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Abstract 
 

Our model is made up of two sections: In the first section, we study a simple SEIR model, estimated the 
reproduction number, discussed the disease-free and endemic equilibria using the Routh-Hurwitz criterion 
and second additive compound matrix respectively. A global stability of disease-free and the endemic 
equilibria was performed using Lasselle’s invariance principle of Lyapunov functions. In the second 
section of our model, we considered SEIR-SEI model of malaria transmission between humans and 
mosquitoes. We estimated the reproduction number and discussed the stability of the disease-free and 
endemic equilibria. The disease-free equilibrium was locally asymptotically stable if the reproduction 
number is less than one and unstable if the reproduction number is greater than one in both models. 
Numerical simulations were conducted using Matlab software to confirm our analytic results. Our 
findings were that, Malaria may be controlled by reducing the contact rate between human and mosquito, 
the use of active malaria drugs, insecticides and mosquito treated nets can also help to reduce mosquitoes 
population and malaria transmission respectively. 
 

 
Keywords: Mathematical model; disease-free equilibrium; endemic equilibrium; Lyapunov function; locally  

asymptotically stable. 
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1 Introduction 
 
Malaria is an infectious disease caused by plasmodium parasite and transmitted between humans through 
bites of female Anopheles mosquitoes [1]. Malaria is an ancient disease having a huge social, economic, and 
health burden. It is predominantly present in the tropical countries [2]. Even though the disease has been 
investigated for hundreds of years it still remains a major public health problem with 91 countries. The 
global record of malaria in 2015 was 212 million new cases and 429000 deaths. Across Africa, millions of 
people still lack access to the tools they need to prevent and treat the disease [3]. Malaria has for many years 
been considered as a global issue, and many epidemiologists and other scientists invest their effort in 
learning the dynamics of malaria and to control its transmission. From interactions with those scientists, 
mathematicians have developed a significant and effective tool, namely mathematical models of malaria, 
giving an insight into the interaction between the host and vector population, the dynamics of malaria, how 
to control malaria transmission, and eventually how to eradicate it [1]. A huge set of epidemiology models 
have been formulated mathematically, analyzed and applied to many infectious diseases. 
 
In 1999 [4] developed and analyzed an SEIRS model to study the dynamics and transmission of malaria, 
involving variable human and mosquito populations.  According to their results, there is a threshold 
parameter �� and the disease can persist if and only if �� > 1 and the Disease-Free Equilibrium (DFE) 
always exists and is locally stable if �� < 1, and unstable if �� > 1. Their model was also globally stable 
when �� ≤ 1. They confirmed their results with numerical simulations. Their model provides a frame work 
for studying control strategies for the containment of malaria.  
 
Another model which is related to this work is that of Olaniyi and Obabiyi [5], they used a system of seven-
dimensional ODE’S to modeling the transmission of plasmodium falciparum malaria between humans and 
mosquitoes with non-linear forces of infection in form of saturated incidence rates, these incidence rates 
produce antibodies in response to the presence of parasite causing malaria in both human and mosquito 
populations. They investigated the stability analysis of (DFE) and according to their results, (DFE) was 
asymptotically stable when R� < 1, and unstable when R�>1. They also determined the existence of the 
unique Endemic Equlibrium (EE) under certain conditions, and their numerical simulation confirms the 
analytical result.  
 
Nita and Gupta [6], modelled the basic of SEIR model and applied it to vector borne disease (malaria). They 
carried out the sensitivity analysis of the model using data from India. According to their results, the 
sensitivity analysis was very important, and it is the most sensitive aspect to be taken care of in their model.  
 
Jia Li [7], developed an SEIR malaria model with stage-structured mosquitoes. They included metamorphic 
stages in the mosquito population and a simple stage mosquito population is introduced, were the mosquito 
population is divided into two classes namely, the aquatic stage in one class and all adults in the other class. 
According to their results the different dynamical behaviour of the models in their study, compared to other 
the bahaviour of most classical epidemiological models, and the possible occurrence of backward bifurcation 
make control of malaria more difficult. 
 
Otieno et al. [8], studied a mathematical model of the dynamics of malaria with four-time dependent control 
measures in Kenya. These are insecticide treated bed nets, treatment, indoor residual spray and intermittent 
preventive treatment of malaria in pregnancy. They considered constant control parameters and calculated 
the reproduction number of disease-free and endemic equilibria, followed by the sensitivity analysis and 
numerical simulations of the optimal control problem using reasonable parameters. According to their 
model, if �� ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Also if �� > 1 then the 
endemic equilibrium exists and it’s globally asymptotically stable. Their model exhibits backward 
bifurcation at �� = 1. They concluded that control programs that follow these strategies can effectively 
reduce the spread of malaria disease in different malaria transmission settings in Kenya.   
 

Agyeing et al. [9], presented a deterministic SIS model for the transmission dynamics of malaria, a life-
threatening disease transmitted by mosquitoes. They considered four species of the parasite genus 
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plasmodium that cause human malaria. According to their paper, some species of the parasite evolved into 
strains that are resistant to treatment. They developed a mathematical model and included all the available 
species and strains for a given city. Their model has disease-free equilibrium which is global attractor when 
the reproduction number of each species or strain is less than one. Their model possesses quasi-endemic 
equilibria and local asymptotic stability was established for the two of the species. Their numerical 
simulations suggest that the species or strain with the highest reproduction number exhibits competitive 
exclusion.  
 
