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ABSTRACT 
 
The problem of allocating resources at the Mampong Municipal Assembly, Mampong-Ashanti with 
the aim of minimizing unnecessary lapses during budget allocation for resources by the assembly 
was considered. The problem was formulated as an Integer Linear Programming (ILP) problem 
using the available data from the Municipal Assembly. It was found that out of the twelve different 
locations considered and budget of Eight Hundred and Seventy Thousand Ghana Cedis, the 
optimal number of classroom to be built was thirty three (33) representing a three 3-unit classroom 
and four 6-unit classroom buildings at seven different locations within the Municipal at a minimum 
budget of Eight Hundred and Seven Thousand Ghana Cedis (GH¢ 807,000) respectively. We 
concluded that the Knapsack problem for selecting required sites in critical situations such as 
construction of school buildings was useful and it can be applied to any situation where allocation of 
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funds in the sector of educational development becomes a serious setback. All of this will be 
achieved by using software called quantitative management which helps in solving and analyzing 
such problems. 
 

 
Keywords: Integer linear programming; resources; optimal; school buildings; allocation. 
 
1. INTRODUCTION 
 
It is a universal truth that education is key to 
eradicating poverty in the modern society and 
this cannot be overemphasized. In a developing 
country like Ghana education will help citizens to 
acquire the needed skills and knowledge. The 
skill and knowledge acquired will make the 
citizens functionally literate and productive to 
facilitate poverty alleviation and promote the 
rapid socio-economic growth. 
 
Education is a fundamental human right for all 
children and this right may not be realized in 
Ghana if strategic measures are not put in place 
to ensure adequate infrastructure provision to 
schools, especially in rural communities. School 
infrastructure is everything from electricity, 
toilets, safe buildings, tables, chairs, libraries, 
computer rooms, safe classrooms, sports fields, 
laboratories for science experiments, running 
water and fencing. 
 
It is vital when we consider the fact that school 
infrastructure or resources, impact on how well 
teachers are able to teach and learners are able 
to learn. Learners attending schools with better 
infrastructure tend to perform better than learners 
who come from schools under trees. Meanwhile, 
the poor state of school infrastructure was 
evident in the number of public schools under 
trees. It is expected that all stakeholders 
particularly Civil Society, Government, Municipal, 
District and Metropolitans Assemblies ensure 
that funds provided are put into proper use.  
 
The government allocated funds for putting up 
unit classrooms in these newly created 
Municipals. This calls for a scientific way or 
method that will help in the allocation of the 
provided fund in the Municipal in putting up 
schools in the community. The Municipal has 
allocated some fund to build unit classroom and 
must decide on which of these communities to 
put up the structures. Modern society, with 
advanced technology usually needs to make best 
possible decisions, which example involve the 
best possible use of resources or funds allocated 
to the educational sector to minimize production 
or guarantee full benefit of all.  

Integer programs are beneficial because, if one 
can solve them, then one is guaranteed to obtain 
the best solution. However, this guarantee of 
optimality has a computational tradeoff, and 
integer programs currently may require 
exponential times to solve. The computational 
problems are so extreme that many integer 
programs cannot be solved, even using 
supercomputers [1]. 
 
The knapsack problem has been studied for 
more than a century, with early works dating as 
far back as 1897 for the reason that their direct 
application to problems arises in industries and 
also for their contribution to the solution methods 
for integer programming problems. Quite a lot of 
exact algorithms based on branch and bound, 
dynamic programming and heuristics have been 
proposed to solve the Knapsack Problems. 
 
Renata and Grazia [2] offered an exact approach 
based on the optimal solution of sub-problems 
limited to a subset of variables. Each sub-
problem is faced through a recursive variable-
fixing process that continues until the number of 
variables decreases below a given threshold 
(restricted core problem). The solution space of 
the restricted core problem is split into 
subspaces, each containing solutions of a given 
cardinality. Each subspace is then explored with 
a branch-and-bound algorithm. Pruning 
conditions are introduced to improve the 
efficiency of the branch-and-bound routine. 
 
The purpose of this paper is to model a real-life 
problem in developing sites for unit classroom at 
Mampong Municipal as a 0-1 knapsack   
problem, and propose branch-and-bound 
algorithm and to determine the maximum number 
of unit classrooms required to be built on 
selected sites and also results of the findings will 
be analyzed and interpreted.  
 
