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ABSTRACT 
 

This study assesses flood risk in Obio-Akpor, Rivers State, Nigeria, using a Geospatial and Multi-
Criteria Decision Analysis (MCDA) approach, incorporating Geographic Information Systems (GIS) 
and the Analytic Hierarchy Process (AHP). The research aims to evaluate flood risk by analyzing 
critical environmental factors, including Digital Elevation Model (DEM), Land Use/Land Cover 
(LULC), slope, drainage density, flow accumulation, rainfall, geological type, Normalized Difference 
Water Index (NDWI), and curvature. This study addresses the need for a reliable flood risk 
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assessment tool to aid urban planning and disaster management in flood-prone areas. The 
methodology involved processing spatial data with MCDA and AHP, analyzed using ArcGIS 10.6. 
Data were sourced from the United States Geological Survey (SRTM), European Space Agency 
(Sentinel-2 imagery), Nigeria Geological Survey Agency (geological map), and Nigerian 
Meteorological Agency (rainfall data). AHP was used to assign weights to flood risk factors based 
on expert judgment, and the reclassified data generated a flood risk map. The results indicate that 
33% of the area is at low risk, 37% at moderate risk, 20% at high risk, and 10% at very high risk. 
The study concludes that DEM, LULC, and slope are the most significant factors influencing flood 
risk, while rainfall, geology, NDWI, and curvature have a lesser impact. These findings highlight the 
importance of elevation and land use in flood risk assessment and identify areas vulnerable to 
flooding. This research provides valuable insights for urban planners and policymakers, offering a 
robust tool for managing flood risks and enhancing resilience in vulnerable regions. 
 

 
Keywords:  Flood risk assessment; geospatial analysis; MCDA; Analytic Hierarchy Process (AHP); 

ArcGIS, urban flood. 

 
1. INTRODUCTION 
 
Flood disasters have emerged as a significant 
global challenge, inflicting substantial economic 
losses, environmental degradation, and human 
suffering [1-3].  Developing countries, particularly 
those with rapid urbanization and inadequate 
infrastructure, are disproportionately vulnerable 
to these hydro-meteorological hazards [4,5]. 
Nigeria, with its burgeoning population and                
rapid urbanization, is no exception. The Niger 
Delta region, including Port Harcourt, the state 
capital of Rivers State, has the city has 
experienced rapid urbanization and population 
growth, which have exacerbated flood                         
risks due to the alteration of natural drainage 
systems and the encroachment upon floodplains. 
This phenomenon has led to increased 
vulnerability of urban properties and 
infrastructure, necessitating effective flood risk 
assessment and management strategies [6]. To 
mitigate the adverse impacts of flooding, 
effective flood risk assessment is crucial. This 
involves identifying areas prone to flooding, 
evaluating potential consequences, and 
developing appropriate response strategies [7]. 
Traditional methods for flood risk assessment 
often rely on historical data and hydrological 
models, which may be limited in their                     
ability to capture the complexities of urban 
environments [8]. Recent studies underscore the 
critical need for a spatial assessment of flood risk 
using advanced methodologies, such as 
Geospatial and Multi-Criteria Decision Analysis 
(MCDA), to inform decision-making and       
enhance disaster preparedness in flood-              
prone areas. Flood risk assessment involves 
evaluating both the likelihood of flooding and the 