Traore et al. [10], proposed a mathematical model of nonautonomous ordinary differential equations 
describing the dynamics of malaria transmission with age structure for the vector population. They divided 
the into four classes. These are the susceptible, exposed, infectious and recovered classes. They considered 
the biting rate of mosquitoes as a positive periodic function which depends on climate factors. They obtained 
a basic reproduction number of the model and proved that it is the threshold parameter between the 
extinction and the persistence of the disease. They used the comparison theorem and the theory of uniform 
persistence to prove that if the basic reproduction number is less than one, then their disease-free equilibrium 
is globally stable, then there exists at least one positive periodic solution.  
 
In this paper, we use SEIR model and apply it to malaria transmission between mosquitoes and human. We 
extend the model in [1] by introducing exposed class for humans and mosquitoes. Our main objective of this 
study is to investigate the stability analysis for disease-free equilibrium, and endemic equilibrium, and also 
to study the important parameters in the transmission of malaria and try to develop effective ways for 
controlling the disease. We assume that the recovered human individuals do not enter into the susceptible 
class again, and mosquitoes do not recover from malaria. We study the stability analysis of the DFE and EE 
equilibria. The rest of the paper is organized as follows: In section 2, we present the SEIR model description 
and derive the basic reproduction number. Model analysis consisting of the stability analysis of disease-free 
and endemic equilibria is discussed in section 3.  In section 4 we apply the SEIR model to malaria 
transmission. We use numerical simulation to show the dynamical behaviour of our results in section 5. 
Section 6 is made up of discussion of our results. We ended the paper with a conclusion in section 7. 
 

2 Mathematical Model 
 
2.1 Model description and basic reproduction number 
 
The Population of our model is divided into four compartments: Susceptible Humans (�), Exposed Humans 
(�), Infectious Humans (�) and Removed Humans (�). The interaction between the four compartments is 
shown in the schematic diagram in Fig. 1, below:      
 

 
 

Fig. 1. Schematic diagram of Malaria transmission 
 

Model Assumptions 
 

The following assumptions were made in the model: 
 

(i)  The number of infected people increases at a rate proportional to both the number of  infectious and  
the number of susceptible. 
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(ii)  Humans move from Exposed to Infectious compartments with progression rate ��  
(iii)  The rate of removal of infectious to recovered compartment is proportional to the number of        

infectious. 
(iv)  A human can die at any stage by natural causes. Therefore � is taken as natural death rate.  
(v)  The recovered human individuals do not enter into the susceptible class again, and mosquitoes      

do not recover from malaria. 
 
The model equations are given by:  
 

⎩
⎪
⎨

⎪
⎧

��

��
= Λ − β�� − μS                                                      

��

��
= β�� − (�� + �)�                     

��

��
= ��� − (�� + � + �) �              

                          

��

��
= ��� − μ�                                                             

�                                                                        (2.1) 

 
With  �(0)> 0,�(0)≥ 0,�(0)≥ 0 and �(0)≥ 0 
 
where, Λ is the recruitment rate of the population, � effective infection rate � is the natural death rate, � is 
the disease induced death rate, ��is developing rate of exposed (humans) becoming infectious and α�is the 
recovered rate of humans. 
 

Table 1. Parameters Descriptions for the SEIR Model 
 

Parameter name Parameter description 
� 
� 
�� 
�� 
� 
� 

Recruitment rate of susceptible. 
Infection rate(effective infection rate) 
Developing rate of exposed (humans) becoming infectious 
Recover rate of humans ( removal rate) 
Natural death rate 
induce death rate 

 
The variable � of the system (2.1) does not appear in the first three equations in the analysis; we only 
consider the first three equations of the system (2.1) as: 
 

  

⎩
⎪
⎨

⎪
⎧

��

��
= Λ − β�� − μS                                                      

��

��
= β�� − (�� + �)�                                        

��

��
= ��� − (�� + � + �)�                               

        

                                                          

�                                                                     (2.2) 

 
Adding above three equations of system (2.2), we have:   
                                     

  
�

��
(� + � + � + �)= Λ − �� − ��� − ��                                                                                        (2.3) 

 
�

��
(� + � + � + �) ≤ Λ − ��      

     

It follows that:                          
 

          
 

Thus the feasible region of the system (2.2) is given by  
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Γ = {(�,�,�):� + � + � + � ≤
Λ

�
,� > 0,� ≥ 0,� ≥ 0,� ≥ 0} 

 

is positively invariant. Next, we discuss the basic reproduction number of the system (2.2) by using the next 
generation matrix approach [11]. It is clear to see that the system (2.2) has the disease-free equilibrium        

  �� = (
Λ

�
,0,0).  

 
Let � = (�,�,�)�, then system (2.2) can be written as  
 
� ′ = �(�)− �(�), 
 
Where 
 

�(�)= �
���

0
0

�    And    �(�)= �−

(�� + �)�  

��� + (�� + � + �)I
− Λ + β�� + μS   

� 

 
The Jacobian matrices of  �(�) and �(�) at the disease-free equilibrium, �� are respectively 
 

�� (��)= �
0

�Λ

�
0

0 0 0
0 0 0

� , �� (��)= �

(�� + �) 0 0

− �� (�� + � + �) 0

0
�Λ

�
�

� 

 

Let:                                    ℱ = �
� 0
0 0

�    And   � = �
V 0
�� ��

� 

 

Where:                               � = �
0

�Λ

�

0 0
�    And   � = �

(�� + �) 0

− �� (�� + � + �)
� 

 
The reproduction number is given by the spectral radius of  ��� � that is   
 

�� = σ(��� �)= �0
�Λ

�
0 0

�

⎣
⎢
⎢
⎡

1

(�� + �)
0

��

(�� + �)(�� + � + �)

1

(�� + � + �)⎦
⎥
⎥
⎤

 

 

  �� =
���Λ

�(��� �)(��� �� �)
                                                                                                                 (2.5) 

 

Theorem 1: The disease-free equilibrium �� �
Λ

�
,0,0� of the system (2.2) is asymptotically stable if �� < 1 

and unstable if  �� > 1. 
 

