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Abstract

In this paper, we introduce the notions of compatible nmeyspiof type(R), type (K) and type (E) |in
Mengers paces and prove some common fixed point theorerttsek® mappings. In fact, we call these
maps as variants of compatible mappings.
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1 Introduction

The notion of probabilistic metric space as a geigtidn of metric space was introduced by Menger [1].
In Menger theory, the notion of probabilistic metric @&orresponds to situations when we do not know
exactly the distance between two points, but we knabatrilities of possible values of this distance. In this
note he explained how to replace the numerical distanceebetwwo pointgpand g by a function

F(p,q,t)whose valueF(p, q, %) at the real number is interpreted as the probability that the distance
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betweerpandgq is less thart. In fact the study of such spaces received an impetus lwgthibneering work
of Schweizerand Sklar [2]. The theory of probabilistic noespace is of paramount importance in
Probabilistic Functional Analysis especially due toeit¢ensive applications in random differential as well
as random integral equations( see references) [3,4,5%1081,12] and [13].

Now, we give preliminaries and basic definitions in Margmace which are useful in this paper.

Definition 1.1 [2]: A mappingF: Rt - R* is called distribution function if it is non decreasing deft
continuous withinf{F (£): £ € R*} = 0 and sup{F(#):£ € R*} =1. We will denote the set of all
distribution functions by..

Let £ be the set of all distribution functions wher@ése the set of specific distribution function (Also
known as Heaviside function) defined by

_(0,ift<0
H®) = {1, ift > 0.

Definition 1.2 [1]: A probabilistic metric space is a pdiK, F), whereK is a nonempty set arfet K x K —
L is a mapping satisfying the following:

For allp,q,r e Kand t,s = 0,

(p))F (p,q,%) = 1ifand only ifp = g;

(pz)T(p: q' O) = 0;

(p3)F(p,q,%) =F(q,p,%);

(p4)T(P, q; t) = 1 andT(q,r, S) = 1’ then“}:(p’r't + S) = 1

Every metric spac€kK, d) can always be realized as a Probabilistiv metric spgcE(p,q,t) = H (£ —
d (p,q)), for all p, q € K, whereH be the set of specific distribution function defined in deéinition 1.1
(2].

Probabilistic metric space offers a wider frameworantihat of the metric space and cover even wider
statistical situations.

Definition 1.3[2]: A mapping A : [0,1] x [0,1] - [0,1] is called at-norm if for alla, b, ¢ € [0,1],

(1) Aa,1) = a,A(0,0) =0;

(2) Ala,b) = A(b,a);

(3) A(c,d) = A(a,b) forc = a,d = b;
(4) A(A(a,b),¢) = A(a,Ab, ©)).

Example 1.4: The following are the four bastcnorms:
(i) The minimum¢-norm:A,,(a, b) = min{a, b}.
(i) The productt-norm:Ap(a, b) = ab.
(iii) The Lukasiewicz-norm:A; (a, b) = max {a + b — 1,0}.
(iv) The weakest-norm, the drastic product:

min{a, b} if max{a, b} =1,
0, otherwise.

8p(ab) = {

We have the following ordering in the above stated norms:
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Definition 1.5 [1]: A Menger space is a tripl€K, F, A), where(KK, F) is a probabilistic metric space aad
is az-norm with the following condition:

For all p,q,r € Kand#,s = 0,
(ps)F(p,r,t+s) = AF,q,%),F(q,r1,5)).
Example 1.6: LetK = R, A (a, b) =min (a, b), for all a, bin [0, 1] and

0= 4O 250

Then(K, F,A) is a Menger space.

0,ift <0

whereH (¢) = {1 ift > 0.

Definition 1.7: A sequencép, } in Menger spacéK, F, A) is said to be:

(i) Convergent at a poinpt € K if for everye > 0 and A> 0, there exists a positive integéf; such
thatF (p,,p,€) > 1 -Aforalln = N,_;.