potential consequences on human life, property, 
and the environment. It is essential to understand 
that flood risk is a function of hazard exposure, 
vulnerability, and adaptive capacity. The 
integration of geospatial data with MCDA 
provides a robust framework for analyzing 
complex flood risk scenarios by allowing                       
for the consideration of multiple factors and 
stakeholder preferences [9]. This approach not 
only facilitates the identification of high-risk          
areas but also supports the development of 
targeted mitigation strategies that can 
significantly reduce flood impacts. Geospatial 
technologies, including Geographic Information 
Systems (GIS) and remote sensing, provide 
valuable tools for collecting, analyzing, and 
visualizing spatial data related to flood risk 
factors [10]. These technologies enable the 
creation of detailed maps and models that           
can be used to identify areas with high flood 
vulnerability [11,12]. MCDA, on the other hand, 
offers a structured framework for incorporating 
multiple criteria, often conflicting, into the 
decision-making process [9,13]. By combining 
geospatial data with MCDA, it is possible to 
evaluate the relative importance of different flood 
risk factors and identify areas with the highest 
overall risk [14].  Recent research such as 
Koralay & Kara [14] and Aladejana & Ebijuoworih 
[15] highlighted the effectiveness of utilizing 
Geographic Information Systems (GIS) in 
conjunction with MCDA to assess flood 
vulnerability and risk. Ugwu et al. [6] conducted a 
comprehensive spatial assessment of flood 
vulnerability in Port Harcourt, revealing that a 
significant proportion of developed properties are 
situated in areas of moderate to high flood 
vulnerability. Their findings indicated that 
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approximately 79% of developed properties fall 
within moderately vulnerable zones, emphasizing 
the urgent need for proactive flood management 
interventions in the metropolis [6]. This study 
serves as a critical reference point for 
understanding the spatial dynamics of flood risk 
in the region. Moreover, the application of MCDA 
methodologies allows for the incorporation of 
diverse datasets, including hydrological, 
topographical, and socio-economic factors, into 
the flood risk assessment process. This 
multidimensional analysis is crucial for capturing 
the complex interactions between various flood 
risk drivers, thereby enabling more informed 
decision-making. For example, recent studies 
have demonstrated the utility of MCDA in 
identifying flood hazard drivers and vulnerability 
factors, which can then be mapped to produce 
comprehensive flood risk profiles for urban areas 
[15,16]. Such methodologies not only enhance 
the accuracy of flood risk assessments but also 
promote stakeholder engagement by 
incorporating local knowledge and preferences 
into the decision-making process. In the context 
of Port Harcourt, the integration of geospatial 
technologies and MCDA is particularly relevant 
given the city's unique geographical and socio-
economic characteristics. The Niger Delta region, 
where Port Harcourt is located, is prone to 
seasonal flooding due to its low-lying topography, 
high rainfall, and inadequate drainage 
infrastructure. Consequently, the city faces 
significant challenges related to flood 
management, including the need for effective 
urban planning, infrastructure development, and 
community engagement in flood risk reduction 
initiatives. This study aims to conduct a spatial 
assessment of flood risk in Port Harcourt using a 
geospatial and MCDA approach. By analyzing 
various flood risk factors and their spatial 
distribution, the research seeks to identify areas 
most at risk of flooding and provide 
recommendations for mitigating flood impacts. 
The findings will contribute to the existing body of 
knowledge on flood risk management in Nigeria 
and provide valuable insights for policymakers, 
urban planners, and disaster management 
authorities. In conclusion, the combination of 
geospatial analysis and MCDA represents a 
powerful tool for understanding and addressing 
flood risks in urban environments like Port 
Harcourt. As the impacts of climate change and 
urbanization continue to intensify, the need for 

comprehensive flood risk assessments becomes 
increasingly critical. This study will not only 
enhance our understanding of flood dynamics in 
Port Harcourt but also support the development 
of effective strategies for flood risk reduction and 
resilience building in Obio-Akpor. 
 

2. LOCATION AND ACCESSIBILITY OF 
THE STUDY AREA 

 
Obio-Akpor is part of Port Harcourt city located in 
Rivers state, south eastern Nigeria, situated at 
the mouth of River Bonny and lies between 
latitude 4043'0''N – latitude 4057'3''N and 
longitude 600'0''E – longitude 705'54''E (Figs. 1a 
and 1b). It is the capital of Rivers state which 
boasts Nigeria's largest oil and gas reserves 
making it a city of great economic importance 
[17]. Port Harcourt is Nigeria's fourth largest city 
after Lagos (Southwest), and regional centres 
Kano (Northwest) and Ibadan (Southwest). The 
city is positioned between the Dockyard creek 
and the Amadi creek at an average altitude of 
about 12m above mean sea level. 
 

