
*Corresponding author: E-mail: mashxal.abdwl@gmail.com;

Cite as: Baqal, Hawzheen Mohammed Ali, and Mashkhal Abdalwahid Sidiq. 2024. “Graph Databases: Revolutionizing
Database Design and Data Analysis”. Current Journal of Applied Science and Technology 43 (11):45-56.
https://doi.org/10.9734/cjast/2024/v43i114443.

Current Journal of Applied Science and Technology

Volume 43, Issue 11, Page 45-56, 2024; Article no.CJAST.124248
ISSN: 2457-1024
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

Graph Databases: Revolutionizing
Database Design and Data Analysis

Hawzheen Mohammed Ali Baqal a
and Mashkhal Abdalwahid Sidiq b*

a College of Software Engineering, Tianjin, China.

b College of Control Science and Engineering, Tianjin University, Tianjin, China.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the
final manuscript.

Article Information

DOI: https://doi.org/10.9734/cjast/2024/v43i114443

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/124248

Received: 11/08/2024
Accepted: 15/10/2024
Published: 29/10/2024

ABSTRACT

Traditional Relational databases have been in use for a while over the structured data and popular
for a wide range of database management. However, with the increase in size and interconnection
of data graph databases became more appealing due to its robustness and flexibility. Mathematical
graph structures are used to represent, store and retrieve data in graph databases, which can be a
paradigm shift for database design with powerful data capabilities. This article provides a basic
overview of the state-of-the art graph databases, their use cases as well as some of the key
advantages they can provide when compared to others traditional ways of storing data. Moreover, it
consists of what is a graph database to its advantages and limitations and stating so why they are
comparatively getting important to the world of data management.

Review Article

https://doi.org/10.9734/cjast/2024/v43i114443
https://www.sdiarticle5.com/review-history/124248

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

46

Keywords: Graph database; revolutionizing database design; revolutionizing database analysis; graph
database revolutionizing.

1. INTRODUCTION

While traditional databases rely upon tables,
graph databases (GDBs) use graph structures to
store and manage data. Data is stored in graph
databases as nodes, essentially entities; edges,
or relationships; and properties which could
contain additional information (Meher et al.
2023). Imagine a social network with friends Sam,
Mac, Harry, Jack, Annie, Doug and Howard
represented as nodes each connected by edges
showing their relations. Attributes like name,
email, phone number are properties (Narayanan
et al. 2019). By representing data in form of
graph, and storage can be done in index-free
adjacency (you will see that soon if you have not
already). Such as to get Chaitanya's friends, we
can simply go through the edges connected to
his node. Its ease of expression makes it
particularly beneficial for modelling complex
relationships as found in social networks and
recommendation systems (Patil et al. 2018). And
the simulation has benefited from GDBs for
enhanced query abilities, pattern recognition and
graph algorithms. It provides a nimble platform
for the complex networks enabling organizations
to use insights, intelligence and creativity into
application (Vaikuntam et al. 2014, Meher et al.
2023). GDBs introduce new capabilities in data
modeling and analysis which are very convenient
to deal with challenges in areas such as social
networking, fraud detection, supply chain
management and knowledge graphs. As
illustrated in Fig. 1, by utilizing GDBs,
organizations can leverage interconnected data
to get comprehensive ideas of complex
relationships (Ortega-Guzmán et al. 2024).

2. DATABASE DESIGN: UNLEASHING
THE POWER OF GRAPH
STRUCTURES

This section explores the critical components of
graph databases, focusing on data models,
query languages, and schemas, as illustrated in
Fig. 2.

The graph data model of graph databases is
specifically created to manage highly
interconnectable data, much more effectively
than those of (relatively) distant friends — most
often found in the form of nodes (which may
represent indexed attributes or indexed keys as
far removed as people and products), edges (the