(i) Cauchy sequence i if for everye > 0 andA> 0, there exists a positive integhit, such
thatF (p,, pm,€) > 1 -Aforalln,m = N ;.

(iii) Complete if every Cauchy sequenceinis convergent irk.

In 1996, Jungck [14] introduce the notion of weakly commuting magpin

Definition 1.8 [14]: Two self-mappingf; and g, of a Menger spadd,F,A) are said to be weakly
commuting if F(f,9.0, 91fip, 1) = F(fip, g1p, %) for eachp € K and for eacht > 0.

In 1982, Sessa [15] weakened the concept of commutativityetkly commuting mappings. Afterwards,
Jungck [16] enlarged the concept of weakly commuting inggpo compatible mappings.

In 1991, Mishra [17] introduced the notion of compatible mappinghénsetting of probabilistic metric
space.

Definition 1.9 [17]: Let (K, F,A)be a Menger space such that thenormA is continuous ang, g, be
mappings fronk into itself. Therf; andg, are said to be compatiblelitn,_,,F(f1910n g1 fiPn, t) = 1,
whenevefp,} is a sequence i such thalim,_.fipn = liM,L0g1Pn = Uy, fOr someu, € K.

Definition 1.10: Two self-mapping$; andg, on Menger spa¢&, F,A)are said to be non-compatible if
either

limy oo F(f191Pn 91 /1P, ) is nON-existent dimy, o, F (f191Pn, g1 /1Pn ) # 1,
Whenevelp,} is a sequence i such thatlim,_,. fp,=lim,_ gpn = Uy, for someu,; € K.

Further, Singh and Jain [18] proved some fixed point theoremsdakly compatible maps in the setting of
Menger space.

Definition 1.11 [18]: Two mapsf; and g, are said to be weakly compatible if they commaité¢heir
coincidence points.

In 1999, Pant [19] introduced a new continuity condition in Mengacs, known as reciprocal continuity as
follows:

Definition 1.12 [19]: Let f; and g,be self- mapping of a Menger spéKeF,A). Thenf, and g, are
said to be reciprocally continuous lifm, ., f1910.=fi7, liMm,_ 0 g1fi0n= g17, Whenever {p,} is a
sequence ik such thatlim,,_,., fipn= lim,_. g10n = rfor somer € K.
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Remark 1.13 [19]: If f; andg,are both continuous, then they are obviously reciprocalfyicuous, but the
converse is not true. Moreover, common fixed point thesrdéaon compatible pair of self-mappings
satisfying contractive conditions, continuity of one of thappings implies their reciprocal continuity, but
not conversely.

In 2004, Rohan et al. [20] introduced the concept of compatiblgomgs of type (R) in a metric space as
follows:

Definition 1.14 [20]: Let f; and g, be mappings from metric spa@g, d) into itself. Thenf; and g, are
said to be compatible of type (R) if

lim,, o d(f1910n g1f1Pn) =0 andlim,,_,, d(f1fiPn 91919n) = 0,
whenevefp, } is a sequence iKsuch thatlim,,_,, fip, = lim,, . g1pn» = u,, for someu; in K.

In 2007, Singh and Singh et al. [21] introduced the concepbrapatible mappings of type (E) in a metric
space as follows:

Definition 1.15 [21]: Two self-mappingfandy,of a metric spac€lK, d) are said to be compatible of type
(B)iflimy, o, f1 f1Pn = liMy o0 f191Pn = g1 andimy, e, 919195 = limyoo G1f1Pn = fius, Wheneverp, }
is a sequence iKsuch thatlim,,_,, fip, = u, for somet in K.

In 2014, Jha et al. [22] introduced the concept of compatithppings of type (K) in a metric space as
follows:

Definition 1.16 [22]: Let f; andg, be mappings from metric spa@¥, d) into itself. Thenf; angg, are said
to be compatible of type (K) if

lim, o, d(f1f1Dn, g1141) = 0 andlim,,_,o, d(g191Pn, f1t1) = 0,

whenevefp, } is a sequence iKsuch thatlim,,_,,, fip, = lim,_ g:P» = Uy, for someu, in K.