The Niger Delta is a geological wonder, being 
one of the world largest river-dominated deltas.  
Its formation is closely linked to the interplay of 
tectonic activity, sedimentation, and sea-level 
changes [18] The delta foundation is within the 
Benue Trough, a rift basin formed during the 
Cretaceous period. As the Atlantic Ocean 
opened, extensional forces acted on the African 
plate, creating the structural framework for the 
delta. Over millions of years, the Niger River and 
its tributaries deposited vast amounts of 
sediment, forming the delta's substantial 
thickness [19]. The delta stratigraphy comprises 
three main lithofacies : the marine claystones 
and shales of the Akata Formation, the 
alternating sandstones and shales of the   
Agbada Formation, and the overlying alluvial 
sands of the Benin Formation [20,21]. These 
units display a regressive sequence, indicating a 
gradual shift from marine to continental 
environments [18, 22]. The Niger Delta is noted 
for its abundant hydrocarbon resources, primarily 
from the organic-rich shales of the Akata 
Formation. The porous sandstones of the 
Agbada Formation act as excellent reservoirs, 
while the overlying shales provide effective seals, 
creating optimal conditions for oil and gas 
accumulation [23]. 
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Fig. 1a and 1b. Study area map 
 

3. MATERIALS AND METHODS 
 

3.1 Data Acquisition 
 
The following spatial data were collected for the 
analysis: The Shuttle Radar Topographic Mission 
(SRTM) DEM was obtained from the official 
website of the United States Geological Survey 
(USGS) (http://www.earthexplorer.usgs.gov/) to 
be used in flood risk assessment. The boundary 
of the study area was defined using an 
administrative map, also obtained from the 
USGS website. High-resolution satellite imagery 
from Sentinel-2 was downloaded from the 
European Space Agency website for use in the 
flood risk assessment. Geological data for the 
study area were acquired from the Nigeria 
Geological Survey Agency, and historical rainfall 
data were obtained from the Nigerian 
Meteorological Agency (NIMET). 
 

3.2 Methodology 
 

3.2.1 Data integration and preprocessing 
 

The first step in the process was the collection of 
relevant datasets. Maps and satellite images 
were obtained from reliable sources. The DEM, a 
crucial input for terrain analysis, was acquired 
from sources like the Shuttle Radar Topography 

Mission (SRTM). Once these datasets were 
obtained, they were imported into ArcGIS 10.6 
for preprocessing. 
 
Preprocessing involved several steps, including 
georeferencing, resampling, and reprojection, to 
ensure that all data layers were in the same 
spatial reference system. This uniformity is 
critical for accurate spatial analysis. 
Georeferencing was performed by aligning the 
raster and vector layers to a common coordinate 
system, typically WGS 1984. Resampling was 
used to standardize the pixel size of raster data, 
ensuring consistency across datasets. 
Reprojection was then applied to ensure that all 
datasets conformed to the same projection, 
which minimizes spatial distortions during 
analysis. 
 
3.2.2 Generation of flood conditioning factor 

maps 
 
Once the data was preprocessed, the next step 
involved generating the flood conditioning factor 
maps. These maps represent the environmental 
and hydrological factors that influence flood risk 
in the study area. 
 

1. Elevation: Elevation data, also extracted 
from the DEM, was crucial for identifying 
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low-lying areas prone to flooding. The 
Elevation tool was used to create this map, 
which provides a visual representation of 
the terrain's height above sea level. 

2. Flow Accumulation: Flow accumulation 
was derived from the DEM using 
hydrological analysis tools in ArcGIS. This 
map identifies areas where water is likely 
to converge, indicating potential zones of 
water accumulation that could lead to 
flooding. 

3. Slope: The slope was derived from the 
DEM using the Slope tool in ArcGIS. This 
map highlights areas of steep terrain, 
which can influence the velocity and 
direction of surface runoff, thus impacting 
flood risk. 

4. Curvature: The curvature map was 
created to assess the convexity or 
concavity of the terrain. Areas with high 
curvature values can influence water flow 
patterns, making them critical in flood risk 
analysis. 

5. Drainage Density: The drainage density 
map was generated by calculating the total 
length of drainage channels per unit area. 
This factor is important as areas with 
higher drainage density are more efficient 
at channeling water, potentially reducing 
the risk of surface water accumulation and 
flooding. 

6. Land Use/Land Cover (LULC): Satellite 
images were classified into different land 
use and land cover categories, such as 
Built up areas, vegetation, water bodies, 
and bare land. The LULC map was created 
using supervised classification techniques, 
helping to identify regions where human 
activities might exacerbate flood risks. 

