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ABSTRACT 
 

Crop detection and classification are pivotal for optimizing agricultural practices and ensuring 
sustainable farming. This research presents a sophisticated approach to identifying optimal 
environments for various crops using advanced machine-learning techniques. The study employs a 
Random Forest classifier framework to categorize crops based on crucial environmental 
parameters, including soil nitrogen, phosphorus, potassium levels, temperature, humidity, soil pH, 
and rainfall. Additionally, a K-Means clustering algorithm groups crops with similar growth 
conditions. The model demonstrates superior performance compared to existing state-of-the-art 

Original Research Article 

https://doi.org/10.9734/ajrcos/2024/v17i7490
https://www.sdiarticle5.com/review-history/120353


 
 
 
 

Awon and Goswami; Asian J. Res. Com. Sci., vol. 17, no. 8, pp. 58-69, 2024; Article no.AJRCOS.120353 
 
 

 
59 

 

approaches, achieving an accuracy of 0.97 and macro average scores of 0.94 for precision, 0.95 
for recall, and 0.94 for F1-score. Findings underscore distinct environmental requirements for 
different crop groups, such as those thriving in arid conditions with minimal rainfall and nutrient 
content, versus those favoring humid conditions with abundant rainfall and nutrient richness. This 
study emphasizes the potential of machine learning models to enhance agricultural productivity by 
aligning crop selection with suitable environmental conditions, facilitating precise agricultural 
decision-making. The high accuracy and detailed classification underscore the model's efficacy in 
identifying optimal crop environments, which can significantly improve crop yield and resource 
management. 
 

 

Keywords:  Random forest; classification; crop detection; K-Means clustering; sustainable farming; 
agricultural challenges. 

 

1. INTRODUCTION 
 
The need for a robust crop recommendation 
system is increasingly vital in modern agriculture 
to maximize productivity, sustainability, and 
profitability. With the ever-growing global 
population and the accompanying food demand, 
efficient farming practices are essential. 
Traditional methods, relying on generational 
knowledge and rudimentary soil and climate 
observations, are no longer sufficient to meet 
contemporary agricultural challenges. The 
evolution of agriculture and crop 
recommendation techniques has been marked 
by significant technological advancements. 
Initially reliant on traditional knowledge and 
experience, modern agriculture has embraced 
scientific methods and data-driven                   
approaches. Early techniques involved basic soil 
analysis and climate observation. With the 
advent of computers and data science,                   
machine learning algorithms such as Random 
Forest and K-Means clustering have 
revolutionized crop recommendation [1]. These 
models analyze vast datasets encompassing soil 
properties, climate patterns, and historical yields 
to predict optimal crop choices. This evolution 
not only enhances efficiency and sustainability in 
farming but also empowers farmers with precise 
insights for maximizing yields while minimizing 
environmental impact [2]. 
 
The fusion of Random Forest Classification and 
K-Means Clustering significantly enhances the 
optimization of crop recommendation processes. 
Random Forest Classification excels in handling 
complex, nonlinear relationships within data by 
constructing multiple decision trees and 
aggregating their outputs [3,4]. It effectively 
categorizes crops based on diverse 
environmental factors such as soil nutrients, 
climate conditions, and rainfall patterns. 
Meanwhile, K-Means Clustering groups crops 

with similar growth requirements into clusters, 
identifying distinct environmental niches where 
specific crops thrive. By combining these 
methodologies, the model not only categorizes 
crops accurately but also identifies clusters of 
crops that share similar environmental 
preferences. This synergy enables precise 
matching of crops to their most suitable 
environmental conditions, thereby optimizing 
agricultural productivity and resource utilization 
[5]. Farmers can make informed decisions on 
crop selection and management practices, 
fostering sustainable farming practices and 
maximizing yields in varying environmental 
contexts. 
 
Crop recommendation is crucial for maximizing 
agricultural productivity, sustainability, and 
profitability. It helps farmers select crops best 
suited to their specific environmental conditions, 
such as soil quality, climate, and rainfall patterns 
[6]. By matching crops with optimal growing 
conditions, crop recommendation techniques 
enhance yield potential while minimizing 
resource wastage. This targeted approach also 
reduces the risk of crop failure and ensures 
efficient use of land and inputs like water and 
fertilizers [7]. Moreover, accurate crop 
recommendations contribute to food security by 
diversifying crop types and ensuring stable 
production levels. Overall, effective crop 
recommendation supports resilient agricultural 
systems capable of adapting to changing 
environmental and economic pressures, thereby 
securing livelihoods and promoting global food 
supply stability [8]. 
 