2 Properties of Variants of Compatible M appings

Now we present the notions of variants of compatible mappinteicontext of a Menger space.
Definition 2.1: Let§ andT are two self-mapping on Menger sp&é&F, A ).ThenS andJ are said to be:
1. Compatible of type (R) ifim,,_.F (8T x,, TSx,, %) = 1, and

lim,,_, . F(8Sx,, TTx,, ;) = 1,whenever a sequenée, }in K satisfying lim,_.Sx, = lim, . Tx,
uq, Wherew, € K, v£; > 0.

2. Compatible of type (K) lfm,,_, . F(SSx,, Tu,,%,) = 1 and
lim,,_,.F(TT x,, Suq,t;) = 1, whenever a sequerfag, }in K satisfying
lim, .. Sx, =lim,_ . Tx, = u,, where w,in K.

3. Compatible of type (E) ifm,,_,,, Sx,, = lim,,_,,, STx, = Tu, and
limy o TT 2, = lim,_,, TSx, = Su,;, whenever a sequencgr,} is in K satisfying lim,_,Sx, =
limy,_, T2, = 1y, Wherew, in K.

Proposition 2.1: Let § and T are two compatible mappings of tyg®) self maps of a Menger
spac€K, F,A). If Su, = Tu,, for someu, € K, then§Tu, = SSu; = TTu, = TSu,.
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Proof: Suppose thatr,} is a sequence K defined byx,, = «,,n = 1,2, ... for someu, € K andSu«, =
Tu,.Thenwe haveéx,, Tx,, - Su,; asn — «. SinceSandT are compatible of type (R), we have

F(STuq,, TSuy, t1) = limy, o F(STx, TSx,, %) = 1.
Hence we havéTw, = SSu,. Therefore, sinc6u, = Tu,, we haveSTu, = SSu, = TTu, = TSu,.

Proposition 2.2: Let s and7 are two compatible mappings of tygR) self maps of Menger space
(K, F,A). Consider thatim,,_,,, Sx,, = lim,,_,, Tx,, = 1., wherex, in K. Then

(@) lim,_,TSx, = Su, if § is continuous at,.
(b) lim,_,, 8Tx, = Tu, if T is continuous at,.
() STu, =TSu, andSu, = Tu, if SandTare continuous at,.

Proof: (a) Suppose tha$ is continuous at,. Sincelim,,_,, Sx,, = lim,,_,, Tx,, = «, wherew, in K, we
havess$x,, ST x, - Su, asn - «.Then by given condition

lim, o F(TSx,, Sy, t1) = limy o F(TSx,, ST x,,%,) = 1.
Thereforelim,,_,,, 7Sx, = Su,.

(b) Suppose thaf is continuous at,.Sincelim,_Sx, = lim,_.,Tx, = u,, where inK, we have
TSx,, TT %, - Tu,asn — «.Then by given condition

limy,_,, F(8T x,, Tuq, t1) = limy_, F(§T %, TSx,,£,) = 1.
Thereforelim,,_,,, STx,, = Tu,.
(c) Easily follow by Proposition 4.18Tw, = §Su, =TT u, = TSu,.

Proposition 2.3: Let$§ andT are two compatible mappings of type (E) on a Mengersfifcg, A) into
itself.

If one of§ andT be continuous and
lim,_, Sx, = u,, whereu, € K. Then the following hold

(@) Su; = Tuy,lim, o 8Sx, =lim,_, STx, =lim,_, TSx, = lim TTx,.
n—-oo

(b) If we can findr; € K such thatSv; = Tv; = u,,we haveST v, = TSv.
Lemma 2.1[18]: Let (K, F, A)be aMenger space.If there existe & (0,1) such that
F(p,q,kt) = F(p,q,t)for allp,q € Kandt > 0, thenp = q.

