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ABSTRACT 
 

This Research of electron impact excitation of autoionizing states of rubidium have calculated the  
integral cross section using  Distorted Wave Method in the range of incident energy of 15.8 -1000 
eV. Numerical calculations have been done using a modified dwba1 fortran computer program 
which was originally made for hydrogen atom. The results are compared with Borovik work which 
showed a systematic agreement  with inclusion of absorption potential, it also clear that 
incomparision with Pangantiwar  and Srivastava there is a good qualitative agreement  though the 
quantitave is attributed to the Multi Zeta Hartree fork wave functions applied. 
 

 
Keywords: Autoionization; total cross section; negative ion resonances; absorption potential; distorted 

wave method. 
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1. INTRODUCTION 
 
The study of atomic collision physics plays an 
important role in the development of different 
areas of physics mainly astrophysical science, 
laser physics, light industry, medicine and 
material science. For this reason, scientists have 
developed experimental and theoretical tools to 
help understand the field of atomic collisions in-
depth in the form of evaluation of differential, 
integral cross sections and angular correlation 
parameters. Research on electron atomic 
collision has seen rapid increase in interests, 
using theoretical and experimental approaches. 
This is due to the fact that these processes 
produce a clear means of investigating the 
dynamics of the collision process. However, it is 
mostly because the information is relevant in 
many areas. 
 
The study of atomic collision involves the 
scattering of a projectile by a target. A projectile 
may be any charged particle e.g. electron, 
positron, proton, an ion and any atom, ion or a 
molecule may be the target. Experimentally, a 
beam of free particles is scattered from the target 
and the scattered particles detected in the 
asymptotic region [1]. A theoretical study can be 
done using semi classical methods or quantal 
approaches. Semi classical methods include 
semi classical impact parameter method, 
classical trajectory and Monte Carlo method, 
classical impulse and binary encounter 
approximation, eikonal approximation, multi-
channel eikonal treatment and Glauber 
approximation. Quantal approaches are 
classified into perturbative and non perturbative 
methods. Perturbative methods include Born 
series, Eikonal series, distorted wave series [1] 
and many body theory [2]. Non perturbative 
method includes R-matrix [3], convergent close 
coupling [4] and variational methods.  
 
Distorted wave approximation methods were 
introduced because the Born approximation 
failed to give accurate account of differential 
cross-sections for low impact energies and large 
scattering angles. In distorted wave 
approximation, the incident electron is taken to 
be elastically scattered by the initial state atomic 
potential. In the direct process, the incident 
electron makes a transition to a state in which it 
is being elastically scattered by final-state atomic 
potential. If the excitation of the atom is through 

exchange process, the incident electron is 
captured into a bound state of the atom, while 
one of the initially bound electrons is ejected into 
an elastic-scattering state. The transition 
between the initial and final elastic state is 
calculated by perturbation method.   
 
In experimental approach, developments have 
taken a great stride and this has also contributed 
greatly in the atomic collision and its applications. 
Instruments used have also been refined to give 
accurate result but the basic concept still remains 
the same. A typical set-up for electron-atom 
scattering experiments is illustrated in Fig. 1 [4]. 
 
The electron gun produces electrons and 
accelerates them at the required velocity towards 
the target atom for example rubidium. The 
incident electron is mono energetic with a 
momentum of k1. When a collision takes place, 
an electron with a momentum k2 is deflected from 
its path and the target atom is either excited or 
ionized or remains in the same state. The 
deflected electron is detected by the detector. 
The direction of the scattered electron is 
determined by the polar �  and azimuthal 
angles	∅. 
 
The experiment (theory) measure (calculate) the 
differential cross-sections which are a measure 
of the probability that the electron will be 
scattered in a given direction, determined by the 
two angles 	�	 and 	∅ . However, integral cross 
section can be determined using differential 
cross-section values by integrating them over 
angle �  and 	∅ . Differential cross-section 
measurements are carried out by crossing the 
target atom with mono energetic electron beam 
usually at 90

0
 and determining the energy and 

angular distribution of the scattered electron. 
These distributions contain the information on the 
nature of the electron collision process, the 
energy level of target after collision and the 
corresponding cross-section. 
 