1.1 Related Works 
 

In recent years, advancements in the application 
of ML-based techniques, particularly 
classification and clustering, have significantly 
enhanced the performance and efficiency of crop 
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recommendation for various applications and use 
cases. D. Modi et al. presented an SVM-based 
crop recommendation system for the formers. In 
this work, it is required to analyze the profit of a 
certain crop, which avoids losses for farmers 
while increasing production [9]. Similarly, T. K. 
Mishra et al. advocated Crop selection 
by utilizing machine learning approaches such as 
K-Nearest Neighbour (KNN) and Random Forest. 
Both models were fully simulated on the Indian 
dataset, and an analytical report was produced. 
The model assists farmers in determining the 
type of crop before cultivating it on an agricultural 
field, allowing them to make more informed 
decisions [10]. J. Madhuri et al. presented a new 
recommendation system that utilizes Artificial 
Neural Networks (ANN) to select appropriate 
crops [11].  
 
S. Z. Rahman et al. suggested a model that can 
forecast soil series with land type and, based on 
the prediction, suggest suitable crops using 
different machine learning methods such as 
weighted k-nearest Neighbour (k-NN), Bagged 
Trees, and Gaussian kernelbased Support 
Vector Machines (SVM) [12]. In a different 
configuration, M. S. Suchithra et al. emphasized 
the analysis of agriculture data and the creation 
of a rank-based recommendation system to find 
the best-suited crops for a certain place by 
mining a significant quantity of crop, soil, and 
geographic data using the clustering approach 
and the ball-tree algorithm [13]. P. Parameswari 
et al. contributed to develop a model that uses 
machine learning algorithms like PART, Decision 
table, and JRip to provide farmers with crop-
related information or crop recommendations 
based on a variety of attributes like crop details, 
soil composition, weather conditions that crops 
can grow in, temperature, soil PH, and rainfall 
[14]. R. Kumar et al. proposed a system that can 
uses Convolutional Neural Networks to identify 
plant illnesses and use ML to analyze many soil 
characteristics to recommend different crops 
depending on soil quality. In order to create an 
accurate database, different plant species are 
identified and given new names using the Plant 
Village Dataset, which serves as the source of 
the dataset for the disease prediction training 
and test [15]. 
 
While these modern, state-of-the-art ML-based 
techniques are adaptive and cater to various 
applications, they may not be ideally suited for 
complex datasets. Our study presents a 
performance-based comparative analysis, 
focusing on the fusion of classification and 

clustering methodologies using Random Forests 
and K-means clustering. The fusion of clustering 
and classification offers superior results for crop 
recommendation and detection by leveraging the 
strengths of both methodologies. Classification, 
like Random Forest, accurately categorizes 
crops based on complex environmental 
parameters, while clustering, like K-Means, 
groups crops with similar growth conditions. This 
dual approach ensures precise crop selection by 
not only identifying optimal crops for given 
conditions but also highlighting similar crops that 
thrive under comparable environments. This 
synergy enhances prediction accuracy, 
adaptability, and resource efficiency. By 
combining these techniques, the model 
outperforms state-of-the-art approaches, 
providing more nuanced insights and                    
robust recommendations tailored to diverse 
agricultural contexts. In the subsequent sections, 
the detailed methodology of the study is 
discussed.  
 

2. METHODOLOGY 
 
2.1 Data Importing and Outline 
 
Data importing and outlining sets the foundation 
for any data-driven project, facilitating the 
transition of raw data from external sources into 
a programming environment for analysis and 
modeling. The process typically begins with 
importing essential libraries such as pandas for 
data manipulation, numpy for numerical 
operations, and scikit-learn for machine learning 
implementations. The next step involves loading 
data from diverse sources such as CSV files, 
databases, or APIs using specialized functions 
like read_csv or read_excel from pandas.                     
Fig. 1 demonstrates the model workflow of the 
study.  
 