The Mampong Municipal with Mampong as its 
capital is geographically located on the northern 
part of the region and shares boundary with 
Atebubu, Sekyere East, AfigyaSekyere and 
Ejura-Sekyere Dumasi to the north, east, south 
and west respectively. The Municipal is located 
within longitude 0.05° and 1.30° W and latitudes 
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6.55° and 7.30°N covering a total land area of 
2346 ��� in the Ashanti Region of Ghana. It has 
about 220 settlements with about 70% being 
rural. The rural areas are mostly found in the 
Afram Plains portion of the Municipal where 
Communities with less than fifty (50) people are 
scattered here and there.  
 
The Municipal is generally low lying and 
gradually rising through rolling hills stretching 
southward towards Mampong. The highest point 
is 2400 m whilst the lowest is 135 m above mean 
sea level. It is fairly drained by several streams 
and rivers like Afram, Sene, Sasebonso, and 
Kyirimfa. 
 
2. MATERIALS AND METHODS 
 
The mathematical model will be formulated using 
linear programming based on the data provided 
at the budget office of the Mampong Municipal 
Assembly. The computer software package that 
will be used to solve and analyze the data is the 
Quantitative Management (QM software). 
 
2.1 The Model 
 
Michel, Perrot and Vanderbeck [3] considered 
the multiple-class integer knapsack problem with 
setups. Items are partitioned into classes whose 
use imply a setup cost and associated capacity 
consumption. Item weights are assumed to be a 
multiple of their class weight. The total weight of 
selected items and setups is bounded. The 
objective is to maximize the difference between 
the profits of selected items and the fixed costs 
incurred for setting-up classes. The authors 
showed the extent to which classical results for 
the knapsack problem can be generalized to 
these variants with setups. In particular, an 
extension of the branch-and-bound algorithm of 
Horowitz and Sahni [4] is developed for problems 
with positive setup costs. Yan and Chen [5] 
developed a model that help Taiwanese intercity 
bus carriers in timetable settings and bus routing 
or scheduling. The model employs multiple time-
space networks that can formulate bus 
movements and passenger flows and manage 
the interrelationships between passenger trip 
demands and bus trip suppliers to produce the 
best timetables and bus routes or schedules. 
Kosuch, Le Bodic & Lisser [6] studied the 
stochastic knapsack problem with expectation 
constraint. The item weights are assumed to be 
independently normally distributed. The authors 
solved the relaxed version of this problem using 

a stochastic gradient algorithm in order to 
provide upper bounds for a branch-and-bound 
framework. The 0-1 knapsack problem is a linear 
integer-programming problem with a single 
constraint and binary variables. The knapsack 
problem with an inequality constraint has been 
widely studied, and several efficient algorithms 
have been published. Balasubramanian and 
Sanjiv [7] considered the equality-constraint 
knapsack problem, which has received relatively 
little attention. The authors described a branch-
and-bound algorithm for this problem, and 
present computational experience with up to 
10,000 variables. An important feature of this 
algorithm is a least-lower-bound discipline for 
candidate problem selection. 
 
2.2 Linear Programming 
 
Linear programming is a mathematical method 
for determining a way to achieve the best 
outcome (such as maximum profit or lowest cost) 
in a given mathematical model for some list of 
requirements represented as linear relationships. 
Linear programming is a specific case of 
mathematical programming (mathematical 
optimization). 
 
More formally, linear programming is a technique 
for the optimization of a linear objective function, 
subject to linear equality and linear inequality 
constraints. Its feasible region is a convex 
polyhedron, which is a set defined as the 
intersection of finitely many half spaces, each of 
which is defined by a linear inequality. Its 
objective function is a real-valued affine 
function defined on this polyhedron. A linear 
programming algorithm finds a point in the 
polyhedron where this function has the smallest 
(or largest) value if such a point exists. 
 
Linear programs are problems that can be 
expressed in canonical form: 
 maximize c�x subject to Ax ≤ b 

 and x > 0 , where x represents the vector of 
variables (determined), c and b are vectors of 
(known) coefficients, A is a (known) matrix of 
coefficients, and �. ��  are the matrix transpose. 
The expression to be maximized or minimized is 
called the objective function (cTx in this case). 
The inequalities Ax ≤ b is the constraints which 
specify a convex polytope over which the 
objective function is to be optimized. In this 
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context, two vectors are comparable when they 
have the same dimensions. If every entry in the 
first is less-than or equal-to the corresponding 
entry in the second then we can say the first 
vector is less-than or equal-to the second vector. 
 
2.3 Complete Linear Programming Model 
 
Combining the aforementioned components into 
a single statement gives: 
 

�������  !" ��#���� � = % &'�'
(

')*
 

 

+,-. &/ /! % �0'�' 1≤=≥3 -0 , 5!" � = 1 … �
(

')*
 

 0 ≤ �' ≤ ,'  5!" . = 1 … #  
 
The constraints, including non-negativity and 
simple upper bounds, define the feasible region 
of a problem. 
 