7. Normalized Difference Water Index 
(NDWI): NDWI, calculated using satellite 
imagery, was used to highlight water 
bodies and moisture content in vegetation. 
The NDWI map is particularly useful for 
identifying areas that are already saturated 
with water and thus more susceptible to 
flooding. 

8. Rainfall: Rainfall data, usually obtained 
from meteorological stations or satellite-
derived precipitation products, was 
interpolated using Inverse Distance 
Weighting (IDW) technique to create a 
continuous rainfall distribution map. This 
map illustrates the spatial variability of 
rainfall, a primary driver of flood events 

9. Geology: Geological data, including soil 
types and rock formations, was integrated 
into the analysis. The geology map was 
created using vector layers that depict 
different geological formations, which can 
affect infiltration rates and surface runoff. 

 
3.2.3 Generation of thematic maps 

 
The final step in the data processing involved the 
creation of thematic maps for each flood 
conditioning factor. These maps—rainfall, slope, 
elevation, land use/land cover, drainage density, 
NDWI, flow accumulation, curvature, and 
geology—were generated using the Raster 
Calculator and Map Algebra tools in ArcGIS. 
Each map was carefully examined and validated 
to ensure accuracy. 

 
Reclassification: Reclassification is a critical 
step in flood risk assessment, allowing for the 
transformation of raw spatial data into a format 
that highlights the relative importance of different 
flood-influencing factors. In this study, nine 
factors were reclassified: curvature, drainage 
density, digital elevation model (DEM), flow 
accumulation, geological type, land use/land 
cover (LULC), Normalized Difference Water 
Index (NDWI), rainfall distribution, and slope 
degree (Fig. 2a). Each factor was assigned a 
weight based on its contribution to flood risk, 
which was then used to develop the flood risk 
assessment map. 
 
Multi-Criteria Evaluation (MCE) and Analytical 
Hierarchy Process (AHP): The AHP method 
employed pair-wise comparisons to weigh the 
relative influence of each factor on flood risk [24-
26]. This approach facilitated judgments and 
calculations. The AHP model assigned weights 
and ranks to each flood factor and its classes (1-
5) based on their contribution to flood risk in the 
study area. For some factors, the ranking was 
reversed, with the highest impact category 
receiving the highest weight. The AHP extension 
in ArcGIS 10.6 was used for these calculations. 
The weight Wi of each factor iii was calculated 
using the formula: 

 

Wi= 
𝐴𝑖

∑𝑛𝑖=1 𝐴𝑖
                                             Eq. 1 

 
where Ai  represents the eigenvalue of the factor 
iii obtained from the pairwise comparison matrix, 
and n is the total number of factors. 
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Weighted Overlay Method: This method 
involved assigning weights to each raster layer 
based on its importance in flood risk. The values 
in each raster were then reclassified on a 
common scale of 1 to 5. Subsequently, the raster 
layers were overlaid, with each cell's preference 
value multiplied by its layer weight. The resulting 
values were summed to derive a final preference 
value for each cell. The weighted overlay formula 
is: 
 

Rj= ∑ 𝑊𝑖 ∗ 𝑆𝑖𝑗
𝑛
𝑖=1                                      Eq.  2 

 
 where Rj is the risk score for cell j, Wi  is the 
weight of factor iii, and Sij is the score of factor iii 
in cell j. Finally, these values were used to create 
a flood risk map. 
 
Flood Risk Criteria Ranking: Nine criteria were 
identified as crucial for flood risk assessment. 

These criteria were reclassified, and a linear 
function was used to assign preference values 
(1-5) to different classes within each criterion. 
The preference values ranged from 1 (low risk)         
to 5 (high risk). This combined approach of      
GIS analysis and AHP allowed for a 
comprehensive assessment of flood risk in the 
chosen region. 
 

4. RESULTS AND DISCUSSION  
 

4.1 Results 
 
Utilizing various parameters such as curvature, 
drainage density, digital elevation model (DEM), 
flow accumulation, geological type, land use/land 
cover, Normalized Difference Water Index 
(NDWI), rainfall distribution, and slope degree. 
The results are presented below with findings 
from Tables 1 to 9 and Fig. 2a. 