relationships between them) and properties
(object-attribute/plural-value pairs). This to
include qualities of every hub, for instance name,
age, address for say a man act out. Graph
databases, which are very good at handling
relationships (even have certain graph traversal
algorithms and apis in place as compared to
normal relational databases where you would
have to write complex joins to navigate the
relationship) do provide a nice and efficient
solution for querying and fetching data faster
especially whilst traversing your data based on
relationships(for example: social networks,
recommendation systems, fraud detection etc.)
(Monteiro et al. 2023, Vágner et al. 2018).
Special-purpose graph database systems such
as Neo4j, Amazon Neptune, JanusGraph, and
Microsoft Azure Cosmos DB are specifically
designed for optimal graph operations, resulting
in powerful tools for modeling and querying
interconnected data. One important aspect of
graph databases is the use of query languages
that allow developers to write and tune data
retrieval and manipulation across specific paths
in the property graph. Graph query languages
vary unlike SQL which is the standard for
relational databases; e.g. (Besta et al. 2019).
Gremlin is a functional language that allows
users to navigate graphs with chained steps and
filters, an import factor supporting both ad-hoc
and complex queries. Likewise, Cypher is
developed for Neo4jsupports a human-readable,
declarative query language without requiring
users to care about how to construct their paths
and properties or manage their relationships —
making it a more accessible tool for developers
and analysts in terms of querying your data.
Other languages, such as SPARQL for RDF
graphs and GSQL for TigerGraph, facilitate
complex analyses, including pathfinding and
subgraph matching. Moreover, graph databases
often adopt a schema-agnostic approach,
allowing for flexible data structures without the
constraints of predefined schemas (Dreger et al.
2023). This adaptability facilitates rapid
prototyping and seamless integration, making
graph databases ideal for dynamic domains
where data structures frequently change. While
maintaining flexibility, graph databases ensure
data integrity through various constraints, such
as data type validations and uniqueness rules,
thus balancing flexibility with governance. Some
systems allow for explicit schemas to optimize
performance and validation, but the primary

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

47

advantage remains their capacity to manage
complex, interconnected data without rigid
schema limitations, thus supporting rapid

development and compliance with integrity
standards (Aggarwal et al. 2016, Sharma et al.
2019).

Fig. 1. Graph Database

Fig. 2. Graph Database design

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

48

3. DATABASE ACCESS: EMPOWERING
EFFICIENT DATA RETRIEVAL

This section discusses the specialized data
structures, access methods, and concurrency
controls that enhance data retrieval in graph
databases, as illustrated in Fig. 3. Traditional
databases use tables for data storage, whereas
graph databases utilize structures like adjacency
lists and adjacency matrices for efficient
processing.

The adjacency list stores each node's properties
and references to adjacent nodes, facilitating
quick graph traversal and outperforming
relational databases reliant on complex joins
(Ben Ammar 2016). Conversely, the adjacency
matrix enables rapid relationship lookups,
particularly beneficial in dense graphs. Graph
databases also implement indexing mechanisms
to optimize traversal and pattern matching by
precomputing node properties and relationship
types, significantly enhancing query performance
(Yan et al. 2004, Ciglan et al. 2012). Access
methods in these databases combine graph
traversal—navigating from one node to another
using algorithms like depth-first or breadth-first—
and index-based lookups to efficiently retrieve

data associated with specific nodes or patterns.
This approach allows for complex queries, such
as identifying the shortest paths or common
connections (Kusu et al. 2019, Ezhilchelvan et al.
2019). Furthermore, maintaining data
consistency during concurrent access is crucial;
graph databases utilize concurrency control
protocols, including locking and isolation levels,
to manage conflicts and uphold data integrity.
Transaction management enforces ACID
properties (Atomicity, Consistency, Isolation,
Durability), ensuring that transactions are
executed cohesively, preserving data integrity
during failures or concurrent operations.
Specialized transaction systems address the
interconnected nature of graph data, maintaining
proper transaction order and preventing conflicts,
which is vital in collaborative environments
(Durner et al. 2019, Solanki et al. 2018).

4. DATA QUALITY: UNCOVERING
INSIGHTS THROUGH ROBUST
ANALYSIS

The integration of data cleaning, discovery, and
exploration in graph databases enhances data
quality and value, empowering users to uncover
insights effectively.