In the electron-atom collision, such as the one 
studied, an elastic or inelastic collision can occur 
[1]. In the elastic collision, the target and the 
projectile energies are unaffected by the 
collision; 
 

�� + � → �� + �    
    

where	� represent an atom. 
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Fig. 1. Schematic diagram of a scattering experiment 
 
In an inelastic collision, there is some energy 
transfer between the incident electron and the 
target. This results in either the target electron 
moving to higher energy level or one or more 
electron being removed from the atom; 
 

��
� + � → ��

� +	�∗       (Excitation)                                                           
 
or 
 
��
� + � → ��

� + �� + ��
�   (ionization)                                                      

 
where 		��

� , 	��
�  and 		��

�   are respectively the 
incident, scattered and ejected electrons. �∗  is 
the excited state of X. 
 
The ionization can take place in two ways, either 
by direct process or through the excitation of the 
autoionizing state and then its subsequent decay 
to its ion by ejecting an electron. It can be shown 
as follows; 
 

 
 
Here �∗  is an autoionizing state. These 
autoionizing states lie above the first ionization 
threshold of the atom. 
 

In inelastic scattering comparison of measured 
and calculated cross sections is important in the 
understanding of the nature of interactions of 
electrons with atoms. Cross sections for electron-

atom scattering are important in laser 
development and in plasma physics [4]. 
  
Elastic scattering cross sections are useful in X-
ray photoelectron spectroscopy, XPS, and 
Auger-electron spectroscopy, AES, [5] the signal 
electrons are elastically scattered from within 
metal surfaces. These cross sections also 
provide vital input in the Monte Carlo simulation 
of conduction of electrons in solids [5]. 
 
1.1 Study Area 
 
Integral cross sections.  
 

2. METHODOLOGY 
 
2.1 The Distorted Wave Method Applied 

to Electron-atom Collision 
 
The total Hamiltonian for the system of the 
scattering of an electron from a neutral atom is 
expressed as; 
 

� = �∝ - 
�

	�
∇�
�+ V            (1) 

 
where 		�∝  is the Hamiltonian for an isolated 
atom, the second term is the kinetic energy 
operator of an isolated projectile, V is the 
interaction between the projectile electron                      
and the N-electron atom target and it is given              
by; 
 

� = −
�

��
+ ∑

�

���

�
���             (2) 

Collimator 

	∅ 

	� 
Beam of  
electrons k1 

k2 

 

 

 

 
Detector 
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Where 
�

��
 and 

�

���
 are the projectile electron target 

nucleus interaction term and projectile electron 
target electron interaction term respectively. 
 
The initial state full scattering wave function Ψ�  is 
a solution of schr�̈dinger’s equation; 
 
(� − �)Ψ�

�		 = 0                         (3) 
 

where the + sign indicates the outgoing wave 
boundary conditions. In this case, the projectile 
electron experiences either elastic or inelastic 
collision with an N electron atom, the exact T- 
matrix in the two potential approach is given by 
[2]; 
 
��� = (� + 1)〈��

�(0)��(1,… ,�)�� − ����Ψ�
�		(0,… ,�)〉  

+ 
〈��

�(0)��(1,… ,�)������(1,… ,�)��(0)〉             (4) 

 
In the equation 4, 	��	���	��  are the properly 

antisymmetrized initial and final atomic wave 
functions for the isolated atom, which 
diagonalizes the atomic Hamiltonian 
�∝	according to; 
 
< ��′|�∝|ψ�

>= �����′                        (5) 

 
��	is an initial state plane wave (eigen function for 
an isolated projectile) and �  is the 
antisymmetrizing operator for the N+1 electrons. 