 

Table 1. Curvature description level on flood risk 
 

Rate of curve Ranking Unified value Flood risk class 

-4.09 – -0.55 1 20 Very low 
-0.54 – -0.23 2 40 Low 
-0.22 –  0.08 3 60 Moderate 
 0.09 –  0.39 4 80 High 
  0.4  – 7.34 5 100 Very High 

 

Table 2. Drainage Density description level on flood risk 
 

Drainage Density (km2) Ranking Unified value Flood risk class 

0 – 198.04 1 20 Very low 
198.05 – 396.08 2 40 Low 
396.09 – 594.12 3 60 Moderate 
594.13 – 792.16 4 80 High 
792.17 – 990.2 5 100 Very High 

  

Table 3. Digital Elevation Model description level on flood risk 
 

Digital Elevation Model (m) Ranking Unified value Flood risk class 

-17 – 5 5 100 Very High 
5.01 – 11 4 80 High 
11.01 – 17 3 60 Moderate 
17.01 – 22 2 40 Low 
22.01 – 43 1 20 Very Low 

 

Table 4. Flow Accumulation description level on flood risk 
 

Flow accumulated value Ranking Unified value Flood risk class 

0 – 2,449.52 1 20 Very low 
2,449.53 – 10,070.24 2 40 Low 
10,070.25 – 22,590 3 60 Moderate 
22,590.01 – 38,647.95 4 80 High 
38,647.96 – 69,403 5 100 Very High 
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Fig. 2a. Curvature, drainage density, digital elevation model (DEM), flow accumulation, geological type, land use/land cover, Normalized Difference 
Water Index (NDWI), rainfall distribution  
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Fig. 2b. Reclassify Curvature, drainage density, digital elevation model (DEM), flow accumulation, geological type, land use/land cover, Normalized 
Difference Water Index (NDWI), rainfall distribution  
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Table 5. Geological type description level on flood risk 
 

Vegetation type Ranking Unified value Flood risk class 

Coastal plain sands 1 20 Very low 
Deltaic basins and tidal flats 2 40 Low 
Mangrove swamps 3 60 Moderate 
Recent alluvium 4 80 High 
Recent alluvium and coastal plain sands 5 100 Very High 

 
Table 6. Land use/ land cover description level on flood risk 

 

Land use/land cover Ranking Unified value Flood risk class 

Vegetation 1 25 Low 
Bare land 2 50 Moderate 
Built up area 3 75 High 
Water bodies 4 100 Very High 

 
Table 7. NDWI description level on flood risk 

 

Index Value Ranking Unified value Flood risk class 

-0.7  – 0.06 1 20 Very low 
0.07 – 0.11 2 40 Low 
0.12 – 0.19 3 60 Moderate 
0.2   – 0.3 4 80 High 
0.31 – 0.43 5 100 Very High 

 
Table 8. Rainfall distribution description level on flood risk 

 

Rainfall distribution (mm) Ranking Unified value Flood risk class 

16.32 – 127.71 1 20 Very low 
127.72 – 179.57 2 40 Low 
179.58 – 203.71 3 60 Moderate 
203.72 – 255.57 4 80 High 
255.58 – 366.96 5 100 Very High 

 
Table 9. Slope description level on flood risk 

 

Slope (Degree) Ranking Unified value Flood risk class 

0 – 10 2 100 Very high 
10.01 – 25 1 50 High 

 

4.2 Discussion 
 
Flood risk assessment is critical for urban 
planning and disaster management, especially in 
flood-prone areas like Port Harcourt, Rivers 
State, Nigeria. This study employs a Geospatial 
and Multi-Criteria Decision Analysis (MCDA) 
approach to assess flood risk, utilizing various 
parameters such as curvature, drainage density, 
digital elevation model (DEM), flow accumulation, 
geological type, land use/land cover, Normalized 
Difference Water Index (NDWI), rainfall 

distribution, and slope degree. The results are 
discussed in detail and compared with other 
recent studies to validate the findings. 
 