Fig. 3. Graph database access

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

49

Fig. 4. Graph database data qulaity

Data cleaning is essential for maintaining quality,
involving the identification and correction of
inconsistencies, errors, redundancies, and
imperfections in the data. This includes orphan
node detection, duplicate resolution, and
addressing data inconsistencies, ensuring the
accuracy and reliability of graph data for analysis.
Effective data cleaning lays a solid foundation for
robust insights. Data discovery techniques,
utilizing graph traversal algorithms like breadth-
first search (BFS) and depth-first search (DFS),
help users navigate large and interconnected
datasets to identify relevant nodes, uncover
hidden connections, and gain a comprehensive
understanding of the graph's structure. Graph
visualization tools further enhance data discovery
by providing intuitive representations, facilitating
exploration and insight generation. Data
exploration in graph databases allows analysts to
analyze patterns and relationships through
operations such as neighborhood-based queries,
pathfinding, centrality analysis, and community
detection. These capabilities enable the
identification of influential nodes, detection of
clusters, and uncovering of hidden patterns and
anomalies. Ultimately, leveraging the graph's
structure enhances analytical capabilities,
providing valuable insights that may be difficult to
attain with traditional database models.

5. DATABASE PROCESSING:
ENHANCING PERFORMANCE AND
SCALABILITY

This section addresses key techniques for
optimizing performance and scalability in graph

databases, as depicted in Fig. 5. Query
evaluation is central to optimizing graph traversal
and involves efficient graph traversal algorithms
(like depth-first search and breadth-first search)
that minimize computational costs. Indexing
techniques enhance query performance by
enabling quick access to relevant graph
elements, while caching mechanisms store
frequently accessed data to reduce redundant
computations (Robinson et al. 2013). Additionally,
query rewriting and optimization strategies
transform queries into more efficient forms, and
parallel processing techniques distribute
workloads across multiple nodes to improve
scalability. Incremental query evaluation updates
results based on changes in the graph, further
enhancing response times (Fan and Luo 2014).

Query optimization incorporates strategies for
optimizing graph traversal, join operations, and
aggregation, leveraging indexing and caching to
ensure efficient query execution while utilizing
cost-based optimization to select the best
execution plans. Schema management in graph
databases is dynamic, allowing for seamless
adaptation to evolving data structures without
extensive modifications, thanks to their
schemaless nature and dynamic property
assignment. Distributed data processing
techniques, such as horizontal partitioning and
load balancing, allow graph databases to scale
horizontally, accommodating large datasets and
complex analytics while ensuring fault tolerance
and performance improvements. Finally,
approximate data processing techniques balance
accuracy and efficiency through methods like

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

50

sampling, summarization, and sketching,
enabling timely insights and scalable analysis for
real-time applications in large-scale graph
scenarios. These combined strategies empower
organizations to effectively manage and analyze
vast amounts of graph data, leading to informed
decision-making.

6. DATA ANALYSIS: UNLEASHING THE
POTENTIAL OF GRAPHS

This section explores various techniques for
extracting insights from graph data,
encompassing data mining, machine learning,
information extraction, and real-time data
streams. Data mining leverages graph structures
to identify patterns, such as graph clustering,
which uncovers communities within networks;
graph classification, which assigns labels to
nodes based on attributes; and graph pattern
mining, which discovers recurring structures and
sequences. Additionally, graph-based
recommendation systems utilize connections and
user interactions to suggest relevant items, while
social network analysis reveals influencers and

information diffusion (Liu et al. 2018). Machine
learning enhances predictive analytics in graph
databases through Graph Neural Networks
(GNNs) that capture complex relationships and
graph embeddings that convert graph elements
into low-dimensional vectors for easier analysis.
Techniques such as link prediction and graph-
based anomaly detection further enrich these
capabilities by inferring new relationships and
identifying unusual patterns, respectively.
Information extraction combines text and
graph data to enhance insights by recognizing
entities, extracting relationships, and
performing sentiment analysis. This integration
enables a deeper understanding of textual
contexts within graphs. Finally, streaming graph
data processing employs frameworks like
Apache Kafka to analyze real-time data, allowing
organizations to perform continuous analysis,
detect anomalies, and derive insights as data
flows in. This capability is crucial for timely
decision-making in dynamic environments,
enhancing responsiveness across various
applications, such as fraud detection and
network monitoring.