Upon loading, initial exploration commences with 
tasks like displaying the first few rows of data 
(head()), checking data types (dtypes), and 
handling missing values (isnull(), fillna()). 
Subsequently, data transformation techniques 
may be applied to convert categorical data into 
numerical formats, ensuring compatibility with 
machine learning algorithms. Finally, the data is 
typically split into training and testing sets using 
train_test_split() to evaluate model performance 
accurately. This systematic approach ensures 
that data is imported, prepared, and structured 
efficiently for subsequent analysis and modeling 
tasks. 
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Fig. 1. Model workflow diagram 
 

Table 1. Dataset Description 
 

Nitrogen Phosphorus Potassium Temperature Humidity pH Rainfall Crop 

90 42 43 20.879744 82.002744 6.5 202.934 Rice 
85 58 41 21.770462 80.319644 7.0 226.655 Rice 
60 55 44 23.004459 82.320763 7.8 263.964 Rice 
74 35 40 26.491096 80.158363 6.9 242.864 Rice 
78 42 42 20.130175 81.604873 7.6 262.717 Rice 

 

2.2 Dataset Preparation 
 

Preparing the dataset involves several critical 
steps to ensure its readiness for analysis and 
modeling. Initially, the dataset's structure is 
reviewed, confirming the presence of essential 
columns: Nitrogen, Phosphorus, Potassium, 
Temperature, Humidity, pH_Value, Rainfall, and 
Crop [16]. The next step involves addressing 
data quality issues such as missing values, 
outliers, and inconsistencies. Techniques like 
imputation for missing values and statistical 
methods or domain knowledge for outliers are 
applied. Numerical data, including Nitrogen, 
Phosphorus, Potassium, Temperature, Humidity, 
pH_Value, and Rainfall, may undergo 
normalization or standardization to bring them to 
a consistent scale, ensuring fair comparisons 
across features during modeling [17]. Categorical 
data, specifically the Crop column, requires 
encoding into a numerical format using 
techniques like one-hot encoding to enable 
machine learning algorithms to process it 
effectively. Table 1 gives a brief idea about the 
contents of the dataset used in this study. 

Finally, the dataset is split into training                      
and testing sets to assess model                              
performance accurately. This meticulous 
preparation process is crucial for maximizing the 
dataset's utility, enabling robust analysis                     
and predictive modeling for crop                  
recommendation based on soil and 
environmental factors. 
  

2.3 Model Implementation 
  

The dual-model approach of combining Random 
Forest Classification and K-Means Clustering 
offers a powerful methodology for analyzing 
agricultural data comprehensively. Random 
Forest Classification is a robust and widely used 
technique in supervised learning, particularly 
suited for predicting crop types based on 
comprehensive datasets that encompass                
crucial soil and environmental attributes such              
as Nitrogen, Phosphorus, Potassium,              
Temperature, Humidity, pH_Value, and Rainfall. 
Fig. 2 demonstrates the model architecture 
diagram.  
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Fig. 2. Architecture of the Proposed Model 
 
Initially, to facilitate machine learning algorithms, 
categorical crop labels are transformed into a 
numerical format using LabelEncoder [18]. This 
preprocessing step ensures that the data is 
compatible with the Random Forest algorithm, 
which excels in handling both numerical and 
categorical data effectively. During training, each 
decision tree independently learns from the 
dataset by recursively splitting nodes based on 
the most discriminative features, such as 
Nitrogen, Phosphorus, Potassium levels, 
Temperature, Humidity, pH_Value, and Rainfall. 
This process allows the model to capture 
complex relationships between these attributes 
and the target variable—the type of crop. 
Equation (1) and (2) explains the working of the 
RF classifier. 
 

𝑃 (𝑦 = 𝑐|𝑥) =  
1

𝑇
∑ 𝑝𝑐(𝑥)𝑇

𝑡=1                          (1) 

 
This equation illustrates that the Random Forest 
combines the probabilistic outputs of each 
decision tree to obtain a more robust estimate of 
the class probabilities. In equation (1), 𝑇 is the 
total number of decision trees in the forest and  
𝑝𝑐(𝑥) denotes the probability assigned by the t-th 
tree to the class c for the input x. Each decision 
tree contributes its probability distribution over 
the classes, and averaging these                     
distributions across all trees helps to smooth               
out noise and improve the overall                     
prediction accuracy [19,20]. For classification 
tasks, the final predicted class label is              

typically determined by choosing the class with 
the highest average probability in equation (2). 
 