If  Ψ�
�			(0,… ,�) is chosen to be a product of a 

projectile wave function and an antisymmetrized 
atomic wave function of electrons 1,…,N, then 
anti- symmetrization operator may be expressed 
as [6]; 
 

� =
�

���
(1 − ∑ ���

�
��� )                        (6) 

 
where the 	���  is the operator that exchanges 
electrons 0 and i. The potential �� in equation 4 

is an arbitrary distorting potential for the 
projectile, which is used to calculate ��

�		 by 

solving the equation; 
 

�−
�

�
∇�
� −

�

�
��
� + �����

� = 0           (7) 

 
where the - superscript designates incoming 
wave boundary conditions and ��  is the final 

state wave vector of the projectile. Generally, the 
��  is chosen to be any linear combination of 

initial and final state static potential of the target 
atom. In principle, however, ��  can be any 

potential as long as ��
�  fulfils the appropriate 

boundary conditions. All the working shown 
above and in the equations below is in atomic 
units. Forinelastic scattering, the second term in 
equation 4 vanishes for orthogonal atomic wave 
functions since �� depends only on the single co-

ordinate of the projectile. But for elastic 
scattering, the second term of the same equation 
is the dominant term, in fact it is generally the 
only contributing term since �� is typically chosen 

such that the matrix elements of � − �� vanish. 
 

The Lippmann Schwinger solution for Ψ�
�			 is 

given by; 
 

Ψ�
�			 = [1+ ��(� − ��)]����

�                       (8) 
 
where �� is the full Green’s function given by; 
 
�� = (� − � + ��)��                        (9) 
 

But since Ψ�
�			 cannot be evaluated without 

making approximations, in the distorted wave 

approach Ψ�
�			is expressed in terms of a product 

of an initial state distorted wave ��
� and an initial 

atomic wave function �� in its first order 
approximation of equation 8.  
 
Then equation 4 takes the form (for excitation 
process considered); 
 
��� =

(� + 1)〈��
�(0)��(1,… ,�)�� − ������

�(0)Ψ�(1,… .,�)〉                                       

                                                                        (10) 
 
The initial state distorted wave is a solution of the 
schr�̈dinger’s equation; 
 

�−
�

�
∇�
� −

�

�
��
� + �����

� = 0         (11) 

 
for an arbitrary distorting potential �� which 
vanishes asymptotically.��		 is the incident wave 
vector and it is related to the incident energy by; 
 

�� =
�

�
k�
�                       (12) 

 

2.2 Evaluation of Direct and Exchange 
Matrix Elements 

  
Equation 13 shows the excitation process; 
 
e-+Rb [4p65s1 ,2S1/2]  
e

-
+ Rb [4p

5
5s

2
, 

2
P1/2,3/2]                       (13) 

 
where the 4p electron is excited to 5s. In the 
distorted wave approximation the transition 
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matrices for the one electron system excited from 
an initial state i to a final state f by electron 
impact is expressed using atomic units as;  
 

���� = ���
�(��)��(��)��(����)���

�(��)��(��)�	    (14) 

 
for direct excitation and; 
 

��� = ���
�(��)��(��)��(����)���

�(��)��(��)�      (15) 

 
for exchange excitation, where �(����) is the 
projectile-target atom interaction potential given 
by; 
 

�(��,��)= ��
�

��
−

�

���
�                      (16) 

 
where Z is the charge of the incident particle                      
and is taken as -1 for the electron: 	��  is                       
the position vector of the incident electron and �� 
is the position vector of an atomic electron 
undergoing a transition and ���  is the position 
vector between the projectile and target    
electron.  
 
In order to evaluate the direct and exchange 
scattering amplitudes given above, the radial 
distorted waves	��

�and ��
� are expanded in terms 

of the partial waves as;  
   

�|��
��= �

�

�

�

���
� ���

����
���(��,�)�����

∗ (��)        (17) 

 
and 
 

�|��
��= �

�

�

�

���
∑ �������

���
∗ �����

�����

∗ ����        (18) 

 
where	��� is a spherical harmonic. 
 