Fig. 5. Graph database processing

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

51

Fig. 6. Data management

7. UNCERTAINTY: NAVIGATING THE
COMPLEXITIES OF GRAPH DATA

This section addresses challenges associated
with incompleteness, inconsistency, ontological
query answering, and semi-structured data in
graph databases. Incompleteness, which
involves missing nodes, relationships, or
attributes, can compromise analytical accuracy.
Techniques such as probabilistic reasoning and
various imputation methods (mean, regression-
based, and nearest neighbor) help estimate
missing values, improving data quality and
enabling more robust insights (Bondi 2000).
Inconsistency arises when conflicting information
exists within nodes or relationships, threatening
data integrity. Conflict detection identifies these
discrepancies, while data fusion merges differing
viewpoints using methods like weighted
averaging and consensus algorithms to establish
coherent representations. Addressing these
inconsistencies is critical for reliable decision-
making, particularly in fraud detection and
recommendation systems. Ontological query
answering resolves semantic ambiguities in
graphs that utilize ontologies by employing
logical reasoning and inference mechanisms,
ensuring that queries align with intended
semantics and enhancing query reliability and
interoperability across knowledge repositories
(Broekstra et al. 2002). Finally, graph databases
adeptly manage semi-structured data formats
like JSON or XML, accommodating dynamic
relationships and evolving structures. This
flexibility allows for seamless integration and
querying of varied data types, supporting
comprehensive analysis and providing
organizations with the agility needed to adapt to
changing data landscapes (Erling et al. 2008,
Levenshtein 1966).

8. INTEROPERABILITY: BRIDGING THE
GAP BETWEEN DATA SOURCES

This section discusses mechanisms for
integrating and sharing data across diverse
sources using graph databases, focusing on
mappings and views, data integration, data
exchange, and ontology-based data access.
Mappings define relationships between entities in
various data sources, facilitating seamless
integration without data duplication, while views
provide virtual representations of integrated data
tailored to user needs, simplifying access to
heterogeneous data (Lukovnikov et al. 2018).
Graph databases excel in unifying disparate data
formats, accommodating structured, semi-
structured, and unstructured data through flexible,
schema-agnostic representations. They
transform data from relational databases and
document stores into graph models, allowing for
advanced analytics that reveal hidden patterns
and dependencies across internal and external
data sources. Data exchange protocols, such as
the Resource Description Framework (RDF) and
SPARQL, enhance interoperability by enabling
the sharing and querying of graph data across
systems, fostering collaboration and integration
with external repositories (Neo4j). Ontology-
based data access (OBDA) enriches graph
databases with semantic information, allowing for
more expressive queries and advanced analytics
through SPARQL-like languages. This integration
promotes interoperability and facilitates the
combination of structured and semantic data,
empowering organizations to leverage their
graph data comprehensively and connect
seamlessly with other semantic sources. In
summary, these approaches collectively enhance
data integration, sharing, and querying
capabilities, enabling organizations to unlock the

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

52

full potential of their data assets and drive
informed decision-making.

9. RESPONSIBLE DATA MANAGEMENT:
ENSURING SECURITY AND PRIVACY

This section discusses critical practices for
ensuring security and privacy in graph databases,
focusing on access control, privacy preservation,
security measures, data verification, and ethical
aspects of data management. Access control
mechanisms protect sensitive data by enforcing
permissions at the node, relationship, and
property levels, utilizing Role-Based Access
Control (RBAC) and Attribute-Based Access
Control (ABAC) to ensure that only authorized
users can access and manipulate information
(Shatnawi et al. 2020).

Privacy-preserving techniques, such as
anonymization, encryption, and differential
privacy, help maintain the confidentiality of
sensitive information, allowing analysis while
protecting individual identities and adhering to
regulations like GDPR or CCPA (Grover and
Leskovec 2019). Security measures, including
authentication, encryption, and audit logging,
safeguard against unauthorized access and data
breaches, ensuring the integrity, confidentiality,
and availability of graph data (Khalaf et al. 2017).
Verification techniques ensure data integrity and
consistency through validation, constraint
checking, anomaly detection, and data cleansing,
enabling organizations to maintain high data
quality for accurate decision-making (Basharat et
al. 2013). Lastly, ethical data management
emphasizes adherence to guidelines,
transparency, fairness, data governance, and the
responsible use of algorithmic outputs to prevent
bias and discrimination. By promoting
responsible practices, organizations can build
trust, protect privacy rights, and mitigate ethical
challenges associated with graph databases,
contributing to sustainable and inclusive data-
driven solutions (Cattell 2011).