3 Model Analysis 
 
3.1 Disease-free equilibrium  
 
In this section, we investigate the local geometrical properties of the disease-free equilibrium �� = (

Λ

�
,0,0) 

by considering the linearized system of ODE’s(2.2), by taking the Jacobian matrix and obtained 
 



 
 
 

Osman and Adu; JAMCS, 25(6): 1-24, 2017; Article no.JAMCS.37843 
 
 
 

6 
 
 

�(�,�,�)= �

− �� − � 0 − ��
�� − (�� + �) ��
0 �� − (�� + � + �)

�                                                                 (3.1) 

 
The local stability of the equilibrium may be determined from the Jacobian matrix (3.1). This implies that 
the Jacobian matrix for the disease-free equilibrium is given by 
 

   �(��)=

⎣
⎢
⎢
⎢
⎡− � 0 −

�Λ

�

0 − (�� + �)
�Λ

�

0 �� − (�� + � + �)⎦
⎥
⎥
⎥
⎤

                                                                                 (3.2) 

 
The determinant of (3.2) is given by 
 

  |�(��)− ��|= ��

− � − � 0 −
�Λ

�

0 − (�� + �)− �
�Λ

�

0 �� − (�� + � + �)− �

��= 0                                         (3.3)  

 
Lemma 1: The disease-free equilibrium �� is locally asymptotically stable. 
 
It follows that the characteristic equation of �(��)  computed from equation (3.3) is given by 
 

�� + (3� + �� + �� + �)�� + (4�� + 2��� + 2��� + 2�� + ��� + ���� − ��

�Λ

�
)� 

 + (�� + ���� + ���� + ��� + ���� + ����� − ���Λ)= 0 
 
We can write the characteristic equation above as: 
 

�� + ���� + ��� + �� = 0                                                                                  (3.4) 
 
Where: 
 

�� = 3� + �� + �� + � 

�� = 4�� + 2��� + 2��� + 2�� + ��� + ���� − ��

�Λ

�
 

�� = �� + ���� + ���� + ��� + ���� + ����� − ���Λ 
 
Using the Routh-Hurwitz criterion [12], it can be seen that all the eigenvalues of the characteristic equation 
(3.4) have negative real part if and only if: 
 

�� > 0, �� > 0, �� > 0, ���� − �� > 0                                                                                  (3.5) 
 
Theorem 2: �� is locally asymptotically stable if and only if inequalities (3.5) are satisfied. 
 
3.1.1 Global stability of disease-free equilibrium 
 
To investigate the global stability of  �� we consider the Lyapunov function [10]: 
 

� = ��� + (�� + �)�   Then  
 
��

��
= ��

��

��
+ (�� + �)

��

��
 =  ��[��� − (�� + �)�]+ (�� + �)[��� − (�� + � + �)�] 
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≤ �
���Λ

�
− (�� + �)(�� + � + �)� � = (�� + �)(�� + � + �)[�� − 1]� ≤ 0,�� �� < 1. 

 

The maximal compact invariant set in {(�,�,�)∈ Γ:
��

��
= 0} Using Lasalle’s invariance principle [13]. We 

have the following theorem. 
 
Theorem 3: if R� < 1, then the disease- free equilibrium E� is globally asymptotically stable and the disease 
dies out , but if R� > 1, then E� is unstable. 
 

3.2 Existence of endemic equilibrium 
 
In this section, we consider a situation in which there is persistence of malaria in the population. We denote  
�∗ = (�∗,�∗,�∗) as the endemic equilibrium of the system (2.2). We also obtain  
 

�∗ =
(��� �)(��� �� �)

���
    , �∗ =

���Λ� μ(��� �)(��� �� �)

��� (��� �)
  and   �∗ =

���Λ�μ(��� �)(��� �� �)

� (��� �)(��� �� �)
 

 
From system of ODE’s (2.2) and the linearized system we obtained: 
 

�(�∗)= �

− ��∗ − � 0 − ��∗

��∗ − (�� + �) ��∗

0 �� − (�� + � + �)
� 

 

�(�∗)=

⎣
⎢
⎢
⎢
⎢
⎡− [

���Λ − μ(�� + �)(�� + � + �)

(�� + �)(�� + � + �)
]− � 0 − [

(�� + �)(�� + � + �)

��

]

���Λ − μ(�� + �)(�� + � + �)

(�� + �)(�� + � + �)
− (�� + �)

(�� + �)(�� + � + �)

��

0 �� − (�� + � + �) ⎦
⎥
⎥
⎥
⎥
⎤

 

 
We determine the local stability of the positive equilibrium  �∗, by using the following lemma. 
 
Lemma 2 [14,15]: Let �  be a 3 × 3 real matrix. If ��(� ), ��� (� ) and ��� (� [�]) are all negative, then all 
the eigenvalues of �  have negative real part. 
 
Definition 1 [14,15,16] Let �  be a real � × �  matrix. The second additive compound matrix of � = (���) 

for � = 3 is defined as 
 

  �[�] = �

��� + ��� ��� − ���

��� ��� + ��� ���

− ��� ��� ��� + ���

�                                                                      (3.6) 

 
Theorem 3: The positive equilibrium �∗ of the system (2.2) is locally asymptotically stable if  �� > 1. 
 