Lemma 2.2 [18]: Let {p,} be a sequence in a Menger sgd&er, A)with continuoust -normA and
A(t,t) = 4. If there exists & in (0,1) such that

F (Pr> P, k1) = F(Pn_1, Pn, £), then fp,} is a Cauchy sequencelin

3 Main Results

Now we prove our main theorems in Menger spaces.

Theorem 3.1: LetA, S, B andT are four self maps on a complete Menger sg&cé&, A) such that
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(3.1) T(K) c A(K), S(K) < B(K);

F(Az, Bw,*,),F(Az,83, %),
(3.2) F(83,Tw,qt,) = mini F(Bw,Tw,t,),F(Sz, Bw, at,),
F(Az,Tw, (2 — a)t,)

hold for all z, 2 in K, wherea € (0,2),%; > 0,

(3.3) one of the mag, s, B andT be continuous.
Suppose the pair8(T)and (A, §)are compatible of typ€R).
Thenu, = Bu, = Tu, = Au, = Su,, whereu, is a unique irk.
Proof: SinceS(K) < B(K). Now consider a poirg, € K, we have a poiay € K such thaSz, = Bz, =
wy, forzy, we can find a poirt, € KsatisfyingTz, = Az, = w. Similarly we have a sequencev{} in
K satisfying

Won = SBan = Bonyas
Wons1 = T Bang1 = AZania;

Now we prove that4v, } is Cauchy sequence &

On settingg = 24, W = Z5,.1,a = 1 — Bwith B € (0,1)in inequality (3.2), we have

F(AZ2m Bzon+1,£1), F(Azan, Szan, £1),
F(Bzan+1 T Z2n41,t1),
F(Szam, Bzons1, (1 — B)t)
F(Azon, T 32n41, (1 + B) £1)

F(S22n, T Z2n41, @%1) = min

JT(WZH—LwZH!tl)rT(WZn—l!WZth)!
. F(won, Wans1, 1),
M (wry,,, W ,q%t1) = min
( 2n 2n+1 % 1) T(w2n1w2n: (1 _ B)tl):
k F(won-1, Wans1, (1 + B) £1)

F(won—1, Won, £1),
F(Won, Wons1, gt1) = min F(Won, Wons1, t1), 1,
F(won-1, Wans1, (1 +B) £1)

min{T(WZH—l!WZWtl)!T(w2nrw2n+1rtl)!}
F(won-1, Wans1, (1 +B) £1)

v

T(w2n—1!wZH!tl)!T(w2nrw2n+1rtl)!}
F(won_1, Wan, t1), F(Won, Wonyq, BE1)

v

min {

F(Waon—1,Waon, 1), F(Won, Wony1, t1):}

= min{
F(won Wont1, BE1)
Sincé\ is continuous, letting — 1 we obtain

F(Won-1, Wan, t1).}

Fwony, Wontt, t)Zmin{
2 Want1, @01 F(won, Wans1, t1)

man{ F(won_1, Won, 1), F (Won, Woni1, 1)},
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Hence M (wyn, Wont1, @t1) = Min{F (won_1, Wop, 1), F(Wan, Wans1, £1)}
Similarly

F(Wpnt1, Wantz Gt1) = Min{F (won, Wons, £1), F(Want1, Wansz, £1) }
So for alln, we have

F (W, W1, Gt1) = min{ F(w,_q, Wy, 1), F (W, Wit £}
Consequently, we have

F(wry, Wy, £1) = min{ F( wn_l.wn,;—l), Flw,, wnﬂ,;_l)}_

By repeated application of above inequality, we get

. t t
T(wnr wn+1!t1) 2 mln{T(wn—lrwn! j)!T(wn' Wnt1, %_1)}

m

Since T(wn,wnﬂ,;—;) — lasm — oo, it follows that
F(wy, Wi, @t1) = F(wy_q, wy, £,),foralln € N.

By Lemma 2.2, {v,,} be a Cauchy sequencelirand hence it convergesuo € K, then the subsequence
{8221}, {Bz2n+13{T B2n+1} and §Az,, Yof {u,} also converges ta,.