10. DYNAMICS OF DATA: ADAPTING TO
EVOLVING DATA LANDSCAPES

This section addresses key aspects of managing
evolving data landscapes in graph databases,
focusing on workflows, data-centric process
management, web services, data provenance,
and incremental query evaluation. Workflows
streamline data-intensive processes by
automating data ingestion, transformation, and
analysis, utilizing workflow management systems

like Apache Airflow to enhance efficiency and
reproducibility. Data-centric process
management integrates data with business
processes, enabling data-driven execution and
ensuring data consistency while promoting agile
data management. Web services facilitate
scalable and interoperable data integration,
allowing organizations to share graph data and
collaborate with external systems using
standardized protocols like HTTP and JSON.
Data provenance captures the origin and
transformation of data, providing traceability,
accountability, and context, which are essential
for maintaining data integrity and compliance.
Finally, incremental query evaluation efficiently
processes evolving graph data by selectively re-
evaluating affected queries, improving response
times and enabling real-time analytics. This
dynamic approach allows organizations to
monitor changes, detect patterns, and make
timely decisions based on up-to-date insights,
enhancing overall data management and
supporting effective decision-making in complex
environments (Fraternali and Quarteroni 2018).

11. ADVANTAGES OF GRAPH
DATABASES

Graph databases present several compelling
advantages over traditional relational databases,
particularly in handling complex relationships and
large-scale data scenarios. One of their standout
features is their capability to effectively manage
many-to-many relationships, such as the intricate
connections found in social networks where
entities, like friends, have multiple overlapping
relationships. Unlike relational databases, which
often necessitate complex joins and
cumbersome queries to navigate these
relationships, graph databases simplify and
accelerate query processes through their
inherent graph structures, enabling efficient
representation and retrieval of interconnected
data. Furthermore, in applications where
relationships between data elements take
precedence over the elements themselves—
such as the connections between users in a
social platform—graph databases are specifically
optimized to prioritize these relationships,
allowing for intuitive and meaningful analysis. As
data volumes continue to expand, traditional
relational databases frequently encounter
performance bottlenecks due to the increasing
complexity of queries and the necessity to scan
large tables. In contrast, graph databases are
architected for low-latency performance,
leveraging efficient traversal algorithms that

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

53

facilitate quick retrieval and analysis of data
relationships, irrespective of dataset size.
Additionally, graph databases provide a flexible
schema that accommodates dynamic data
models, allowing for straightforward adjustments
to nodes, edges, and properties without the
burdensome migrations typically required in rigid
relational schemas. Lastly, the intuitive querying
languages associated with graph databases are
tailored for graph data, making complex
operations such as traversals, pattern matching,
and path calculations more accessible and
efficient compared to the conventional SQL used
in relational databases. This enhances the
productivity of developers and data analysts by
reducing the learning curve associated with data
retrieval and analysis in graph environments.

12. LIMITATIONS OF GRAPH
DATABASES

While graph databases present numerous
advantages, their limitations warrant careful
consideration before implementation. They may
not always be the optimal choice for every
application; depending on specific data
requirements and characteristics, alternatives
such as document-oriented or key-value stores
might be more suitable. It is crucial to assess
factors like data volume, relationship complexity,
and query patterns to identify the most
appropriate database technology. Additionally,
graph databases can face challenges with
horizontal scaling, as distributing the database
across multiple machines to accommodate large
datasets can introduce performance issues due
to the inherent need to maintain relationships
between nodes. Therefore, understanding the
scalability requirements of the application is
essential. Moreover, updating all nodes with a
specific parameter in a large graph can be
inefficient, potentially leading to significant
performance impacts during frequent updates. If
an application demands extensive updates
affecting a substantial portion of the graph,
evaluating the graph database’s update
capabilities in relation to performance and query
response times is vital.