𝑦𝑅𝐹(𝑥) = arg 𝑚𝑎𝑥𝑐 (
1

𝑇
∑ 𝑝𝑐(𝑥)𝑇

𝑡=1 )               (2) 

 
Once trained, predictions are made by 
aggregating the outputs of all trees through a 
voting mechanism. The majority vote determines 
the predicted crop type for new data instances. 
Evaluation metrics like accuracy, precision, 
recall, and F1-score are employed to assess the 
model's performance. These metrics provide 
insights into how well the Random Forest 
classifier can accurately classify crops based on 
the provided attributes, crucial for agricultural 
decision-making and optimizing crop 
management strategies. 
 
Further, Complementing Random Forest 
Classification, K-Means Clustering serves as a 
pivotal tool in unsupervised learning for exploring 
patterns and groupings within agricultural 
datasets based on environmental attributes [21]. 
Unlike supervised methods that predict crop 
types, K-Means focuses on segmenting crops 
into clusters based on similarities in their 
environmental conditions. The goal of K-means 
clustering is to minimize the within-cluster sum of 
squares (WCSS), which is defined in equation 
(3). 
 

𝑊𝐶𝑆𝑆 =  ∑ ∑ ||𝑥𝑖∈𝐶𝑘
𝐾
𝑘=1 𝑥𝑖 − 𝜇𝑘||2                (3) 
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Where, it represents the squared Euclidean 
distance between data point and the centroid. 
Before applying K-Means, the dataset undergoes 
preprocessing to standardize or normalize 
features like Nitrogen, Phosphorus, Potassium, 
Temperature, Humidity, pH_Value, and Rainfall. 
This step ensures that all attributes contribute 
equally to the clustering process.                            
The Elbow Method is then employed to 
determine the optimal number of clusters, 
iterating through a range of cluster numbers and 
plotting the Within-Cluster Sum of Squares 
(WCSS) [22,23]. Equation (4) gives the 
mathematical representation of the elbow 
method.  
 

𝐸𝑙𝑏𝑜𝑤 𝑃𝑜𝑖𝑛𝑡 = arg 𝑚𝑖𝑛𝐾  ∑ ∑ ||𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1 𝑥𝑖 − 𝜇𝑘||2        (4) 

 
The point where the decrease in WCSS levels off 
suggests the appropriate number of clusters, 
indicating how many distinct groups of crops 
exist based on their environmental attributes. 
With the optimal cluster count identified, K-
Means assigns each data point to a cluster 
based on its proximity to the cluster's                        
centroid in the feature space. This allows for the 
exploration and visualization of cohesive groups 
of crops that share similar environmental 
requirements. Such insights are invaluable for 
understanding crop diversity, optimizing     
resource allocation, and tailoring agricultural 
practices to maximize productivity and 
sustainability.  
 
By combining both models, the authors gain a 
holistic view of the dataset. Random Forest 
Classification provides predictive insights into 
which crop types are likely to thrive under 
specific environmental conditions, facilitating 
precise crop recommendation systems. 
Meanwhile, K-Means Clustering offers a deeper 
understanding of how crops naturally group 
together based on their shared environmental 
attributes, revealing potential insights for 
agricultural management practices and resource 
allocation. Together, this dual-model approach 
enhances decision-making processes in 
agriculture, leveraging machine learning to 
optimize crop selection and improve productivity 
sustainably. 
 

3. RESULTS AND FINDINGS 
 
The dataset used by the authors comprises 5000 
data points, each characterized by the 
distribution of 7 features: Nitrogen, Phosphorus, 
Potassium, Temperature, Humidity, Rainfall, and 

pH. These features are predominantly derived 
from agricultural regions in South-East Asia and 
India. The illustration of the distribution of 
different features within the dataset is depicted in 
Fig. 3. Each graph's x-axis delineates the range 
of values for the respective variable, while the y-
axis denotes the frequency of each observed 
value. Analysis reveals prevalent temperature 
readings between 20 and 40 degrees Celsius, 
predominant humidity levels ranging from 60 to 
80 percent, and frequent occurrences of rainfall 
volumes between 50 and 100 millimetres. These 
insights provide a valuable understanding of the 
typical climatic conditions within the city, aiding in 
various environmental analyses and planning 
endeavours. 
 