Proof: We construct a second additive compound matrix J[�](E∗)of J(E∗) and obtain 
 

      �[�](�∗)= �

− (��∗ + 2� + ��) ��∗ ��∗

�� − (��∗ + 2�+ �� + �) ��

0 ��∗ − (2� + �� + �� + �)
�                      (3.7) 

 
Then from the above: 
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        ����(�∗)� = − (��∗ + 3� + �� + �� + �)< 0 

                     = − [(3�+ �� + �� + �)+ ���Λ − μ(�� + �)(�� + � + �)< 0 
         If (3�+ �� + �� + �)+ ���Λ >  �(�� + �)(�� + � + �) 

         det��(�∗)� = − [μ(�� + �)(�� + � + �)− ���Λ]< 0 

         If μ(�� + �)(�� + � + �)> ���Λ 
 

Next, we calculate the determinant of �[�](�∗∗) in (3.7) and obtained: 
 

det��[�](�∗)� 

= − [��� + ���� + ��� + ���+ ����+ � − 2��� − ����− ���− �� − �]< 0 
 

If ��� + ����+ ��� + ���+ ����+ � > 2��� + ����+ ���+ �� + � 
 
Where  � = ���Λ ,  � = μ(�� + �)(�� + � + �) , � = (2μ + ��)(�� + �)(�� + � + �) 
 
� = (�� + �)(�� + � + �) , � = (2μ + �� + �), � = �� + 2� + �� + � Note that if �� > 1 
 

Thus det[�[�](�∗)]< 0. This completes the proof.   
 
3.2.1 Global stability of endemic equilibrium 

 
To discuss the global stability of �∗ we consider the following lyapunov function [13,17]. 
 

           � = �� − �∗ − �∗��
�

�∗�+ �� − �∗ − �∗��
�

� ∗� +
�� ��

��
�� − �∗ − �∗��

�

�∗� 

 

��

��
=

�

��
�� − �∗ − �∗��

�

�∗
�+

�

��
�� − �∗ − �∗��

�

�∗
� +

� + ��

��

�

��
�� − �∗ − �∗��

�

�∗
� 

 

           
��

��
= �1 −

�∗

�
�

��

��
+ �1 −

�∗

�
�

��

��
+

�� ��

��
�1 −

�∗

�
�

��

��
 

 
By the expression Λ = ��∗�∗ + ��∗  of system (2.2) and substituting the derivatives of ODE’s (2.2). 
 

          
��

��
= �1 −

�∗

�
�[Λ − ��� − ��]+ �1 −

�∗

�
�[��� − (�� + �)�]+  

                   
�� ��

��
�1 −

�∗

�
�[��� − (�� + � + �)�] 

 

         
��

��
= �1 −

�∗

�
�[��∗�∗ + ��∗ − ��� − ��]+ �1 −

�∗

�
�[��� − (�� + �)�] 

                +
�� ��

��
�1 −

�∗

�
�[��� − (�� + � + �)�] 

 

         
��

��
= �1 −

�∗

�
�[− �(� − �∗)+ ��∗�∗ − ���]+ �1 −

�∗

�
�[��� − (�� + �)�] 

                  +
�� ��

��
�1 −

�∗

�
�[��� − (�� + � + �)�] 

 
Since ���∗ = (�� + � + �)�∗  this implies that: 
 

��∗� −
� + ��

��

(�� + � + �)� = ��∗� − (�� + �)
�∗

�
�∗ = [��∗� − (�� + �)�∗]

�∗

�
= 0 

 

         
��

��
= − � �

(�� �∗)�

�
�+ 3(�� + �)�∗ −  ��∗�∗ �∗

�
− ���

� ∗

�
− (�� + �) 

                 − � �
(�� �∗)�

�
�+ (�� + �)�∗[3 −  

�∗

�
−

�

�∗

�∗

�

�∗

�
−

� ∗

�

�∗

�
]≤ 0 
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Since the arithmetic mean is greater than or equal to the geometric mean of the quantities  
 
�∗

�
,

�

�∗

� ∗

�

�∗

�
,

� ∗

�

�∗

�
  that is: 

�∗

�
+  

�

�∗

� ∗

�

�∗

�
+

�∗

�

�∗

�
− 3 ≥ 0 then  

��

��
= 0 , holds when � = �∗,� = �∗ 

 

And  � = �∗ , so that the maximal compact invariant set in {(�,�,�)∈ Γ:
��

��
= 0} is singleton {E∗} using 

Lasalle’s invariance principle, we have the following theorem  
 
Theorem 4: If R� > 1 the endemic equilibrium E∗of the system (2.2) is globally asymptotically stable.  
 

4 Application of the Model to Malaria Transmission 
 
4.1 Model description and basic reproduction number 
 
The model is formulated for both human population as well as mosquito population at time t. We divide the 
human population into four classes: Susceptible �� , Exposed ��, Infectious ��, and Recovery Human ��, 
and that of the population  the mosquitoes is divided into three classes they are susceptible �� , Exposed �� , 
Infectious �� respectively. 
 

The interaction between the human and mosquitoes is shown in the schematic diagram in Fig. 2, below: 

                                                       

Fig. 2. Schematic diagram of Malaria transmission between Humans and Mosquitoes. 
 

The model equations are given by: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

���

��
= Λ� − β

�
���� − μ

�
S�                                                               

���

��
= β

�
���� − ���� + μ

�
�E�                                

���

��
= ���E� − ���� + μ

�
+ �� I�                           

                          

���

��
= ��� I�  − μ

�
R�                 

���

��
= Λ� − β

�
���� − μ

�
S�       

���

��
= β

�
���� − ���� + μ

�
�E�

���

��
= ��� E�  − μ

�
I�                      

                                                            

�                                                 (4.1) 
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With the initial condition: ��(0)> 0 ,��(0)≥ 0,��(0)≥ 0,��(0)≥ 0, ��(0)> 0,��(0)≥ 0,��(0)≥ 0.  
 

Table 2. Parameters description of the malaria transmission model. 
 