2.4 Assumptions of Linear Programming 
 
For a problem to be realistically represented as a 
linear program, the following assumptions should 
hold: 
 

(i) The constraints and objective function 
are linear. 

 
(a) This requires that the value of the 

objective function and the response of 
each resource expressed by the 
constraints are proportional to the level 
of each activity expressed in the 
variables. 

(b) Linearity also requires that the effects of 
the value of each variable on the values 
of the objective function and the 
constraints are additive. In other words, 
there can be no interactions between the 
effects of different activities; i.e., the level 
of activity X1 should not affect the costs 
or benefits associated with the level of 
activity X2. 
 

(ii) Divisibility: The values of decision 
variables can be fractions. Sometimes 
these values only make sense if they are 
integers; then we need an extension of 
linear programming called integer 
programming. 

(iii) Certainty: The model assumes that the 
responses to the values of the variables 
are exactly equal to the responses 
represented by the coefficients. 

(iv) Data: Formulating a linear program to 
solve a problem assumes that data are 
available to specify the problem. 
 

2.5 Knapsack Problem 
 
The knapsack problem is one of the most studied 
problems in combinatorial optimization, with 
many real-life applications. For this reason, many 
special cases and generalizations have been 
examined. 
 
Common to all versions are a set of # items, with 
each item 1 ≤ . ≤ #  having an associated 
profit 8' and weigh t9' . The objective is to pick 
some of the items, with maximal total profit, while 
obeying that the maximum total weight of the 
chosen items must not exceed : . Generally, 
these coefficients are scaled to become integers, 
and they are almost always assumed to be 
positive. 
 
The knapsack problem in its most basic form: 
 

������� % 8'�'
(

')*
 

 

 
 
Knapsack problems appear in real-world 
decision-making processes in a wide variety of 
fields, such as finding the least wasteful way to 
cut raw materials, selection of capital 
investments and financial portfolios, selection of 
assets for asset-backed securitization, and 
generating keys for the cryptosystem. One early 
application of knapsack algorithms was in the 
construction and scoring of tests in which the 
test-takers have a choice as to which questions 
they answer. For small examples it is a fairly 
simple process to provide the test-takers with 
such a choice. For example, if an exam contains 
12 questions each worth 10 points, the test-taker 
need only answer 10 questions to achieve a 
maximum possible score of 100 points. However, 
on tests with a heterogeneous distribution of 
point values, that is, different questions are worth 
different point values, it is more difficult to 
provide choices. Feuerman and Weiss [8] 
proposed a system in which students are given a 
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heterogeneous test with a total of 125 possible 
points. The students are asked to answer all of 
the questions to the best of their abilities. Of the 
possible subsets of problems whose total point 
values add up to 100, a knapsack algorithm 
would determine which subset gives each 
student the highest possible score. 
 
2.6 0-1 Knapsack Problem 
 
The most common problem being solved is the 
0-1 knapsack problem, which restricts the 
number �0 of copies of each kind of item to zero 
or one. 
 
Mathematically the 0-1-knapsack problem can be 
formulated as: 
 
Let there be #  items, �*  to �( where �0  has a 
value ;0 and weight  90 . The maximum weight      
that the bag can carry is : . It is common to 
assume that all values and weights are 
nonnegative. To simplify the representation, it is 
assumed that the items are listed in increasing 
order of weight. 
 

������� % ;0�0
(

0)*
 

+,-. &/ /! % 90�0 ≤ :,
(

0)*
�0 ∈ =0, 1> 

 
Maximize the sum of the values of the items                     
in the knapsack so that the sum of the                
weights must be less than the knapsack's 
capacity. 
 
A similar dynamic programming solution for 
the 0-1 knapsack problem also runs in pseudo-
polynomial time. Assume 9*, 9�, … , 9(, :  are 
strictly positive integers. Define �?�, 9@ to be the 
maximum value that can be attained with weight 
less than or equal to 9 using items up to �. 
 
Thus �?�, 9@  can be defined recursively as 
follows: 
 ����?�, 9@ = �?� − 1, 9@ if 90 > 9 (the new item 

is greater than the existing weight limit). 

. 
 

The solution can then be found by calculating �?#, :@. To do this efficiently we can use a table 
to store preceding computations. 

2.7 Branch and Bound 
 
The basic concept underlying the branch-and-
bound technique is to divide and conquer. The 
process contains dividing (branching) original 
large problem into smaller sub problems and 
bounding the best solution in the subsets.  
 