The performance metrics for the model are 
shown in Table 2 for all the crops. It comprises 
several parameters, including precision, recall, 
and F1-score for distinct crop classes (apple, 
banana, blackgram, etc.), along with accuracy. 
By taking into account the support (number of 
examples) for each class, these metrics                    
assess how well the model can predict each 
class. Overall performance across several                    
crop categories shows good precision,                  
recall, and F1 scores together with excellent 
accuracy.  
 

Accuracy  = 
 𝑇𝑃+𝑇𝑁

𝑇𝑃 +𝑇𝑁+𝐹𝑁+𝐹𝑃
                        (5)  

 

Precision  = 
 𝑇𝑃

𝑇𝑃 +𝐹𝑃
                                     (6)  

 

Recall  = 
 𝑇𝑃

𝑇𝑃 +𝐹𝑁
                                         (7) 

 

F1 Score  = 
 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
               (8) 

 
Equation (5), (6), (7), and (8) gives the 
mathematical forefront to calculate the 
performance metrics for the individual classes 
and crops from the confusion matrix. Fig. 4 
represents the correlation matrix obtained for the 
model. 
 
In the correlation map of Fig. 4, each diagonal 
element is 1, indicating a perfect correlation 
between each variable and itself. This is 
expected as it measures a variable's correlation 
with itself. Additionally, the correlation matrix is 
symmetric, meaning the correlation between 
variables A and B is identical to that between B 
and A [24]. This symmetry confirms the 
consistency of relationships between variables, 
independent of comparison order. 
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Fig. 3. Distribution Graph of Different Features 
 

Table 2. Performance Metrics of the Proposed Model 
 

Crop Precision Recall F1-Score Support 

Apple 1.00 1.00 1.00 23 
Banana 1.00 1.00 1.00 21 
Blackgram 1.00 0.96 0.99 20 
Chickpea 1.00 1.00 1.00 26 
Coconut 0.98 0.97 1.00 27 
Cotton 0.97 0.99 0.96 17 
Grapes 1.00 1.00 1.00 14 
Jute 0.92 1.00 0.96 23 
Lentil 0.92 1.00 0.96 11 
Maize 1.00 1.00 1.00 21 
Mango 1.00 1.00 1.00 19 
Muskmelon 1.00 1.00 1.00 17 
Orange 1.00 1.00 1.00 14 
Papaya 1.00 1.00 1.00 23 
Rice 1.00 0.89 0.94 19 
Watermelon 1.00 1.00 1.00 19 
Accuracy   0.97 440 
Macro Avg 0.94 0.95 0.94 440 
Avg 0.95 0.95 0.04 440 
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Fig. 4. Correlation Between Different Features 
 

 
 

Fig. 5. Performance of K-means Clustering Analysis 
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The number of clusters determined for feeding 
into the K-means Clustering algorithm was 
experimentally determined to be 4 using the 
Elbow method. From Fig. 5 it can be inferred that 
4 is the optimal number of clusters for the 
dataset, as it represents the point where the 
WCSS reduction begins to taper off, indicating 
that adding more clusters does not significantly 
improve the clustering performance.                        
This balance helps in finding a meaningful 
partitioning of the data without overfitting or 
underfitting. The PCA plot effectively illustrates 
the results of the K-Means clustering, showing 
clear separation between clusters and indicating 
that the chosen number of clusters (four) is 
appropriate for this dataset. The distinct clusters 
reflect the underlying patterns in the data, 
suggesting that the environmental                             
attributes used in the analysis are effective in 
differentiating between different crop types.                  
This visualization aids in understanding                             
the similarities and differences in crop                     
requirements, which is valuable for                     
optimizing agricultural practices and decision-
making. 
 
The analysis of crop clusters, based on 
environmental attributes and using the fusion of 
RF and K-Means Clustering algorithm, reveals 
distinct groupings that highlight the common 
characteristics and optimal growing conditions for 
different crops. Cluster 0 encompasses crops like 
Mango, Orange, and Chickpea, which generally 
prefer warm climates and well-drained loamy 
soils, thriving in regions like India, the United 
States, and tropical countries. Cluster 1 includes 
crops such as Coconut, Rice, and Coffee, which 
favor high humidity and abundant rainfall, and 
are prominently grown in Southeast Asia, Latin 
America, and Africa. Cluster 2 groups crops like 
Banana, Cotton, and Watermelon, requiring 
warm temperatures and well-drained soils, and 
are commonly cultivated in tropical and 
subtropical regions such as Asia and the 
Americas. Lastly, Cluster 3 features Apples and 
Grapes, which thrive in temperate climates with 
well-drained loamy soils, and are                                
produced in regions with distinct seasonal 
variations, such as China, the United States, and 
Europe. 
 