SupposeA is continuous. Now by Proposition 2.2 and,§)are compatible of typ®), AAz,, and
SAz,, converges toAu,asn — .

We claim thatu; = Awu,.
On puttingz = Az,, andw = z,,,,, @ = 1 in inequality (3.2), we have

F(AAz2n, Bons1, t1), F(AAZrm, ScAZon, £1),
F(SAzon, T Z2nr1,@t1) = ming F(Bzzni1, T 2241, t1), F(SAZon, Boani1, £1),
F(AAZm T 22041, £1)

Lettingn — o, we get

F(Au, Uy, 1), F(Auq,, Auqg, £y),
F(Auy,uy,gt1) = min F(uq, g, £1), F(Aug, 1y, 1),
F(Auq,uq, 1)

F(Auqg, uq, gty) = F(Auy, 1y, ).

Lemma 2.1givesAw, = u,.

Next we claim thaS«,; = u,.

Puttingz = «, andw = z,,.,,a = 1 in inequality (3.2), we have

F(Auq, Boapi1,t1), F(Aug, Suq, 1),
F(Suy, T 32011, g1t1) = min F(Bz2n+1, T Zan+1, t1)s
F(Su1, Bzonsr, £1), F (AU, T Bongr, £1)
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Lettingn — o , we obtain
Flug, uq,41), F (g, Suqg, 1),
F(Suq,uq,qgty) = min Fluqg, uq, t1), F(Suq, 1y, £1),
Fuy, uq, 1)
we haveF (Suq, uq, gty) = F(Suq, uq,4).
Lemma 2.1 gives§u, = u,.
SinceS (K) c B(K) and hence we can find a point in K satisfyingt, = Su, = Bv,.
We claim thatu, = Tv.
On setting = «; andw = v, a = 1 in inequality (3.2), we obtain
F(Au,, Bvy, £1), F(Au, Suq, 1),
Fluy, Tvy,gty) = F(Suy, Tvy, kty) = min F(Bvy, Tvy, 1)
yF(Suq, Buy, 1), F(Auy, Ty, £1)

T(ull /[/(/1, /tl)l T(ulr ’M/l, tl)l T(’le, T/Lrll tl);}
F (g, 1wy, 1), F(req, v, 1)

i.e.,F(u,, Tvy,gt) = min{
e, F(uy, Tvy, gt) = F(uy, Ty, £).
By Lemma 2.1, we get; = T v;.

SinceB andT are compatible of type (R) a®lr, = Tv, = u,, by Proposition 2.1BTv, = TBwv,; and
henceBu, = BT v; = TBv; = Tu,. Also, we obtain

F(Au,, Buq, t1), F(Au, Suq, 4,),
T(Ml,Bul,@tl) = T(Sul,ful,@fl) 2 mln T(Bul,:rul,tl)
JF(Suy, Buy, ty), F(Auy, Tuq, ty)
we getF (uy, Buy, gt1) = F(uq, Buq, £1).

By Lemma 2.1, we get; = Bu,. Henceu, = Bu, = Tu; = Au; = Su,.

Now supposé is continuous giveed ands are compatible of type (R), by Proposition £3z,, and
82,y CONVerges tsw,an — .

We claim thatu; = Su,.
Puttingz = §z,, andw = z,,,,, « = 1 in inequality (3.2) ,we have
F(AS 32, Boans1, t1), F(AS Byn, SSZom, £1),
F(SS8z2n, T Zons1, 4t1) = min{ F(Bzani1, T Zan+1, £1), F(SS 22n, Bzon+1, 1),
F(AS 320, T Zan+1, 1)

Lettingn - « we get

we getF (Suq, uq, gt1) = F(Suq, uq, £1).
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By Lemma 2.1, w&w, = u,.
SinceS (X) c B(X) and hence we can find a pojp € K satisfyinge, = Su, = Bp;.
We claim thatu, = T p;.
Puttingz = §z,, andw = p,,a = 1 in inequality (3.2), we obtain
F(AS 22, Bp1,t1), F(AS 230, SS Zon, £1),
F(8822n, Tp1,at1) Z2ming  F(Bp1, Tp1,t1), F(§S32m, Bp1, 1),
F(AS 220, Tp1,%1)
Lettingn — « we have
Fuq, T p1, gt1) = min{F (uq, 1y, %), F(q, T p1, 1)}
we getF (u, Tpq, gt1) = F(u, Tp,£1)-
By Lemma 2.1, we geu; =T p;.