The steps are;  
 

(i) Solve the problem without integer 
restrictions,  

(ii) If the solution is integer , then this must be 
the solution to integer problem,  

(iii) If these variables are not integer valued, 
the feasible region is divided by adding 
constraints restricting the value of one of 
the variables that was not integer valued,  

(iv) Bounds on the value of the objective 
function are found and used to help 
determine which sub-problems can be 
eliminated and when the optimal solution 
has been found,  

(v) If a solution is not optimal, a new sub-
problem is selected and branching 
continues.  

 
Branch and bound (BB or B&B) is a 
general algorithm for finding optimal solutions of 
various optimization problems, especially in 
discrete and combinatorial optimization. A 
Branch-and-Bound algorithm consists of a 
systematic enumeration of all admissible 
solutions, where large subsets of fruitless 
candidates are discarded en masse, by using 
upper and lower estimated bounds of the 
quantity being optimized. 
 

3. DATA COLLECTION AND ANALYSIS 
 
In an effort to develop the educational 
infrastructure in the Municipal, the Assembly 
proposed a budget of BC¢870,000.00  for the 
development of lands and the construction of 
Unit classroom buildings. These buildings are to 
be constructed at twelve different towns within 
the Municipal, whose estimated capacities in 
terms of the number of unit classrooms and 
development cost are given in Table 1. The 
respective towns to be considered within the 
Municipal are Kofiase, Kyekyewere, Asaam, 
Benim, Atonsuagya, Yonso, Apaah, Adidwan, 
Nyinampong, Abuontem, Nkwanta and Penteng. 
 
A unit classroom is made up of the number of 
study rooms, an office, a store, staff common 
room and a toilet facility. The type of unit 
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classroom to be built in each town was based on 
the population, existing educational 
infrastructures. All three unit classrooms are for 
JHS, six unit classroom is for the lower and 
upper primary schools, and the nine unit 
classroom is for both primary and JHS. The 
difference in the cost for the same unit classroom 
was due to different construction works to be 
done on the various lands. Appendix 1 provides 
the breakdown of the budget of associated cost 
for each unit classroom for the various locations. 
 
Table 1. Respective towns with their budget 

allocations 
 

Towns Capacity  
(unit classroom) 

Cost  
(GH¢ 1000) 

Kofiase 3 83 
Kyekyewere 6 169 
Asaam 9 270 
Benim 3 75 
Atonsuagya 3 103 
Yonso 6 145 
Apaah 3 97 
Adidwan 6 139 
Nyinampong 3 73 
Abuontem 6 149 
Nkwanta 9 267 
Penteng 6 143 

 
The dilemma here is to choose suitable locations 
in such a way that the optimal capacity would be 
attained without exceeding the budget allocated 
for project. 
 
With a link to the Knapsack Problem model, the 
holding capacity of the resource maximum value 
is the Assembly’s budget. The various items to 
be measured are the different sites (lands) that 
can be developed for the project, the weight of 
any item is the cost of developing and 
construction of the project and the value of each 
item is the capacity of each site. 
 
The problem can therefore be modeled as:  
 

F������    % &0�0
(

0)*
 

 

 
Where; 
 G = Total capacity &0 = Capacity of each item or site �0 = Number of sites developed 90 = Cost of developing a site 

 

Thus, 
 �������  G = 3T* + 6T� + 9TX + 3TY + 3TZ+ 6T[ + 3T\ + 6T] + 3T^+ 6T*_ + 9T** + 6T*� 

 +,-. &/ /! 83T* + 169T� + 270TX + 75TY+ 103TZ + 145T[ + 97T\+ 139T] + 73T^ + 149T*_+ 267T** + 143T*� ≤ 870  
 
A Branch and Bound algorithm model is applied 
to carry out the computation of the model. The 
items to be considered are twelve (which means # = 12�  consisting of Kofiase, Kyekyewere, 
Asaam, Benim, Atonsuagya, Yonso, Apaah, 
Adidwan, Nyinampong, Abuontem, Nkwanta and 
Penteng. 
 
The weights of each item are 9* = 83, 9� =169, 9X = 270, 9Y = 75, 9Z = 103, 9[ = 145, 9\ =97, 9] = 139, 9^ = 73, 9*_ = 149, 9** =267, 9*� = 143  whiles the values of each item 
are T* = 3, T� = 6, TX = 9, TY = 3, TZ = 3, T[ =6, T\ = 3, T] = 6, T^ = 3, T*_ = 6, T** = 9, T*� = 6  
and the maximum available budget fund : =870. 
 