Curvature is an important geomorphological 
factor influencing flood risk. Table 1 illustrates 
the unified preference values for curvature, 
showing that areas with a curvature range of -
4.09 to -0.55 have a very low flood risk (Fig. 2b), 
while areas with a curvature range of 0.4 to 7.34 
have a very high flood risk. This trend is 
consistent with findings by Otokiti et al., [27] who 
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noted that higher curvature values are 
associated with increased surface runoff and 
flood potential [28]. 
 
Drainage density is a measure of the total length 
of streams and rivers per unit area, affecting 
flood dynamics. Table 2 shows that areas with 
lower drainage density (0 – 198.04 km²) exhibit 
very low flood risk, whereas areas with higher 
drainage density (792.17 – 990.2 km²) have a 
very high flood risk (Fig. 2b). This relationship 
aligns with the study by which highlighted that 
regions with higher drainage density are more 
susceptible to flooding due to higher runoff 
potential. 
 
DEM is crucial for understanding topographic 
variation and flood risk. As indicated in Table 3, 
areas with lower elevation (-17 to 5 m) have a 
very high flood risk (Fig. 2b), while higher 
elevation areas (22.01 to 43 m) have very low 
flood risk. This observation is supported by Ugwu 
et al., [6] and Sahraei et al., [29] who found that 
low-lying areas are more prone to flooding due to 
limited drainage and higher water accumulation 
[30].  

 
Flow accumulation reflects the convergence of 
water flow in a particular area. According to 
Table 4, regions with lower flow accumulation (0 
– 2,449.52) have very low flood risk, whereas 
regions with higher flow accumulation (38,647.96 
– 69,403) have very high flood risk (Fig. 2b). 
These results are in line with those of Kazakis et 
al., [31] which demonstrated that areas with 
higher flow accumulation are more likely to 
experience flooding due to greater water 
convergence [32].  
 
Geological characteristics influence flood risk 
due to varying permeability and water retention 
properties. Table 5 indicates that coastal plain 
sands exhibit very low flood risk (Fig. 2b), 
whereas recent alluvium and coastal plain sands 
have very high flood risk. Similar findings were 
reported by Ghosh and Kar [33] who identified 
that alluvial regions are more flood-prone due to 
their high permeability and water retention 
capacity [34].  
 
Land use and cover types significantly affect 
flood risk. Table 6 reveals that areas with 
vegetation have low flood risk, while built-up 
areas and water bodies have high to very high 

flood risk (Fig. 2b). This trend is corroborated by 
Ugwu et al., [6] and Bui et al., [35] who noted that 
urbanization and the presence of water bodies 
increase flood susceptibility due to reduced 
infiltration and increased surface runoff [34].   
 
NDWI is used to identify water content in 
vegetation and soil. Table 7 shows that areas 
with higher NDWI values (0.31 – 0.43) have very 
high flood risk (Fig. 2b), while areas with lower 
NDWI values (-0.7 – 0.06) have very low flood 
risk. This observation is consistent which found 
that higher NDWI values are associated with 
increased soil moisture and flood risk [32]. 
Rainfall intensity and distribution are critical 
factors in flood risk assessment. Table 8 
demonstrates that areas with higher rainfall 
distribution (255.58 – 366.96 mm) have very high 
flood risk, while areas with lower rainfall 
distribution (16.32 – 127.71 mm) have very                
low flood risk (Fig. 2b). This relationship             
aligns with the findings of Chapi et al., [36] and 
Wu et al., [37] who emphasized that regions with 
higher rainfall are more susceptible to flooding 
[32].  
 
Slope degree affects the velocity and volume of 
runoff. Table 9 indicates that areas with lower 
slopes (0 – 10 degrees) have very high flood risk, 
whereas steeper slopes (10.01 – 25 degrees) 
have high flood risk (Fig. 2b). This trend is 
supported by Pham et al., [38] and Eteh et al., 
[39], who found that flatter areas are more prone 
to flooding due to slower water movement and 
greater accumulation. 
 