13. GRAPH DATABASES MATTER

Graph databases hold significant importance in
contemporary data management due to their
unique ability to handle complex relationships
among entities. In an increasingly interconnected
world, where relationships are pivotal across
domains like social networks, recommendation

systems, and fraud detection, graph databases
serve as powerful tools for managing and
analyzing these connections. They facilitate the
identification of patterns, uncover hidden
relationships, and provide personalized
recommendations by leveraging efficient graph
algorithms. Additionally, graph databases
enhance data quality by offering intuitive
modeling and validation of relationships, enabling
organizations to enforce constraints and maintain
cleaner, more reliable data. They also support
advanced data analysis techniques, such as
clustering and anomaly detection, which yield
deep insights into data structures. Furthermore,
interoperability and integration are critical in
today’s data-driven landscape, and graph
databases seamlessly connect with other data
sources and technologies through standardized
protocols and APIs, fostering a unified approach
to data management. As data privacy regulations
intensify, responsible data management
becomes paramount; graph databases contribute
to this by providing fine-grained access controls,
encryption, and auditing capabilities that
safeguard data security and privacy. Finally, the
inherent dynamism of data is embraced by graph
databases through their flexible and adaptable
data models, allowing organizations to
accommodate changes effortlessly. This agility
supports quick responses to evolving data
requirements, facilitating faster development
cycles and more effective data-driven decision-
making.

14. CONCLUSION

In conclusion, graph databases have emerged as
a powerful and versatile alternative to traditional
database systems, offering a unique approach to
database design, data analysis, and information
management. By embracing the graph paradigm,
organizations can unlock the full potential of
interconnected data, gain valuable insights, and
make informed decisions. Graph databases
provide the foundation for a new era of data-
driven innovation, enabling the analysis of
complex relationships, uncovering hidden
patterns, and facilitating real-time analytics.
Furthermore, graph databases offer a flexible
and adaptable approach to working with highly
dynamic and interconnected data. They ensure
data consistency through the use of constraints,
leverage specialized data structures and
indexing mechanisms for efficient processing,
and provide access methods optimized for graph
traversal and index-based lookups. Concurrency
control and transaction management guarantee

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

54

data consistency, while data cleaning, discovery,
and exploration tools enhance analysis and
improve data quality. As organizations grapple
with the challenges of big data, graph databases
offer a compelling solution, revolutionizing the
way we design, access, and analyze data. By
embracing the power of graph databases,
organizations can embark on a transformative
journey of discovery, innovation, and
transformation in the world of data management.
The possibilities are vast, and graph databases
provide the tools and capabilities needed to
navigate the complexities of interconnected data
and extract maximum value from it.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

Meher, D., Bulakh, P., & Jabde, M. Learning

Graph Databases: Neo4j an overview.
International Journal of Engineering
Applied Sciences and Technology, Vol. 8,
Issue 02, ISSN No. 2455-2143, Pages
216-219, Published Online June 2023 in
IJEAST (http://www.ijeast.com). Modern
College of Arts, Science and Commerce,
Ganeshkhind, Pune 411016, India.

Narayanan, M., & Shanker, S. K. P. Application
of Graph Algorithm in Social Network.
International Journal of Recent Technology
and Engineering, Vol. 8, Issue 3, pp. 7705-
7707, September 2019. Manuscript
received on 13 August 2019, revised on 19
August 2019, published on 30 September
2019.
DOI: 10.35940/ijrte.C6260.098319.

Patil, N. S., Kiran, P., Kavya, N. P., & Patel, N. K.
M. A Survey on Graph Database
Management Techniques for Huge
Unstructured Data. International Journal of
Electrical and Computer Engineering
(IJECE), Vol. 8, No. 2, pp. 1140-1149, April
2018. ISSN: 2088-8708.
DOI: 10.11591/ijece.v8i2.pp1140-1149.
Available at:

Available:http://iaescore.com/journals/inde
x.php/IJECE.

Vaikuntam, A., & Perumal, V. K. Evaluation of
Contemporary Graph Databases. In
Proceedings of the 7th ACM India
Computing Conference (COMPUTE ’14),
Article No. 6, pp. 1-10, 2014.
DOI: 10.1145/2675744.2675752.

Meher, D., Bulakh, P., & Jabde, M. Learning
Graph Databases: Neo4j an Overview.
International Journal of Engineering
Applied Sciences and Technology, Vol. 8,
Issue 02, pp. 216-219, June 2023. ISSN
No. 2455-2143. Published Online in
IJEAST.
Available:http://www.ijeast.com. Modern
College of Arts, Science and Commerce,
Ganeshkhind, Pune 411016, India.