Note: For locations 
 

X1: Kofiase         X7: Apaah 
X2: Kyekyewere X8: Adidwan 
X3: Asaam         X9: Nyinampong 
X4: Benim         X10: Abuontem 
X5: Atonsuagya  X11: Nkwanta 
X6:  Yonso          X12: Penteng 
 

4. RESULTS OF THE ANALYSIS 
 
Results of the analysis in obtaining maximum 
number of unit classroom buildings at selected 
location in the Municipal are shown in the tables 
below. The tables provide a breakdown of the 
associated cost in building the unit classroom. 
The optimal selection of unit classrooms yielded 
eight hundred and seven thousand Ghana Cedis 
(GH¢807,000). The amount is able to construct a 
three 3-unit classroom building at Kofiase, Benim 
and Nyinampong and four 6-unit classroom 
building at Yonso, Adidwan, Abuontem and 
Penteng respectively. Thus the total number of 
classroom to be built out of budget is 33. This 
means that out of the total budget of Eight 
Hundred and Seventy Thousand Ghana Cedis 
(GH¢ 870,000) which was proposed by the 
Assembly, an excess amount of Sixty Three 
Thousand Ghana Cedis (GH¢ 63,000) was left. 
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This excess amount can be used to undertake 
other project in the Municipal. 
 

4.1 Sensitivity Analysis on the Whole 
Solution 

 
The Sensitivity Analysis is often used for integer 
linear programming problem than the Linear 
Programming (LP) problem. That is, a very small 
change in one of the coefficients in the 
constraints can cause a reasonably large change 
in the optimal value. In the case of our study, any 
time there is a change in any of the amount of 
the budget allocation, and then the integer linear 
program problem has to be resolved with slight 
variation in the coefficients before an optimal 
solution is chosen for implementation. 
 

5. CONCLUSION 
 
The research sought to use the Knapsack 
problem for selecting required sites in critical 
situations such as construction of school 
buildings. However, it can be applied to any 
situation where allocation of funds in the sector 
of development becomes a serious problem. A 
minimum amount of eight hundred and seven 
thousand Ghana cedis (GH¢807,000) was 
obtained in construction of a three 3-unit and four 
6-unit classroom buildings at seven different 
locations within the Municipal to enhance the 
educational development. 
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APPENDIX 1 
 

Breakdown of budget allocations for various sites 
 

Item Description X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
A Preliminaries 5,450 2,623 17,463 4,320 8,450 1,545 5,950 2,689 2,761 1,823 17,263 2,435 
B Excavation and 

Earthworks 
2,2032 35,891 50,499 20,214 16,532 28,321 19,532 37,105 18,282 33,891 50,490 27,134 

C Concrete works 6,482 14,473 15,841 4,361 11,182 8,923 11,482 12,254 5,938 9,473 15,841 8,374 
D Block works 4,216 5,987 17,499 4,321 9,916 5,579 9,216 8,065 4,200 4,787 17,500 5,372 
E Roofing to summary 3,788 9,321 10,377 3,680 4,738 6,819 4,288 8,910 3,370 8,421 10,380 8,934 
F Carpentry works  9,160 8,880 10,044 7,670 9,660 6,621 9,360 8,790 6,423 7,820 10,040 10,009 
G Joinery/Walling 2,508 18,914 20,433 2,452 3,208 18,091 3,008 20,027 3,342 18,464 20,421 15,782 
H Metal works 8,531 8,927 18,844 7,462 9,831 6,892 9,031 610 6,443 5,927 18,717 7,280 
I Plastering work/floor 3,777 17,342 19,321 2,992 8,077 14,510 7,277 15,828 2,934 16,842 19,322 14,489 
J Painting/decoration 3,527 9,272 10,372 3,341 4,427 4,752 3,727 6,410 3,531 5,672 10,373 6,730 
K External works 5,112 5,973 12,213 4,670 6,312 3,989 5,512 6,800 4,520 5,423 12,213 6,645 
L Construction of ramps 1,587 1,939 9,852 1,382 2,237 789 1,787 605 1,363 1,489 9,853 4,849 
M Electrical works 4,259 5,490 18,479 4,540 6,359 5,258 4,359 8,512 4,950 5,440 17,847 5,344 
N Surplus Amount 2,571 24,028 38,763 3,595 2,071 32,911 2,471 2,395 4,943 23,528 36,740 19,623 
 Total 83,000 169,000 270,000 75,000 103,000 145,000 97,000 139,000 73,000 149,000 267,000 143,000 
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APPENDIX 2 
 

Optimal solutions for the various iterative stages (output from QM software) 
 