Parameter Parameters  description 

�� 

�� 

��� 

��� 

�� 

� 

��� 

�� 

�� 
 

�� 

 

�� 

�� 

�� 

Recruitment rate for humans  

Recruitment rate for mosquitoes 

Developing rate of exposed (humans) becoming infectious 

Recover rate of humans ( removal rate) 

Natural death rate for humans  

Induce death rate for humans  

Developing rate of exposed (mosquitoes) becoming infectious 

Natural death rate for mosquito 

Probability of transmission of infection from an infectious mosquitoes  to a susceptible 
humans 

Probability of transmission of infection from an infectious humans to a susceptible 
mosquitoes 
 

Mosquitoes biting rate   

Infection rate q� × η
�

 of humans 

Infection rate �� × �� mosquitoes 
 
We also consider the following equations: 
 

     ��(�)= ��(�)+ ��(�)+ ��(�)+ ��(�)                                                                                     (4.2) 
 
Then the derivative of ��(�) with respect to t is given by:  
 

���

��
≤ Λ� − ���� − ��� 

 

lim�→ ∞  ��(�)≤
Λ�

��
. 

 
Thus the feasible region of the system (4.1) for the human is given by  
 

Γ∗ = {(��,��,��,��):�� + �� + �� + �� ≤
Λ�

��
,�� > 0,�� ≥ 0,�� ≥ 0,�� ≥ 0} 

 
Is positively invariant and let:   ��(�)= ��(�)+ ��(�)+ ��(�) .                                                 (4.3) 

 
The derivative of ��(�) with respect to t is given by:  
                                                                       

���

��
≤ Λ� − ���� 

 

lim�→ ∞  ��(�)≤
Λ�

��
. 

 
Thus the feasible region of the system (4.1) of the mosquito is given by  
 

Γ∗∗ = {(��,��,��):�� + �� + �� ≤
Λ�

��
,�� > 0,�� ≥ 0,�� ≥ 0} is positively invariant. 
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It is easy to see that the system (4.1) has the disease-free equilibrium 
 

���� = (
Λ�

��
,0,0,0,

Λ�

��
,0,0). The basic reproduction number �� for the human and mosquito will be derived 

by using the next generation matrix in [6,11] as �� = � ������ ,and  R� for the model (4.1) is calculated 
and it is given by: 

   

�� = �
�� �� ��� ��� �� ��

�� ��
�(�� � ��� )(�� � ��� )(�� � ��� � �)

                                                                                      (4.4) 

 

Theorem 5: The disease-free equilibrium ���� �
Λ�

��
,0,0,0,

Λ�

��
,0,0 � of the system of the ODE’s (4.1) is    

                      asymptotically stable if �� < 1 and unstable if  �� > 1. 
 

4.2 Model Analysis 
 
4.2.1 Disease-free equilibrium  
       
In this section, we investigate the local geometrical properties of the disease-free equilibrium 

���� �
Λ�

��
,0,0,0,

Λ�

��
,0,0 � by considering the linearized system of ODE’s (4.1),by taking the Jacobian 

matrix and obtained. 
 

    ���(��,��,��,��,��,��,��)= �
�� ��

�� ��
�                                                                                       (4.5) 

 
Where: 
 

�� = �

− ���� − �� 0 − ����

0 − (��� + ��) ����

0 ��� − (��� + �� + �)
� ,   �� = �

0 0 ���

0 0 0
0
0

0
0

0
0

� 

 

�� = �
0 0 0 0
0 0 0 0
0 0 0 0

�    and    �� = �

− �� 0                0             0
0 − ���� − ��                    0       − ����

0
0

0
0

− (��� + ��)
               ���

  
����

− ��

� 

 
The local stability of the disease-free equilibrium determined from the Jacobian matrix (4.5). This implies 
that the Jacobian matrix of the disease-free equilibrium is given by: 
 

        �(����)= �
�� ��

�� ��
�                                                                                                                       (4.6) 

 

Where:   �� =

⎣
⎢
⎢
⎢
⎡− �� 0 − ��

Λ�

��

0 − (��� + ��) ��
Λ�

��

0 ��� − (��� + �� + �)⎦
⎥
⎥
⎥
⎤

 ,  �� = �

0 0 ���

0 0 0
0
0

0
0

0
0

� 

 

               �� = �
0 0 0 0
0 0 0 0
0 0 0 0

�      and    �� =

⎣
⎢
⎢
⎢
⎡
− �� 0          0                 0

0 − ��           0       − ��
Λ�

��

0
0

0
0

− (��� + ��)
���

��
Λ�

��

− �� ⎦
⎥
⎥
⎥
⎤
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The determinant of (4.6) is given by:  
 

  |�(����)− ��|= �
�� ��

�� ��
�= 0                                                                                                       (4.7) 

 
Where: 
 

 �� =

⎣
⎢
⎢
⎢
⎡− �� − � 0 − ��

Λ�

��

0 − (��� + ��)− � ��
Λ�

��

0 ��� − (��� + �� + �)− �⎦
⎥
⎥
⎥
⎤

 ,      �� = �

0 0 ���

0 0 0
0
0

0
0

0
0

� 

 

 �� = �
0 0 0 0
0 0 0 0
0 0 0 0

�        and    �� =

⎣
⎢
⎢
⎢
⎢
⎡
− �� − � 0 0                               0

0 − �� − �      0                          − ��
Λ�

��

0
0

0
0

− (��� + ��)− �
���

��
Λ�

��

− �� − �⎦
⎥
⎥
⎥
⎥
⎤

 

 
The eigenvalues of the (4.7) are given by: 
 
 Clearly �� = − ��( repeated) ,�� = − �� are negatives and  
 

  �� + ���� + ���� + ��� + �� = 0                                                                                                  (4.8) 
 
By Using the Routh-Hurwitz criterion [12], it can be seen that all the eigenvalues of the characteristic 
equation (4.8) have negative real part if and only if: 
 

   �
�� > 0, �� > 0,�� > 0,�� > 0,���� − �� > 0,������ − ��

� − ��
��� > 0,

�������� − ����
��� > 0                                                                                            

�                              (4.9) 

 
Where: �� = �� + 2�� + �� + � + 2�� + ��. 
 