SinceB andJ are compatible of type (R) amBjp, = T p, = u,, by Proposition 2.2BT p, = TBp, and
henceBuw, = BT p; = TBp; = Tu,.

We claim thatu, = Tu,.
Puttingz = z,, andw = «,, @ = 1 in inequality (3.2), we have
T(‘AZZn! B’ul! tl): T(‘Azzw SZZn; tl);
F(S32n, T1y, gt;) = min F(Buy, Tuy, 1),
F (8220, Buy, 1), F(Azon, Ty, £1)
Lettingn — oo, we haveF (uy, Tuq, gty) = min{F (u,, Ty, ), F (g, 1y, £1)}
we havéF (u,, Tuq, gt,) = F(uqy, Tuq, t1).
By Lemma 2.1, wd u; = u,.
SinceT (K) c A(K) and hence we can find a pomt € K satisfyinge, = Su, = Ax;.
We show that, = Sx,.
Puttingz = x; andw = «,,a = 1 in inequality (3.2), we obtain
F(Axqy, Buy, t1), F(Ax, Sxq, 1),
F(Sxy, 1y, gty) = F(Sxy, Ty, kty) = mini F(Buy, Tu,, 1), F(Sxy, Bxy, t1),
F(Axy, Tuq, ty)
= min{F (uq, uq, 1), Fluy, Sx4,4,)}
we obtainF (Sxq, 1, gt,) = F(uq, Sxq,%,).

Lemma 2.1 givesy, = Sx;.
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SinceS andA are compatible of type (R) addk, = Ax; = u,, by Proposition 2.1ASx; = SAx, and
henceAw, = ASx; = SAx, = Su,.

Hencew, = Bu, = Tu, = Auy = Su,.
Uniqueness Supposer; (v; # u,) be other point ifiK such that

v, =By, =Tv = Avy = Svy.
Puttingz = «, andw = vy, « = 1 in inequality (3.2), we obtain

F(Au,, By, 1), F(Auq, Sy, 1),
F(Su,, Ty, qt1) = Flug, vy, gt) = min{ F(Bvy, Tvy, 1), F(Suy, By, 1),
F(Auq, Ty, 1)
= ml’n{g’-(’”q,’lfl;f1);T(’u1,’u1;t1)}

we get F(u,y, vy, g%t1) = F(uq, vy, £1).
By Lemma 2.1, we geit; = v.
Henceu, = Bu, = Tu, = Au,; = Su, and w4 is unique ink.
Next we prove theorems for compatible mappings of type(i€)type (E) as follows:
Theorem 3.2: LetA,S,B andTare four self maps on a complete Menger sfi#c&, A)satisfying (3.1),
(3.2). Suppose that the pairsA(S) and (B,T) are reciprocally continuous and compatible of type
(K).Thenu, = Bu; = Tu, = Au, = Su,, Whereu, is a unique irk.

Proof: Now from the proof of Theorem 3.1, we can easily proved teasubsequences$,,}, {Bzn+1},
{Tz5n4+1} and {Az,, }of {w,} also converges ta;.