In the expansion of ��

� the complex conjugate of 

radial part ���and is taken so that it satisfies the 

incoming wave boundary conditions. Substituting 
the above partial wave expansion of the distorted 
waves in the equation 7 and equation 11, it is 
found that the radial distorted waves are 
solutions of the following equation; 
 

�
��

���
−

��(����)

��
− ��(�)+ ��

�����(�)= 0        (19) 

 
where s=i for initial state and s=f for the                       
final state distorted wave. The equation 19 will  
be solved using Numerov’s method. The 
differential cross section will be obtained using 
the relation; 

�
��

�Ω
�
��→��

=
�

���

��

��
∑ �

�

�
����→��

��� + ���→��
�� �

�
+��

����

�

�
����→��

��� − ���→��
�� �

�
�          (20) 

 
And the total cross section shall be obtained as; 
 

� = ∫ ∫
��

�Ω
��������

�

�

��

�
                      (21) 

 

2.3 Distortion Potential 
 
A complex local spherically symmetric optical 
model potential for distortion of projectile wave 
have been used [7]; 
 
����(�)= ���+ ����� + �����                     (22) 

 
where	��� is the static  potential,�����  is a local 
energy dependent exchange potential and ����� 
is absorption potential arising because of the 
processes other than being considered i.e. 
because of absorption to other channels. 
 
In this study the  static potential of the target 
atom in its initial states as the distortion 
potential,���	for the initial state of the projectile 
electron because, in initial state the projectile 
only ‘sees’ the initial state static potential of the 
target atom and a linear combination of the static 
potential of the target atom in its initial and final 
states as the distortion potential ��� for the final 
state of the projectile electron because when the 
energy of the projectile is transferred to the atom, 
it takes some time before the atom goes to its 
final state. Projectile in its final state ‘sees’ an 
intermediate potential between the initial and 
final state static potential of the target   [8]. That 
is; 
 
�� = ⟨��|�|��⟩ = ��� in the initial channel        (23) 
 

�� =
�

�
⟨��|�|��⟩ +

�

�
���������= ���  in the final 

channel                                    (24) 
 
Exchange potential of [9] is given as; 
 

����(�)=
�

�
[� − ���(�)]−

�

�
{[� − ���(�)]

� +

4��(�)}
�
��                                                (25) 

 
Absorption potential due to [10] given as; 
 

���� = −
�

�
�����(�)��                      (26) 

 

where ���� = [2(� − ���)]
�
��  is the local kinetic 

energy of the incident electron, �(�)  is the 
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electron charge density of the target atom,	��� is 
the static plus exchange potential and ��  is the 
average binary collision cross section. 
 
2.4 Evaluation of Static Potentials 
 
The general mathematical formulation of static 
potentials is expressed as; 
 

�� = ⟨��|�|��⟩          (27) 
 
Where �� is the target wave function s=i or f  for 
initial or final state respectively and V is the 
interaction between the target and the projectile. 
Hartree Fock wave functions of [5] have been 
used for the target states. In these wave 
functions �� is summed over slater type orbitals 
of the basis set as; 
 

|���⟩ = ∑ ��|���⟩�           (28) 
 
and 
 

⟨��
�|= ∑ �

�′
∗

�′ ���′
�|          (29) 

 
The value of ��  represent the expansion 
coefficients and ��are the slater type orbitals of 
the basis set. Using equation 28 and 29 in 
equation 27 the distortion potentials can be 
written as; 
 

�� = ∑ ∑ ���′ �
�′
∗ ���′�������                  (30) 

 
where V is the interaction potential in atomic 
units as given in equation  27. Since the target is 
being treated as one election atom, the 
interaction potential becomes; 
 

	� = −
�

��
+

�

���
          (31) 

 
�

���
	can be expanded in spherical harmonics as; 

 
�

���
= ∑ ∑

��

����

��
�

��
��� ��,�(��)��,�

∗ (��)        (32) 

 
Where ��  and ��  are the lesser or greater of r0 
and r1 respectively and 		���′�  are spherical 
harmonics. 
 