4.2.1 Development of the pairwise 

comparison matrix 
 
The Analytic Hierarchy Process (AHP) was 
employed to develop a pairwise comparison 
matrix. This involved expert judgment to assign 
relative importance to various flood-inducing 
factors based on the Saaty scale, ranging from 1 
(equal importance) to 9 (extremely important) as 
shown in Tables 10 and 11. The factors 
considered included Digital Elevation Model 
(DEM), Land Use/Land Cover (LULC), Slope, 
Drainage Density (DD), Flow Accumulation, 
Rainfall, Geology, Normalized Difference Water 
Index (NDWI), and Curvature. This method 
facilitates the comparison of criteria by assigning 
a numerical value to the importance of one 
criterion over another. 

 



 
 
 
 

Moses et al.; Asian J. Geol. Res., vol. 7, no. 3, pp. 268-292, 2024; Article no.AJOGER.122588 
 
 

 
286 

 

 

4.2.2 Pairwise comparison and eigenvector 
weight calculation 

 
Using the pairwise comparison matrix, the 
eigenvector weights for each criterion were 
calculated. Table 12 presents these weights, 
showing the relative importance of each factor in 
determining flood risk in Port Harcourt. The 
consistency ratio (CR) was found to be 0.03, 
indicating that the comparisons were consistent 
and acceptable. The calculated weights were 
then used to derive the relative importance 
percentages for each criterion, as detailed in 
Table 13. 
 
4.2.3 Flood Influencing Factors 
 
The results indicate that the Digital Elevation 
Model (DEM) is the most significant factor, with a 
relative weight of 30.85%. This is followed by 

Land Use/Land Cover (LULC) at 21.92% and 
Slope at 15.49%. Drainage Density (DD) and 
Flow Accumulation have weights of 10.92% and 
7.26%, respectively. Rainfall, Geology, 
Normalized Difference Water Index (NDWI), and 
Curvature are less influential, with relative 
weights of 5.34%, 3.71%, 2.60%, and 1.90%, 
respectively. 
 
4.2.4 Spatial assessment of flood risk 
 
The flood risk map (Figs. 3 and 4) generated 
from the analysis reveals the spatial distribution 
of flood risk in Port Harcourt. The map 
categorizes areas into four flood risk classes: 
Low, Moderate, High, and Very High. The final 
flood assessment results, shown in Table 14, 
indicate that 33% of the area is at low risk, 37% 
at moderate risk, 20% at high risk, and 10% at 
very high risk. 

  
Table 10. The intensity of pair wise comparison ranking [40] 

 

The intensity of pair wise comparison Interpretation 

1 Equal importance 

2 Equal to Moderately importance 

3 Moderately to the strong importance 

4 Moderate to the strong importance 

5 Strong importance 

6 Strong to the very strong importance 

7 Very strong importance 

8 Very to the extremely importance 

9 Extremely importance 

 

 
 

Fig. 3. Bar chart of flood assessment 
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Table 11. Pairwise comparison of a 9-point continuous scale 
 

Criterion DEM LULC Slope DD Flow Acc Rainfall Geology NDWI Curvature 

DEM 1         
LULC 1/2 1        
Slope 1/3 1/2 1       
DD 1/4 1/3 1/2 1      
Flow Acc 1/5 1/4 1/3 ½ 1     
Rainfall 1/6 1/5 1/4 1/3 ½ 1    
Geology 1/7 1/6 1/5 ¼ 1/3 1/2 1   
NDWI 1/8 1/7 1/6 1/5 ¼ 1/3 1/2 1  
Curvature 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 

 2.8 4.7 7.5 11.3 16.3 22.1 28.8 36.5 45.0 

 
Table 12. Pair wise comparison matrix 

 

 DEM LULC Slope DD Flow Acc Rainfall Geology NDWI Curvature Eigenvector weight Percentage (%) 

DEM 0.35 0.43 0.40 0.35 0.31 0.27 0.24 0.22 0.20 0.31 30.85 
LULC 0.18 0.21 0.27 0.27 0.25 0.23 0.21 0.19 0.18 0.22 21.92 
Slope 0.12 0.11 0.13 0.18 0.18 0.18 0.17 0.16 0.16 0.15 15.49 
DD 0.09 0.07 0.07 0.09 0.12 0.14 0.14 0.14 0.13 0.11 10.92 
Flow Acc 0.07 0.04 0.03 0.03 0.06 0.09 0.10 0.11 0.11 0.07 7.26 
Rainfall 0.06 0.04 0.03 0.03 0.03 0.05 0.07 0.08 0.09 0.05 5.34 
Geology 0.05 0.04 0.03 0.02 0.02 0.02 0.03 0.05 0.07 0.04 3.71 
NDWI 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 2.60 
Curvature 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 1.90 