Now the pairdB,T) and (A4, S) are compatible of type (K), we obtain
AAZyy = Sy, 8825, = Auy andBBzy, = Ty, TT22n41 = Buy asn - oo,
We claim thatBBu, = Au,.
Puttingz = §z,, andw = Tz,,.,,a = 1 in inequality (3.2), we have
F(AS 220, BT Zopn11, t1), F(AS Zon, S8 220, 11),
F (88220, TT Zons1, Gt1) = min{ F(BT 22041, TT Zant1, £1), F(SS 220, BT Z2n41, 1),
F(BSzon, T Zon+1,t1)
Puttingn — o and reciprocal continuity of the pai® 7) and (4, $),we obtain
F(Auq, Bu, gt,) = min{F(Au,, Bu,, t,),1,}
we get F(Au,, Buq,qt,) = F(Au,, Buy, ).

By Lemma 2.1, wedw,; = Bu,.

Next we claim thaBu; = Su;.

10
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Puttingz = «, andw = Tz,,.,,@ = 1 ininequality (3.2), we get

(T(Uq’l‘vv BT Zon+1, t1 ), F(Auy, Sy, t1):\

. F(BT 33041, TT 3 ),
F(S ,:TT , t > { n+1 2n+10 "1
(Su1, TT 3o 41, Gt1) = min F(Suy, BT Zap41,t1),
k F(Au, TT 2241, 1)

F(Suy, Buq, gt,) = min{F(Bu,, Buqy, 1), F(Bu,, Suq, t1)}
we get F(Suq, Buq,gt1) = F(Suq, Buq, 11).
By Lemma 2.1, wu; = Bu,.
We claim thaSw, = Tu,.
Puttingz = «; andw = «,, @ = 1 in inequality (3.2), we have

F(Au,, Buq, t1), F(Auy, Suq, £,),
F(Suy, Tuy, gt1) = ming F(Buy, Tuy, 1), F(Suy, Buy, 1),
F(Auqy, Tuq, 1)

F(Suy, Ty, gty) = min {T(S’”mT’uhﬁ):T(B’upB’”mﬁ)}

F(Au,, Auq, %;)
we getF (Suq, Tuy, kty) = F(Suq, Tuq, t1).

By Lemma 2.1, we gefu,; = Tu,.

We claim that, = Tu,.

Puttingz = z,, andw = «,, @ = 1 in inequality (3.2), we have

T(CAZZTU Bull tl)r T(c’qzznr SzZn' tl)r
F(S3on, Ty, gt1) = min F(Buy, Tuq,£,), F(82p, By, 1),
F(Bzon, Ttty, 1)

Takingn — o, we obtain

Fluy, Ty, gt,) = min {T(’ML Buq, 1), F(uq, uq, tl)}

F(uy, Tug, 1)

we getF (uy, Tuq, gt) = F(uy, Tuqg, £,).

By Lemma 2.1, we get, = Tu,.

Thenw,; = Bu, = Tu, = Au, = Su,wherew, is a unique irk.

Uniqueness Supposew; (w, # u,) be other point irkK.

Puttingz = «; andw = w, @ = 1 in inequality (3.2), we obtain
F(Au,, Bwq, %), F(Auq, Suq, £,),

F(Suy, Twy, gty) = Fluy, wy, gty) = min{ F(Bwy, Tw, £1), F(Suy, Bwy, t),
F(Auq, Twy, 1)

11
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we get F(u,, wy,gt1) = F(uq, wy, ).

By Lemma 2.1, we get; = w;.

Henceu,; = Bu, = Tu, = Au,; = Su, and w4 is unique ink.

Theorem 3.3: LetA,S,B andT are four self- maps of a complete Menger spéc®, A) satisfying (3.1),
(3.2).Suppose the pairsA(S) and B,T) are compatible of type (E) and onesodndcAis continuous and

one of T andB is continuous. Them, = Bu,; = Tu, = Au,; = Su,, Wherew, is a unique irk.

Proof: From Theorem 3.1, we can easily prove the subsequeage X {Bzan+1}:{TZ2n+1} and £Az,, Jof
{w,} also converges ta,.

Now, suppose that one of the mappisgand.A is continuous, givehandA are compatible of typ€r), by
Proposition 2.3:Au, = Su,.

