1 1 1 0 0 853
110 12 X8<= 0 Sub optimal 30 1 1 0 1 1 1 0 0 1 1 0 0 797
111 11 X5<= 0 Integer 33 0 1 0 1 0 1 1 1 1 1 0 0 847
112 11 X5<= 0 Integer 33 1 1 0 1 0 1 0 0 1 1 0 1 837
113 12 X1<= 0 Integer 33 0 1 0 1 1 1 0 0 1 1 0 1 857
114 12 X5<= 0 Integer 33 0 1 0 1 0 1 1 0 1 1 0 1 851

© 2016 Opoku-Mensah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Peer-review history:

The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/13147