�� = 2���� + 4���� + 2���� + 2��� + ���� + ���� + ��� + + 2���� + ����
� −

����Λ�

��

−
��Λ�

��

 

   
   �� = ���� + ���� + ��� + ���� + ��

� + ��� + 2������ + 2������ + 2����� + 2������+ 
      + 2����

� + ������ + ������ + ����� + ������ + ����
� + �������

� + 2�����
��� + ��

���
�                                                        

       + �����
� −

������ Λ�

��
−

����� �� Λ�

��
−

��
��� Λ�

��
−

����� Λ�

��
−

��� �� Λ�

��
−

���� Λ�

��
 

     

 �� = ��������
� + ������

��� + �������
� + ������

��� + ����
���

� + �����
��� +

���� Λ� � � Λ�

�� ��
   

        −
���� Λ� μ�

��
−

�� Λ� μ�
�

��
−

�������� Λ�

��
−

����
�� Λ�

��
−

������� Λ�

��
−

������ �� Λ�

��
−

����
��� Λ�

��
−

����� �� Λ�

��
 

 
It can be seen that all the eigenvalues have negative real parts and therefore the disease-free equilibrium is 
Locally Asymptotically Stable. 
 
4.2.2 Endemic equilibrium 
 
In this section, we consider a situation in which all the steady states coexist in the equilibrium. We denote 
�∗

�� = (S�
∗,E�

∗,I�
∗,R�

∗,S�
∗,E�

∗,I�
∗) as the endemic equilibrium of the system (4.1). We also obtain  
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��
∗ =

(��� + ��)(��� + �� + �)

�����

, ��
∗ =

�����Λ� − μ
�

(��� + ��)(��� + �� + �)

�������(��� + ��)
 

 

��
∗ =

��� �� Λ� � μ� (��� � �� )(��� � �� � �)

�� (��� � �� )(��� � �� � �)
,   ��

∗ =
��� [��� �� Λ� � μ� (��� � �� )(��� � �� � �� )]

μ� �� (��� � �� )(��� � �� � �)
 

 

��
∗ =

μ
�

(α�� + μ
�

)

α��β
�

, ��
∗ =

α�� β
�

Λ� − μ
�

�(α�� + μ
�

)

α�� β
�

(α�� + μ
�

)
, ��

∗ =  
α��β

�
Λ� − μ

�
�(α�� + μ

�
)

μ
�

β
�

(α�� + μ
�

)
 

 

The local stability of the endemic equilibrium determined from the Jacobian matrix (4.5). This implies that 
the Jacobian matrix of the endemic equilibrium is given by:         
          

���(��
∗,��

∗,��
∗,��

∗,��
∗,��

∗,��
∗)= �(�∗

��)= �
�� ��

�� ��
�                                                       (4.10) 

 

Where: 
 

 �� = �

− ����
∗ − �� 0 − ����

∗

0 − (��� + ��) ����
∗

0 ��� − (��� + �� + �)

� ,     �� = �

0 0 ���

0 0 0
0
0

0
0

0
0

� 

 

 �� = �
0 0 0 0
0 0 0 0
0 0 0 0

�     and    �� = �

− �� 0              0                 0

0 − ����
∗ − ��                    0           − ����

∗

0
0

0
0

− (��� + ��)
���

����
∗

− ��

� 

 

The eigenvalues of the (4.10) are given by: 
 

 Clearly  �� = − �
(��� � �� )(��� � �� � �)

���
+ ���,�� = − ��,�� = −  

��� � � Λ�

�� (��� � �� )
 are negatives and  

 
�� + ���� + ���� + ��� + �� = 0                                                                                             (4.11) 

 
By Using the Routh-Hurwitz criterion [12], it can be seen that all the eigenvalues of the characteristic 
equation (4.11) have negative real part if and only if: 
 

  �
�� > 0, �� > 0,�� > 0,�� > 0,���� − �� > 0,������ − ��

� − ��
��� > 0,

�������� − ����
��� > 0                                                                                            

�                         (4.12) 

 
Where: �� = ��� + μ

�
+ δ + ��� + 3�� + ��� 

�� = ������ + 4���μ
�

+ 2δ��� + ���μ
�

+ 2���μ
�

+ 4μ
�

� + δ�� + 2���� + 2����� +  

���μ
�

+ ������ + ���μ
�

+ δμ
�

+ δ��� + δμ
�

+ μ
�

��� + μ
�

μ
�

+ ����� + ��μ
�

 

�� = �����.�μ
�

+ �����.���� + �����.�μ
�

+ ���μ
�

μ
�

+ �����.���� + ���μ
�

� + δ���μ
�

 