In distorted wave calculations, the spherically 
symmetric distorting potential used consists of 
the nuclear term on the right  hand side of 
equation 31  plus the monopole term (l=0) of the 
summation of equation  32 since the effects of 
non-spherical terms is very small [2]. Since; 

��,� =
�

√��
                       (33) 

 
The static potential is thus expressed as (in 
Rydberg units); 
 

�� = 2∑ ∑ ����′
∗ ���′�

�

��
−

�

��
����        (34) 

 
The slater type orbitals are expressed as a 
product of radial wave functions and spherical 
harmonics ��,� [5] and are given as; 
 

�� = ���
����exp	(−���)��,�(�̂)        (35) 

 
where	��	is the principal quantum number of the 
n

th
 orbital of the basis set �	is a constant and the 

normalization factor �� of the orbital is given as; 
 

�� =
(��)

���
�
�

�(���)!
          (36) 

 
When the values of the wave function are 
substituted in equation 34 and replace the Bra 
and Ket notation with the standard integrals a 
fully expanded static potential given below is 
obtained; 
 

        
(37) 

 
In equation 37 above partial integration of the 
radial component is made use of such that from 
the radial distance 0, r0 is considered to be 
greater than r

1
, while from r

0
 to infinity, r

1
 is 

considered to be greater than r0. Since the 
spherical harmonics are orthonormal, the last 
integral on the right hand side of equation 37 
vanishes unless l=l’ and m=m’ 
 
As a result the distortion potential reduces to; 
 

�� = ∑ ����′�� �
�′
∗ ����′

∗ ∫ ��
�����′

(
�

��

∞

��
−

�

��
)exp	(−���)���

     (38) 
 
where	� = [�� + ��,]          (39) 
 
In this case the integral of equation 38 above is 
evaluated analytically in order to get the exact 
static potentials which have been used as the 
distortion potentials. The analytical solutions of 
equation 38 depends on the sum of the principal 
quantum numbers,�� and ��′ and the sum varies 

from 2 to 10 for the problem that was solved.  
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3. ANALYSIS AND RESULTS 
 
The present results (with static potential, static 
plus exchange potential, static plus exchange 
plus absorption potential) have been compared 
amongst themselves and with the available 
experimental and calculated results. Multi zeta 
(MZ) wave functions have been used in this 
work. The results have been compared with 
those of [4,11,12] and [13] for electron impact 
excitation of rubidium. The result for [11] was 
obtained through experiment, [13] was obtained 
theoretically by employing a fully relativistic Dirac 
B-spline R-matrix (close-coupling) model and for 
[14] and [12] results is a calculation using the 
distorted wave method. 

 
In this study integral cross sections (ICS) for 
inelastic scattering of electrons by a rubidium 
atom were calculated at the range of 15.8–
1000eV. Table 1 gives the present inelastic 
integral cross sections, obtained using static 
potential, static plus exchange potential and 
static plus exchange plus absorption potential. 
The present integral cross sections results for 
electron impact excitation of the 4p

5
5s

2 
state of 

Rubidium are compared with the works [14,11] 
and [13]. The present integral cross section  
results indicate that when only static potential  is 
taken as the distortion potential, it gives  larger 
cross sections compared to those obtained when 
static plus exchange and static plus exchange 
plus absorption potentials [7] are used as 
distortion potential. This study also reveals that 

with absorption potential the cross sections are 
lowered compared to when only exchange 
potential is included in the distortion potential. 
 

At lower energies between 15.8-18.6eV and at 
energies above 50eV the present three sets of 
cross sections are nearly the same. Energies 
between 19.0 – 50eV the cross sections are so 
different with static  potential results having the 
highest cross sections followed by static plus 
exchange and static plus exchange plus 
absorption potential results having the lowest 
values. This can be attributed to the opening of 
several or an infinite number of channels in 
addition to the elastic channel. 
 

It is also clear that there is an abrupt increase in 
the integral cross sections at electron energy just 
above threshold energy [12] of the lowest 
autonizing state of rubidium and it peaks at about 
18.6eV. This is due to formation of a composite 
state of negative ion ��� which then decays into 
the rubidium atom in the autoionizing state and a 
free scattered electron with low energy which 
explain a sharp increase in the cross section 
near threshold energy. It can also be as a result 
of exchange effects between projectile electron 
and atomic electron at low impact energies. 
 