Sinces (K) < B(K) and hence we can find a poirf € Ksatisfyingsu, = Bv.
We claim thatSw, = Tv;.
On settingg = «; andw = v, @ = 1 in inequality (3.2), we obtain
F(Au,, Bvy, t1), F(Auy, Suq, 1),
F(Suy, Tvy,qt;) = min{ F(Bvy, Tvy, t1), F(Suy, Buy, t1),
F(Auq, Ty, 1)
F(Au,, Suq, t,), F(Suqy, Suq, 1)
=min ,F(Suy, Buvy, 1),
F(Suy, Tvy, 1)
we getF(Suq, Ty, gt1) = F(Suq,, Ty, £1).
By Lemma 2.1, we geS«, = Tv,. Thus we havedu, = Su, = Tv, = Buv;.
We claim thatSw, = u,.
Puttingz = «, andw = z,,,,, @ = 1 in inequality (3.2) we have
F(Aty, Bzops1, 1), F(Auy, Suq, t),
T(Sul,TZ2n+1, %tl) > min T(BZ2n+1, :TZZTL+1! tl),T(Sﬂl,BZ2n+1, tl)'
F(Au, T 3241, 1)
= min{T(ul,ul, tl)’ T(Sul, ’l/Ll, tl)}
we gefF (Suq, uq, gt1) = F(Suq,uq, ).
Lemma 2.1givesy; = Su,. Henceu, = Bu, = Tu, = Au, = Su,.

Assume thaf” andB are compatible of typ€) and one of the mappingsandB is continuous. Then we
getBv, =T vy = uq.

By Proposition 2.3, we ha®Bv; = BTv, = TBv, = TT ;.

12
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Hence Bu, = Tu,.
We claim thatu,; = Tu,.
Puttingz = z,, andw = «,, @ = 1 in inequality (3.2), we have
F (Azon By, £1), F(Az2n, SZ2n, 11),
F(822n, Ty, gt1) = mins F(Buy, Tuq, t1), F(§22n, Buy, £1),
F(Azon, Tuq,t1)
Lettingn — o« we obtain
F(Suy, uy, qgty) = min{F (uy, wy, £1), F(Suy, wy, £1)}
we get F(Suq, 1y, gty) = F(Suy, uq, ).
By Lemma 2.1, w&u,; = u,.
SinceS (K) c B(K) and hence exists a poijpt € K such thaiw, = Su, = Bp;.

We claim thatu, = T p;.
Puttingz = §z,, andw = p,,a = 1 in inequality (3.2),we have

F(AS 320, Bp1,£1), F(AS 320, S Bom, £1),
F(8S22m, T p1,gt1) = min FBp, Ty, t1),
F(8832m, Bp1, 1), F(AS 220, T p1,11)

Takingn — oo, we obtain
Fu, Tp1,9t1) = min{F (uy, Tpy, £1), F(ug, 1y, £1)}
we getF(uq, Tpq, gt1) = F(u, Tp,£1)-

By Lemma 2.1, we getu, = T p,.SinceB andJ are compatible of type (R) ap, = Tp, = u,, by
Proposition 2.3BT p; = TBp, and henc@u, = BT p; = TBp; = Tu,.

We claim thatu, = Tu,.
Puttingz = z,, andw = «,, @ = 1 in inequality (3.2), we have
F(Azon, By, £1), F(AZ2n, SZon, t1),
F(S2am Ty, gt;) = min F(Buy, Ty, 1)
F (8220, By, 1), F(Azan, Tuq, £1)
Lettingn — o« we have
F(uqy, Tuqg, gty) = min{F (uy, Tuq, £1), F(uqg, uq, 1)}
we getF(uy, Tuq, gt,) = F(uy, Tuq, £1).
By Lemma 2.1, wd u, = u,.

Thenu, = Bu, = Tu, = Au, = Su,, wherew, is a unique irkK.

13
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4 Conclusion

In this paper, we gave new fixed point theorems for msiaf compatible mapping in menger space. We
hope that out study contributes to the development of thesliésrbg other researchers.
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