+ δ������ + δ���μ
�

+ ���μ
�

��� + ���μ
�

μ
�

+ �������� + �����μ
�

+ ���μ
�

μ
�

+ μ
�

���α��  

+ μ
�

���� + μ
�

�μ
�

+ μ
�

�α�� + μ
�

� + δμ
�

μ
�

+ δμ
�

��� + δμ
�

� + 2μ
�

�μ
�

+ 2���μ
�

μ
�

+  

���μ
�

μ
�

+ �������� + �����μ
�

+ 2μ
�

����� + 2μ
�

��μ
�

+ δμ
�

��� + δμ
�

μ
�

+ ������ +  

+ ����� + ������μ
�

+ ������μ
�

+ ���μ
�

μ
�

+ ���μ
�

α�� + ���μ
�

� + ������� + ������ +  

μ
�

����� + μ
�

������ + μ
�

���� + μ
�

��� + μ
�

���� + μ
�

� + ��� �� + ���� �� + δμ
�

� + δ��  

�� = 2���������μ
�

+ 2������μ
�

μ
�

+ ��������β
�

+ ������μ
�

μ
�

+ ���μ
�

�μ
�

+ ���μ
�

β
�

α�� + ���μ
�

β
�

μ
�

+

δ���μ
�

α�� + ����μ
�

μ
�

+ δ���β
�

α�� + ����β
�

μ
�

+ ���μ
�

μ
�

α�� + ���μ
�

�μ
�

   

+ ���μ
�

β
�

α��+ ���μ
�

β
�

μ
�

+ μ
�

�μ
�

α�� + μ
�

�μ
�

+ μ
�

�β
�

α�� + μ
�

�β
�

μ
�

+ δμ
�

μ
�

α�� + δμ
�

�μ
�

   

+ δμ
�

β
�

α�� + δμ
�

μ
�

β
�

+ ���������β
�

+ ��������μ
�

+ ����� ���μ
�

+ �����
�μ

�
+ ����� ���β

�
  

+ ����� ��μ
�

+ ������� μ
�

+ ����+ ������α�� + ������μ
�

+ ��������μ
�

+ ��
����μ

�
+ ��

���� μ
�

+   

�������α��+ �������μ
�

+ ��
�μ

�
+ + ��

���α�� + ��μ
�

+ δμ
�

μ
�

α�� + �μ
�

�μ
�

+ �μ
�

β
�

α�� +   

δμ
�

β
�

α�� + δμ
�

β
�

μ
�

. 
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5 Numerical Simulations 
 
In this section, we present the numerical simulation of our models. All the parameters used in this section are 
displayed in Table 3, Table 4 and under Figures.  
 

Table 3. Parameters values of model 1 
 

Parameter Description Value Source 
Λ Recruitment rate of susceptible. 

Infection rate(effective infection rate) 
Developing rate of exposed (humans) 
Recover rate of humans( removal rate) 
Natural death rate 
induce death rate 

1.2 
0.001 
0.1 
0.0035 
0.03 
0.089 

[18] 
Assumption 
Assumption 
[6] 
[18] 
[18] 

� 
�� 
�� 
� 
� 

 

Table 4. Parameters values of model 2 
 

Parameter Description Value Source 
Λ�  Recruitment rate for human                                                                                                   1.2 Assumption 
Λ� Recruitment rate for mosquitoes                                                                                              0.7 Assumption 
���  Developing rate of exposed (humans) becoming infectious                                                       0.1 Assumption 
���  Recover rate of human.( removal rate) 0.0035 [6] 
��  Natural death rate for humans                                                                                                  0.01146 Assumption 
� induce death rate for humans                                                                                                 0.068 Assumption 
���  Developing rate of exposed (mosquitoes) becoming infectious                                                    0.083 [6] 
μ

�
 Natural death rate for mosquitoes                                                                                            0.05 [19] 

�� Probability of transmission of infection from an infectious 
mosquitoes to a susceptible humans 

0.022 [20] 

�� Probability of transmission of infection from an infectious 
humans to a susceptible mosquitoes     

0.24 [20] 

η
�

 Mosquito biting rate                                                                                                         0.29 [15] 
�� Infection rate q� × η

�
 of  humans                                                                       0.00638 [20] 

�� Infection rate �� × �� mosquitoes                                                                                                 0.0696 [20] 
 

5.1 Sensitivity analysis of the basic reproduction numbers  
        
We investigate the nature of the model by conducting sensitivity analysis of the reproductive  numbers   ��, 
�� for model (2.1) and (4.1) respectively. 

 

(a) At the disease-free equilibrium for (2.1): Λ = 1.2,� = 0.001,�� = 0.1,�� = 0.0035,� =
0.03,� = 0.089 , �� < 1. 

(i)  If the value of � is increased to 0.08 or more and the values of ��, ��, � , Λ and � maintains  
same then �� > 1. 

(ii)  If the value of Λ is increased to 10 or more and the values of ��, ��, � , β and �  maintains same 
then �� > 1 

(b) At the endemic equilibrium for (4.1):�� = 0.0696 ,�� = 0.0064,��� = 0.083,��� = 0.1, 

�� = 0.01146,�� = 0.05,� = 0.068 ,  �� > 1. 

(i) If the values of β
�

 and  β
�
 is decreased to 0.000064 and 0.000696 respectively  or more and the 

values of the others parameters maintains same then �� < 1. 

(ii)  If the values of α��  and  α�� is decreased to 0.001 and 0.00083 respectively  or more and   

      the values of the others parameters maintains same then �� < 1. 
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Fig. 3. Time responses of the state variables �,�,�, and  � with initial conditions �(�)= �.��, 

�(�)= �.�� ,�(�)= �.��,�(�)= �.�� , against the time and �� = �.����.Where the 
Parameters: � = �.�,� = �.���,�� = �.�,�� = �.����,� = �.��,� = �.���. 

Only the susceptible class exists. The population of Exposed, Infective, and 
Recovery classes approach zero and reaches disease-free equilibrium. 