Monteiro, J., Sá, F., & Bernardino, J.
Experimental Evaluation of Graph
Databases: JanusGraph, Nebula Graph,
Neo4j, and TigerGraph. Applied Sciences,
Vol. 13, No. 9, Article 5770, 2023.
DOI:10.3390/app13095770. Submission
received: 19 March 2023, revised: 27 April
2023, accepted: 4 May 2023, published: 7
May 2023. Polytechnic of Coimbra,
Coimbra Institute of Engineering (ISEC),
Rua Pedro Nunes, 3030-199 Coimbra,
Portugal; Centre for Informatics and
Systems of the University of Coimbra
(CISUC), Pólo II, Pinhal de Marrocos,
3030-290 Coimbra, Portugal.

Vágner, A. Store and Visualize EER in Neo4j. In
Proceedings of the 2nd International
Symposium on Computer Science and
Intelligent Control (ISCSIC ’18), Article No.
54, pp. 1-6, 2018.
DOI: 10.1145/3284557.3284694.

Aggarwal, D., & Davis, K. C. Employing Graph
Databases as a Standardization Model
towards Addressing Heterogeneity. 2016
IEEE 17th International Conference on
Information Reuse and Integration (IRI),
Pittsburgh, PA, USA, 2016, pp. 198-207.
DOI:10.1109/IRI.2016.33. Keywords:
Resource description framework, Data
models, Big data, Relational databases,
Transforms, Standardization, Graph
databases, Neo4j, Framework, Integration,
RDF.

Sharma, C., & Sinha, R. A Schema-First
Formalism for Labeled Property Graph
Databases: Enabling Structured Data
Loading and Analytics. In Proceedings of
the 6th IEEE/ACM International
Conference on Big Data Computing,

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

55

Applications and Technologies (BDCAT
’19), pp. 71-80, 2019.
DOI: 10.1145/3365109.3368782.

Ben Ammar, A. Query Optimization Techniques
in Graph Databases. International Journal
of Database Management Systems
(IJDMS), Vol. 8, No. 4, pp. 1-10, August
2016. DOI: 10.5121/ijdms.2016.8401.
Higher Institute of Computer Science and
Management, Kairouan University, Tunisia.

Yan, X., Yu, P. S., & Han, J. Graph Indexing: A
Frequent Structure-Based Approach. In
Proceedings of the 2004 ACM SIGMOD
International Conference on Management
of Data (SIGMOD ’04), pp. 335-346, 2004.
DOI: 10.1145/1007568.1007607.

Ciglan, M., Averbuch, A., & Hluchy, L.
Benchmarking Traversal Operations over
Graph Databases. 2012 IEEE 28th
International Conference on Data
Engineering Workshops, Arlington, VA,
USA, 2012, pp. 186-189.
DOI: 10.1109/ICDEW.2012.47. Keywords:
Benchmark testing, Loading, Communities,
Database systems, Memory management,
Data models.

Kusu, K., & Hatano, K. Recurrent Path Index for
Efficient Graph Traversal. 2019 IEEE
International Conference on Big Data (Big
Data), Los Angeles, CA, USA, 2019, pp.
6107-6109.
DOI:10.1109/BigData47090.2019.9006295
Keywords: Indexes, Social network
services, Benchmark testing, Integrated
circuits, Database languages, Aggregates,
Graph database, Graph index, Recurrent
path.

Ezhilchelvan, P., Mitrani, I., Waudby, J., &
Webber, J. Design and Evaluation of an
Edge Concurrency Control Protocol for
Distributed Graph Databases. In
Proceedings of the European Workshop on
Performance Engineering (EPEW 2019),
pp. 50-64, 2020. First Online: 03 April
2020.

Durner, D., & Neumann, T. No False Negatives:
Accepting All Useful Schedules in a Fast
Serializable Many-Core System. 2019
IEEE 35th International Conference on
Data Engineering (ICDE), Macao, China,
2019, pp. 734-745.
DOI: 10.1109/ICDE.2019.00071.
Keywords: Schedules, Concurrency
control, Throughput, Protocols, Database
systems, History, Servers, Transaction
processing, Concurrency control, Modern
Hardware, In-Memory Database Systems.