Iteration Level Added 
constraint 

Solution 
type 

Solution 
value 

X 
1 

X 
2 

X 
3 

X 
4 

X 
5 

X 
6 

X 
7 

X 
8 

X 
9 

X 
10 

X 
11 

X 
12 

Cost 

   Optimal 33 1 0 0 1 0 1 0 1 1 1 0 1 807 
1 5 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 1 1 0 1 807 
2 6 X1<= 0 Integer 33 0 0 0 1 1 1 0 1 1 1 0 1 827 
3 7 X4<= 0 Integer 33 1 0 0 0 1 1 0 1 1 1 0 1 835 
4 8 X10<= 0 Sub optimal 30 1 0 0 1 1 1 0 1 1 0 0 1 761 
5 9 X9<= 0 Integer 33 1 0 0 1 1 1 0 1 0 1 0 1 837 
6 10 X6<= 0 Sub optimal 30 1 0 0 1 1 0 0 1 1 1 0 1 765 
7 11 X12<= 0 Sub optimal 30 1 0 0 1 1 1 0 1 1 1 0 0 767 
8 12 X8<= 0 Sub optimal 30 1 0 0 1 1 1 0 0 1 1 0 1 771 
9 6 X5<= 0 Integer 33 0 0 0 1 0 1 1 1 1 1 0 1 821 
10 7 X4<= 0 Integer 33 0 0 0 0 1 1 1 1 1 1 0 1 849 
11 8 X10<= 0 Sub optimal 30 0 0 0 1 1 1 1 1 1 0 0 1 775 
12 9 X9<= 0 Integer 33 0 0 0 1 1 1 1 1 0 1 0 1 851 
13 10 X6<= 0 Sub optimal 30 0 0 0 1 1 0 1 1 1 1 0 1 779 
14 11 X12<= 0 Sub optimal 30 0 0 0 1 1 1 1 1 1 1 0 0 781 
15 12 X8<= 0 Sub optimal 30 0 0 0 1 1 1 1 0 1 1 0 1 783 
16 7 X5<= 0 Integer 33 1 0 0 0 0 1 1 1 1 1 0 1 829 
17 8 X10<= 0 Sub optimal 30 1 0 0 0 1 1 1 1 1 0 0 1 783 
18 9 X9<= 0 Integer 33 1 0 0 0 1 1 1 1 0 1 0 1 859 
19 10 X6<= 0 Sub optimal 30 1 0 0 0 1 0 1 1 1 1 0 1 787 
20 11 X12<= 0 Sub optimal 30 1 0 0 0 1 1 1 1 1 1 0 0 789 
21 12 X8<= 0 Sub optimal 30 1 0 0 0 1 1 1 0 1 1 0 1 793 
22 7 X10<= 0 Integer 33 1 0 0 1 1 1 1 1 1 0 0 1 858 
23 9 X5<= 0 Integer 33 1 0 0 1 0 1 1 1 0 1 0 1 835 
24 10 X6<= 0 Sub optimal 30 1 0 0 1 1 0 1 1 0 1 0 1 789 
25 11 X12<= 0 Sub optimal 30 1 0 0 1 1 1 1 1 0 1 0 0 791 
26 12 X8<= 0 Sub optimal 30 1 0 0 1 1 1 1 0 0 1 0 1 795 
27 9 X6<= 0 Integer 33 1 0 0 1 1 0 1 1 1 1 0 1 862 
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Iteration Level Added 
constraint 