 

 
 

Fig. 4. Time responses of the state variables �,�,�, and  � with initial conditions �(�)= �.��, 
�(�)= �.�� ,�(�)= �.��,�(�)= �.�� , against the time and �� > �.Where the parameters: 

� = �.�,� = �.��,�� = �.�,�� = �.����,� = �.��,� = �.���.  All the distinct classes coexist in 
the population and therefore approach endemic equilibrium. 
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Fig. 5. Time responses of the state variables �,�,�, and  � with initial condition �(�)= �.�� 
�(�)= �.�� ,�(�)= �.��,�(�)= �.�� , against the time and �� > �. Where the parameters: 

� = ��,� = �.���,�� = �.�,�� = �.����,� = �.��,� = �.���. 
When the value of  � was increased from 1.2 to 10, all the classes in the population 

reappeared, making the equilibrium endemic. 
 

 
 

Fig. 6. Time responses of the state variables ��,��,��, and  �� with initial conditions �(�)= �.� 
�(�)= �.� ,�(�)= �.��,�(�)= �.�� , against the time and �� < �. Where the parameters: 

�� = �.�,�� = �.���,��� = �.�,��� = �.����, �� = �.��,� = �.���. 
Only the susceptible humans class exists. The populations of Exposed, Infective, and 

Recovery human classes approach zero and reaches disease-free equilibrium 
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Fig. 7. Time responses of the state variables ��,��,��, and  �� with initial conditions �(�)= �.� 
�(�)= �.� ,�(�)= �.��,�(�)= �.�� , against the time and �� > �. Where the parameters: 

�� = �.�,�� = �.��,��� = �.�,��� = �.����, �� = �.��,� = �.���. 
All the distinct classes of humans coexist in the population and therefore approach endemic 

equilibrium 
 

 
 

Fig. 8. Time responses of the state variables ��,��,��� ��, with initial conditions ��(�)= �.� 
��(�)= �.� ,��(�)= �.�, , against the time and �� < �. Where the parameters: 

�� = �.�,��  =  �.����,��� = �.���,�� = �.���. 
Only the susceptible mosquitoes class exists. The populations of Exposed and Infective, 

Mosquito classes approach zero and reaches disease-free equilibrium 
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Fig. 9. Time responses of the state variables ��,��,��� ��, with initial conditions ��(�)= �.� 
��(�)= �.� ,��(�)= �.�, , against the time and �� > �.Where the parameters: 

�� = �.�,�� = �.���,��� = �.���,�� = �.���. 
All the distinct classes of mosquitoes coexist in the populations. 

 

 
Fig. 10. Relationship between �� and �� when  ��<1. 
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Fig. 11. Relationship between  �� and �� when  ��<1. 

 
 

Fig. 12. Relationship between  �� and � when  ��<1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
0
 in terms of 2

R
0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-1

-0.5

0

0.5

1

1.5

R
0
 in terms of 

R
0



 
 
 

Osman and Adu; JAMCS, 25(6): 1-24, 2017; Article no.JAMCS.37843 
 
 
 

20 
 
 

 

 
 

Fig. 13. Relationship between  �� and � when  ��<1. 
 

 
 

Fig. 14. Relationship between  �� and ��� when  ��<1. 
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Fig. 15. Relationship between  ��and �� when  ��<1. 
 

 
 

Fig. 16. Relationship between  �� and ��  when  ��<1. 
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Fig. 17. Relationship between  ��and �  when  ��<1. 
 

6 Discussion of Results 
 
In this paper, we studied the dynamics of an SEIR Model (2.1) and applied it to malaria transmission 
between human and mosquito, we derived the basic reproduction number and discussed the existence and 
stability of Disease-Free Equilibrium (DFE) and Endemic Equilibrium (EE) of model (2.1) and applied them 
to model transmission between human and mosquitoes (4.1). Our analysis shows that if  the reproduction 
number is less than one then the  (DFE)  is locally asymptotically stable, this implies that only susceptible is 
present and the other populations reduces to zero, and the disease dies out. And if the reproduction number is 
greater than one then (DFE) is unstable, for (2.1) and (4.1)  respectively. This has been verified numerically 
by simulations in Figs. 3, 6, 8. And if the reproduction number is greater than one then the (EE) is unstable 
stable, this implies that all the populations are exists, for (2.1) and (4.1) respectively. This situation has been 
verified numerically by simulations in Figs. 4, 5, 7, 9 respectively. And the Figs. 10, 11, 12, 13, 14, 15, 16, 
17 shows the graphs of R0 < 1 and R1 < 1  in terms of α1,α2,δ, Λ and �,���,��,�� respectively. .  
    
Our Sensitivity analysis shows that the most effective parameters are infection rate β, infection rate of 
human  β

H
 , infection rate of mosquito  β

V
 for model  (2.1) and (4.1) respectively, the  Simulation results 

show that in epidemic situation of model (4.1), both the populations human and mosquitoes  will be exists 
and  get infected. These results are helpful in predicting malaria transmission, and how to find effective way 
of malaria prevention and control in the model. 
  
Clearly, from the numerical simulations, the (DFE) is asymptotically stable whenever the reproduction 
number less than one and the (EE) is unstable when the reproduction number is greater than one of model 
(2.1) and (4.1) respectively. We notice that in order to reduce the basic reproduction number below one, we 
need to focused on reduction of the contact between mosquitoes and human.  
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7 Conclusion 
     
In this paper, we presented two models using a deterministic system of ordinary differential equations. These 
are an SEIR model followed by an SEIR-SEI model which describes the transmission of malaria. We 
established that our models are locally asymptotically stable when the associated reproduction numbers are 
less than one but unstable, when they are greater than one. According to our results malaria cannot only be 
controlled by reducing the infection rate between humans and mosquitoes, but also by reducing the contact 
rate between the mosquitoes and humans, and the use of active malaria drugs, insecticides, and, treated bed 
nets would reduce the mosquitoes population, and that will keep the human population stable. In future, we 
will include optimal control approach to control the spread of malaria and bifurcation analysis in this model. 
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