Total          1 100 
Consistency ratio = 0.03, consistency is acceptable 
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Table 13. Flood influencing factor relative weight percent 
 

S/N Parameters Relative Weight (%) 

1 Digital Elevation Model 30.85 
2 Landuse/Landcover 21.92 
3 Slope 15.49 
4 Drainage Density 10.92 
5 Flow Accumulation 7.26 
6 Rainfall  5.34 
7 Geology 3.71 
8 NDWI 2.60 
9 Curvature 1.90 

 

Table 14. Final flood assessment results 
 

Flood risk class Area (km2) Percentage (%) 

Low 35.97 33 
Moderate 40.33 37 
High 21.8 20 
Very High 10.9 10 

 

 
 

Fig. 4. Flood sensitive map in Obio-Akpor, Rivers State, Nigeria 
 

The spatial assessment of flood risk using the 
MCDA approach provides a comprehensive 
understanding of flood-prone areas in Port 
Harcourt. The high influence of DEM indicates 
that elevation variations significantly affect              
flood risk. Low-lying areas are more            
susceptible to flooding due to their inability                  
to effectively drain excess water. Similarly,   
LULC and slope are critical factors, as                      
they influence surface runoff and water       
retention. The moderate to high importance of 

DD and flow accumulation indicates that                  
areas with dense drainage networks and 
significant water flow accumulation are                   
more likely to experience flooding. Rainfall, 
though a direct contributor to flood events, has a 
lower relative weight, possibly due to the 
uniformity of precipitation patterns in the study 
area. Geology, NDWI, and curvature have 
minimal impact on flood risk, reflecting their 
lesser role in the specific context of Port 
Harcourt. 
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5. CONCLUSION  
 
Flood risk assessment is essential for urban 
planning and disaster management, particularly 
in flood-prone areas such as Port Harcourt, 
Rivers State, Nigeria. This study utilized a 
Geospatial and Multi-Criteria Decision Analysis 
(MCDA) approach, incorporating factors like 
curvature, drainage density, digital elevation 
model (DEM), flow accumulation, geological 
type, land use/land cover (LULC), Normalized 
Difference Water Index (NDWI), rainfall 
distribution, and slope degree. The findings 
highlight that the DEM is the most                          
significant factor affecting flood risk, with a 
relative weight of 30.85%. This indicates that 
low-lying areas are more prone to flooding                     
due to poor drainage and higher water 
accumulation. LULC (21.92%) and slope 
(15.49%) also play crucial roles, influencing 
surface runoff and water retention. Areas with 
dense drainage networks and significant                        
flow accumulation exhibit higher flood risk, 
aligning with the moderate to high importance                     
of these factors. The study found that                
curvature, NDWI, and geology have minimal 
impacts, suggesting their lesser role in this 
context. The reclassification of these factors 
allowed for the development of a detailed                    
flood risk map, categorizing areas into low, 
moderate, high, and very high risk. The results 
show that 33% of Port Harcourt is at low                      
risk, 37% at moderate risk, 20% at high risk, and 
10% at very high risk. The analysis validates 
previous studies, confirming that areas with 
higher curvature, drainage density, lower 
elevation, and greater flow accumulation are 
more susceptible to flooding. Additionally,                        
it was observed that built-up areas and                       
water bodies have high flood risk due to                 
reduced infiltration and increased runoff.                 
Rainfall intensity, despite being a direct 
contributor to flood events, showed a lower 
relative weight due to uniform precipitation 
patterns in the region. Therefore, this 
comprehensive flood risk assessment using 
MCDA and geospatial techniques provides 
valuable insights for urban planners and disaster 
management authorities. The findings 
underscore the need for targeted interventions in 
high-risk areas to mitigate flood impacts, 
emphasizing the critical roles of elevation, land 
use, and drainage characteristics in flood risk 
management. 
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