Solution 
type 

Solution 
value 

X 
1 

X 
2 

X 
3 

X 
4 

X 
5 

X 
6 

X 
7 

X 
8 

X 
9 

X 
10 

X 
11 

X 
12 

Cost 

28 10 X12<= 0 Integer 33 1 0 0 1 1 1 1 1 1 1 0 0 864 
29 11 X8<= 0 Integer 33 1 0 0 1 1 1 1 0 1 1 0 1 868 
30 7 X5<= 0 Integer 33 0 0 1 1 0 1 0 1 1 0 0 1 845 
31 8 X5<= 0 Integer 33 0 0 1 0 0 1 1 1 1 0 0 1 867 
32 9 X5<= 0 Integer 33 0 0 1 1 0 1 1 1 0 0 0 1 869 
33 8 X5<= 0 Integer 33 1 0 1 0 0 1 0 1 1 0 0 1 853 
34 9 X5<= 0 Integer 33 1 0 1 1 0 1 0 1 0 0 0 1 855 
35 9 X5<= 0 Integer 33 0 0 1 0 0 1 0 1 0 1 0 1 846 
36 9 X5<= 0 Integer 33 1 0 1 1 0 0 0 1 0 1 0 1 859 
37 10 X5<= 0 Integer 33 1 0 1 1 0 1 0 1 0 1 0 0 861 
38 11 X5<= 0 Integer 33 1 0 1 1 0 1 0 0 0 1 0 1 865 
39 9 X5<= 0 Integer 33 0 0 1 1 0 0 0 1 1 1 0 1 849 
40 10 X5<= 0 Integer 33 1 0 1 0 0 0 0 1 1 1 0 1 857 
41 10 X5<= 0 Integer 33 0 0 1 1 0 1 0 1 1 1 0 0 851 
42 11 X5<= 0 Integer 33 1 0 1 0 0 1 0 1 1 1 0 0 859 
43 11 X5<= 0 Integer 33 0 0 1 1 0 1 0 0 1 1 0 1 855 
44 12 X5<= 0 Integer 33 1 0 1 0 0 1 0 0 1 1 0 1 863 
45 7 X5<= 0 Integer 33 0 0 0 1 0 1 0 1 1 0 1 1 842 
46 7 X5>= 1 Integer 33 0 0 0 0 1 1 0 1 1 0 1 1 870 
47 8 X5<= 0 Integer 33 0 0 0 0 0 1 1 1 1 0 1 1 864 
48 9 X5<= 0 Integer 33 0 0 0 1 0 1 1 1 0 0 1 1 866 
49 8 X5<= 0 Integer 33 1 0 0 0 0 1 0 1 1 0 1 1 850 
50 9 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 0 0 1 1 852 
51 9 X5<= 0 Integer 33 0 0 0 0 0 1 0 1 0 1 1 1 843 
52 9 X5<= 0 Integer 33 1 0 0 1 0 0 0 1 0 1 1 1 856 
53 8 X7<= 0 Integer 33 0 0 0 1 0 0 1 1 0 1 1 1 870 
54 10 X5<= 0 Integer 33 1 0 0 1 0 1 0 1 0 1 1 0 858 
55 11 X5<= 0 Integer 33 1 0 0 1 0 1 0 0 0 1 1 1 862 
56 9 X5<= 0 Integer 33 0 0 0 1 0 0 0 1 1 1 1 1 846 
57 10 X5<= 0 Integer 33 0 0 0 0 0 0 1 1 1 1 1 1 868 
58 10 X5<= 0 Integer 33 1 0 0 0 0 0 0 1 1 1 1 1 854 
59 10 X5<= 0 Integer 33 0 0 0 1 0 1 0 1 1 1 1 0 848 
60 9 X7>= 1 Integer 33 0 0 0 0 0 1 1 1 1 1 1 0 870 



 
 
 
 

Opoku-Mensah et al.; ACRI, 3(2): 1-12, 2016; Article no.ACRI.23169 
 
 

 
11 

 