From 19 to 50eV the effect of exchange and 
absorption potential is very much apparent, with 
the absorption potential lowering the cross 
section much more than exchange potential and 
brings the cross section closer to the 
experimental results of [11]. 

 
Table 1. Integral cross sections for electron impact excitation of 4p55s2 state of rubidium atom 

 
Energy (eV) Static potential Static and exchange 

potential 
Static, exchange  and 
absorption potential 

15.8 5.962E-03 8.61E-03 8.61E-03 
15.9 2.146E-03 2.94E-02 2.94E-02 
16 4.233E-03 5.61E-02 5.61E-02 
17 3.191E-01 3.46E-01 3.46E-01 
18 4.491E-01 4.53E-01 4.53E-01 
18.2 4.565E-01 4.58E-01 4.58E-01 
18.4 4.601E-01 4.59E-01 4.59E-01 
18.8 4.578E-01 4.54E-01 4.54E-01 
19 4.533E-01 4.49E-01 4.49E-01 
20 4.141E-01 4.08E-01 4.08E-01 
30 2.475E-01 2.49E-01 1.53E-01 
50 2.980E-01 2.98E-01 2.90E-01 
60 2.920E-01 2.92E-01 2.86E-01 
80 2.733E-01 2.73E-01 2.69E-01 
100 2.567E-01 2.57E-01 2.54E-01 
200 1.936E-01 1.94E-01 1.93E-01 
600 1.002E-01 9.83E-02 9.82E-02 
1000 5.971E-02 5.93E-02 5.93E-02 



 
 
 
 

Agutu and Singh; AJOPACS, 4(2): 1-9, 2017; Article no.AJOPACS.36120 
 
 

 
8 
 

 
 

Fig. 2. Intergral cross section for excitation of the lowest autoionising level in rubidium 
Borovik experimental (2013) results,             present static distortion potential results, 

               present static and exchange distortion potential results,             present static, exchange and absorption  
distortion potential results,            Borovik theoretical (2012) results;              Srivastava and Pangantiwar (1987) 

results 

 
At higher projectile energies the effects of 
exchange and absorption potentials are not 
visible and that`s why the present three sets of 
cross section results are nearly equal. This is 
due to minimal interaction between the projectile 
electron and the target atom.  
 
The present results for energies greater than 
50eV are slightly higher than those of [14] this 
can be attributed to the choice of distortion 
potential. The present calculation we have 
applied as proposed by [8], initial state static 
potential as the initial channel distortion potential 
while a linear combination of initial and final state 
static potentials as the final channel distortion 
potential while in [14] calculation initial state 
static potential is the initial channel distortion 
potential while the final state static potential is 
the final channel distortion potential. In addition, 
it could be attributed to the present results as we 
applied MZ Hartree fork wave functions by [5] 
while they used MZ Hartree fork wave functions 
by [15]. When compared with [11,12] and [13] 
results they are in good qualitative agreement 
with both experimental and theoretical results. 

4. SUMMARY 
 
From this study, the following conclusions have 
been arrived at: 

 
The present results are in good qualitative 
agreement compared to [14], at all the projectile 
energies the present cross sections are relatively 
higher. This may the attributed to the choice of 
distortion potential which is more apparent                   
at low impact energies than at high energies.  
The energy of the projectile determines the level 
of interaction in the target atom. When the 
projectile energy is lowered, it leads to higher 
interaction. 
 
Absorption distortion potential lowers the cross 
section at low energies and this is due to the 
opening of more channels at this point and 
considerable amount of time spent by the 
incident electron in the vicinity of the atom. 
 
Near threshold strong negative ion resonances 
(due to the existence of an extra electron in the 
vicinity of the target atom electron cloud which 



 
 
 
 

Agutu and Singh; AJOPACS, 4(2): 1-9, 2017; Article no.AJOPACS.36120 
 
 

 
9 
 

makes the target behave like a negative ion) 
there is sharp rise in the cross section though the 
exchange has less effect [6]. 
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