4. DISCUSSION 
 

This study provides valuable insights into the 
environmental requirements of different crops, 
helping to inform agricultural practices and 
optimize crop production based on regional 

climate and soil conditions. The performance of 
the proposed fused model has been  
meticulously compared with other state-of-the-art 
models and architectures. Table 3 provides a  
comprehensive evaluation and thorough 
understanding of the proposed model's 
effectiveness with existing cutting-edge 
approaches in the field.  
 
Table 3. Comparison of the Proposed Model 

Performance Metrics 
 

Model Accuracy (%) 

RF – KMC (Our Model) 97.32% (Avg) 

SVM [9] 94.82% 
RF – KNN [10] 95.21% 
ANN [11] 96.76% (Avg) 
DBSCAN [13] 89.54% 
PART Algorithm [14] 98.33% 
CNN [15] 97.86% 

 
Table 3 presents a comparison of various 
machine learning models based on their 
accuracy in the crop recommendation task. The 
combined Random Forest and K-Means 
Clustering (RF – KMC) model achieves an 
average accuracy of 97.32%, demonstrating its 
effectiveness by leveraging both supervised and 
unsupervised learning techniques. Support 
Vector Machine (SVM), known for its optimal 
hyperplane separation, attains a 94.82% 
accuracy, while the integration of Random Forest 
with K-Nearest Neighbors (RF – KNN) slightly 
improves performance to 95.21%. ANN exhibits 
strong capabilities with an average accuracy of 
96.76%, benefiting from their multi-layered 
neuron structure. On the other hand, the       
Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN), an unsupervised 
algorithm, achieves a lower accuracy of 89.54%, 
highlighting its limitations in this context.                         
The PART algorithm (Projective Adaptive 
Resonance Theory), which uses rule-based 
classification derived from partial decision trees, 
stands out with the highest accuracy of 98.33%. 
Convolutional Neural Networks (CNN), primarily 
used for image recognition, also perform 
exceptionally well with 97.86% accuracy, 
indicating their versatility and robustness in 
classification tasks. This comparison 
underscores the varied strengths of different 
models, with the PART algorithm and                           
CNN leading in accuracy, while the                       
RF–KMC model offers a balanced and                     
highly effective approach by combining                       
supervised and unsupervised learning 
techniques. 
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5. CONCLUSION 

 
In conclusion, the integration of a Random   
Forest classifier and K-Means clustering                        
algorithm for crop detection and                
classification significantly enhances agricultural 
practices by optimizing crop selection based on 
environmental conditions. The study's 
sophisticated approach leverages key 
parameters such as soil nutrients, temperature, 
humidity, soil pH, and rainfall to accurately 
categorize and group crops, showcasing superior 
performance over existing methodologies. The 
findings highlight the distinct environmental 
requirements of various crop groups, providing 
invaluable insights for aligning crop selection with 
optimal growth conditions. This alignment not 
only enhances agricultural productivity but also 
supports sustainable farming by minimizing 
resource wastage and maximizing yield                     
[25,26]. Limitations of the proposed model 
include its reliance on historical data, which may 
not capture rapid environmental changes or 
emerging crop varieties. Additionally, the model's 
accuracy could be influenced by the                           
quality and representativeness of input data, 
particularly in regions with sparse or unreliable 
data sources. Furthermore, while Random                 
Forest and K-Means are effective, they may not 
fully capture complex interactions among 
environmental factors or adapt to highly dynamic 
agricultural landscapes without frequent 
retraining. Addressing these limitations would 
require ongoing data validation, refinement of 
algorithms to handle evolving conditions,                       
and potentially integrating more sophisticated 
machine learning approaches for greater 
adaptability and predictive power.                       
Future work should focus on expanding the 
dataset to include a broader range of crops and                       
environmental conditions, enabling the                    
model to apply to diverse geographical                   
regions beyond South-East Asia and                                 
India. Additionally, incorporating more advanced 
machine learning techniques, such as                        
deep learning models, could further                      
improve classification accuracy and                           
robustness. Integration with real-time                             
environmental monitoring systems and IoT 
technologies. 
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