Iteration Level Added 
constraint 

Solution 
type 

Solution 
value 

X 
1 

X 
2 

X 
3 

X 
4 

X 
5 

X 
6 

X 
7 

X 
8 

X 
9 

X 
10 

X 
11 

X 
12 

Cost 

61 11 X5<= 0 Integer 33 1 0 0 0 0 1 0 1 1 1 1 0 856 
62 11 X5<= 0 Integer 33 0 0 0 1 0 1 0 0 1 1 1 1 852 
63 12 X5<= 0 Integer 33 1 0 0 0 0 1 0 0 1 1 1 1 860 
64 7 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 1 1 0 1 818 
65 9 X9<= 0 Integer 33 0 1 0 0 1 1 0 1 0 1 0 1 848 
66 7 X10<= 0 Integer 33 0 1 0 0 1 1 1 1 1 0 0 1 869 
67 9 X5<= 0 Integer 33 0 1 0 0 0 1 1 1 0 1 0 1 842 
68 9 X5<= 0 Integer 33 0 1 1 0 0 1 0 1 0 0 0 1 866 
69 7 X10>= 1 Integer 33 0 1 1 0 0 0 0 1 0 1 0 1 870 
70 9 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 0 0 1 1 863 
71 10 X5<= 0 Integer 33 0 1 0 0 0 0 0 1 0 1 1 1 867 
72 11 X5<= 0 Integer 33 0 1 0 0 0 1 0 1 0 1 1 0 869 
73 7 X5<= 0 Integer 33 1 1 0 0 0 1 1 1 1 0 0 1 849 
74 8 X7<= 0 Integer 33 1 1 0 0 1 1 0 1 1 0 0 1 855 
75 9 X5<= 0 Integer 33 1 1 0 0 0 1 0 1 0 1 0 1 828 
76 9 X5<= 0 Integer 33 1 1 0 0 0 0 1 1 1 1 0 1 853 
77 10 X7<= 0 Integer 33 1 1 0 0 1 0 0 1 1 1 0 1 859 
78 10 X5<= 0 Integer 33 1 1 0 0 0 1 1 1 1 1 0 0 855 
79 11 X7<= 0 Integer 33 1 1 0 0 1 1 0 1 1 1 0 0 865 
80 11 X5<= 0 Integer 33 1 1 0 0 0 1 1 0 1 1 0 1 859 
81 12 X7<= 0 Integer 33 1 1 0 0 1 1 0 0 1 1 0 1 865 
82 7 X5<= 0 Integer 33 1 1 0 1 0 1 0 1 1 0 0 1 827 
83 8 X1<= 0 Integer 33 0 1 0 1 1 1 0 1 1 0 0 1 847 
84 9 X9<= 0 Integer 33 1 1 0 1 1 1 0 1 0 0 0 1 857 
85 10 X6<= 0 Sub optimal 30 1 1 0 1 1 0 0 1 1 0 0 1 785 
86 11 X12<= 0 Sub optimal 30 1 1 0 1 1 1 0 1 1 0 0 0 787 
87 12 X8<= 0 Sub optimal 30 1 1 0 1 1 1 0 0 1 0 0 1 791 
88 8 X5<= 0 Integer 33 0 1 0 1 0 1 1 1 1 0 0 1 841 
89 9 X5<= 0 Integer 33 1 1 0 1 0 1 1 1 0 0 0 1 851 
90 9 X5<= 0 Integer 33 0 1 1 1 0 0 0 1 1 0 0 1 869 
91 9 X5<= 0 Integer 33 0 1 0 1 0 0 0 1 1 0 1 1 866 
92 10 X5<= 0 Integer 33 0 1 0 1 0 1 0 1 1 0 1 0 868 
93 9 X5<= 0 Integer 33 0 1 0 1 0 1 0 1 0 1 0 1 820 
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Iteration Level Added 
constraint 

Solution 
type 

Solution 
value 

X 
1 

X 
2 

X 
3 

X 
4 

X 
5 

X 
6 

X 
7 

X 
8 

X 
9 

X 
10 

X 
11 

X 
12 

Cost 

94 10 X6<= 0 Sub optimal 30 0 1 0 1 1 0 0 1 0 1 0 1 778 
95 11 X12<= 0 Sub optimal 30 0 1 0 1 1 1 0 1 0 1 0 0 780 
96 12 X8<= 0 Sub optimal 30 0 1 0 1 1 1 0 0 0 1 0 1 784 
97 9 X5<= 0 Integer 33 1 1 0 1 0 0 1 1 0 1 0 1 855 
98 10 X7<= 0 Integer 33 1 1 0 1 1 0 0 1 0 1 0 1 861 
99 10 X5<= 0 Integer 33 1 1 0 1 0 1 1 1 0 1 0 0 857 
100 11 X7<= 0 Integer 33 1 1 0 1 1 1 0 1 0 1 0 0 863 
101 11 X5<= 0 Integer 33 1 1 0 1 0 1 1 0 0 1 0 1 861 
102 12 X7<= 0 Integer 33 1 1 0 1 1 1 0 0 0 1 0 1 867 
103 9 X5<= 0 Integer 33 1 1 0 1 0 0 0 1 1 1 0 1 831 
104 10 X1<= 0 Integer 33 0 1 0 1 1 0 0 1 1 1 0 1 851 
105 11 X12<= 0 Sub optimal 30 1 1 0 1 1 0 0 1 1 1 0 0 791 
106 12 X8<= 0 Sub optimal 30 1 1 0 1 1 0 0 0 1 1 0 1 795 
107 10 X5<= 0 Integer 33 0 1 0 1 0 0 1 1 1 1 0 1 845 
108 10 X5<= 0 Integer 33 1 1 0 1 0 1 0 1 1 1 0 0 833 
109 11 X1<= 0 Integer 33 0 1 0 1 1 1 0 1 1 1 0 0 853 
110 12 X8<= 0 Sub optimal 30 1 1 0 1 1 1 0 0 1 1 0 0 797 
111 11 X5<= 0 Integer 33 0 1 0 1 0 1 1 1 1 1 0 0 847 
112 11 X5<= 0 Integer 33 1 1 0 1 0 1 0 0 1 1 0 1 837 
113 12 X1<= 0 Integer 33 0 1 0 1 1 1 0 0 1 1 0 1 857 
114 12 X5<= 0 Integer 33 0 1 0 1 0 1 1 0 1 1 0 1 851 
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