Solanki, R. S. An Overview of Concurrency
Control Techniques in Distributed
Database. International Journal for
Research in Applied Science &
Engineering Technology (IJRASET), Vol.
6, Issue I, pp. 1279, January 2018. ISSN:
2321-9653.
Available at: www.ijraset.com.

Robinson, I., Webber, J., & Eifrem, E. Graph
databases. O’Reilly Media, 2013.

Fan, W., & Luo, G. A survey of graph database
models. Big Data Research, 1(3), 215-228,
2014.

Cattell, R. Scalable SQL and NoSQL data stores.
ACM SIGMOD Record, 39(4), 12-27, 2011.

Fraternali, P., & Quarteroni, S. Declarative
approaches for graph database querying:
A systematic comparison. ACM Computing
Surveys, 51(4), 1-35, 2018.

Liu, Y., Pu, C., & Han, J. Graph pattern mining:
From data to subgraph patterns. In
Mining Heterogeneous Information
Networks (pp. 73-103), Morgan &
Claypool, 2018.

Bondi, A. Characteristics of scalability and their
impact on performance. In Proceedings of
the 2nd International Workshop on
Software and Performance (pp. 195-203),
ACM, 2000.

Broekstra, J., Kampman, A., & van Harmelen, F.
Sesame: A generic architecture for storing
and querying RDF and RDF schema. In
Proceedings of the International Semantic
Web Conference (pp. 54-68), Springer,
2002.

Erling, O., & Mikhailov, I. RDF support in the
Virtuoso DBMS. In Proceedings of the
International Semantic Web Conference
(pp. 689-704), Springer, 2008.

Levenshtein, V. I. Binary codes capable of
correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8),
707-710, 1966.

Lukovnikov, D., Fischer, A., & Lehmann, J.
AMIE: Association rule mining under
incomplete evidence in ontological
knowledge bases. In Proceedings of the
2018 World Wide Web Conference (pp.
1229-1238), ACM, 2018.

Neo4j. The world’s leading graph database.
Retrieved from https://neo4j.com/.

Shatnawi, O., Alawneh, L., & Al-Khasawneh, O.
A survey on graph database systems:
Issues and challenges. Big Data Research,
20, 100162, 2020.

Grover, A., & Leskovec, J. Bias and
generalization in graph neural networks. In

Baqal and Sidiq; Curr. J. Appl. Sci. Technol., vol. 43, no. 11, pp. 45-56, 2024; Article no.CJAST.124248

56

Proceedings of the 32nd Conference on
Neural Information Processing Systems
(pp. 13807-13818), 2019.

Khalaf, E. F., & Kadi, M. M. A Survey of
Access Control and Data Encryption for
Database Security. Department of
Electrical and Computer Engineering,
Faculty of Engineering, King
Abdulaziz University, Jeddah, Saudi
Arabia. 2017

Basharat, I., Azam, F., & Muzaffar, A. W.
Database Security and Encryption: A
Survey Study. National University of
Sciences and Technology (NUST), H-12,
Islamabad, Pakistan. 2013

Ortega-Guzmán, V. H., Gutiérrez-Preciado, L.,
Cervantes, F., & Alcaraz-Mejia, M. (2024).
A Methodology for Knowledge Discovery in

Labeled and Heterogeneous Graphs.
Applied Sciences, 14(2), 838.
Available:https://doi.org/10.3390/app14020
838.

Besta, M., Peter, E., Gerstenberger, R., &
Fischer, M. (2019). Demystifying Graph
Databases: Analysis and Taxonomy of
Data Organization, System Designs, and
Graph Queries. Preprint, arXiv.
Available:https://doi.org/10.48550/arXiv.19
10.09017.

Dreger, M., Eslamibidgoli, M. J., & Malek, K.
(2023). Synergizing ontologies and graph
databases for highly flexible materials-to-
device workflow representations. Journal
of Materials Informatics, 3(2).
Available:https://doi.org/10.20517/jmi.2023
.01.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/124248

https://www.sdiarticle5.com/review-history/124248

