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Abstract 
 

In the present paper, the effect of viscous dissipation and dependent viscosity on free convection flow 
over a sphere has been investigated. Joule heating and heat conduction over a sphere are considered as 
well in this investigation. With a goal to attain similarity solutions of the problem being posed, the 
developed equations are made dimensionless by using suitable transformations. The non-dimensional 
equations are then transformed into non-linear equations introducing a non- similarity transformation. 
The resulting non-linear similar equations together with their corresponding boundary conditions based 
on conduction and convection are solved numerically by using the finite difference method along with 
Newton’s linearization approximation. The numerical results detailing the velocity profiles, temperature 
profiles, skin friction coefficient and the local heat transfer coefficient are shown both in graph and 
tabular forms for the different values of the parameters associated with the problem. 
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1 Introduction 

 
The fundamental problem of free convection flow over a sphere has received considerable attention from 
researches. The influence of the heat conduction on the free convection flow of the fluid is of paramount 
importance in various engineering fields.  Several numerical and experimental methods have been developed 
to investigate flow characteristics over the sphere with and without obstacle because these geometries have a 
wide variety of practical engineering and industrial application, such as in the design of solar collectors, 
thermal design of building, air conditioning, cooling of electronic, devices, lubrication technologies, 
chemical processing equipment, drying technologies and so on. With the free convection flow, the 
phenomenon of the boundary layer flow of an electrically conducting fluid over a sphere in the presence of a 
Joule-heating term and magnetic field is also very common because of its applications in nuclear engineering 
in connection with cooling of reactors. Alam et al. [1] investigated the viscous dissipation effects on MHD 
natural convection flow over a sphere in the presence of heat generation. The effect of viscous dissipation on 
natural convection flow over a sphere with heat generation is considered by Akter, S., et al. [2]. Miraj, M., et 
al. [3] discussed the conjugate effects of radiation and viscous dissipation on natural convection flow over a 
sphere with pressure work. Molla, M. M., et al. [4] have been investigated the effects of temperature 
dependent thermal conductivity on MHD natural convection flow over an isothermal sphere. The effects of 
temperature dependent thermal conductivity on MHD free convection flow along a vertical flat plate with 
heat generation and Joule heating have been examined by Islam, S., et al. [5]. Nasrin, R., et al. [6] performed 
the combined effects of viscous dissipation and temperature dependent thermal conductivity on magneto 
hydrodynamic (MHD) free convection flow with conduction and joule heating along a vertical flat plate. 
Gitima [7] presented the analysis of the effect of variable viscosity and thermal conductivity in micro polar 
fluid for a porous channel in the presence of magnetic field. Nasrin, R., et al. [8] formulated MHD free 
convection flow along a vertical flat plate with thermal conductivity and viscosity depending on temperature. 
Nabil Eldabe T.M., et al. [9] analyzed the effects of temperature dependent viscosity and viscous dissipation 
on MHD convection flow from an isothermal horizontal circular cylinder in the presence of stress work and 
heat generation. Safiqul Islam K. M., et al. [10] have been discussed the effects of temperature dependent 
thermal conductivity on natural convection flow along a vertical flat plate with heat generation. Molla, M. 
M., et al. [11] analyzed the effect of temperature dependent viscosity on MHD natural convection flow from 
an isothermal sphere. Alim, M. A., et al. [12] analyzed the heat generation effects on MHD natural 
convection flow along a vertical wavy surface with variable thermal conductivity. Md. Raihanul Haque et al. 
[13] established the effects of viscous dissipation on natural convection flow over a sphere with temperature 
dependent thermal conductivity. Charruaudeau, J., [14] analyzed the influence de gradients de properties 
physiques en convection force application au cas du tube. Mishra, S. R., et al. [15] have found the numerical 
solution of a boundary layer MHD flow with viscous dissipation. Acharya, A. K., et al. [16] analyzed free 
convective fluctuating MHD flow through a porous media past a vertical porous plate with a variable 
temperature and heat source. 

 

In the present work, we have investigated the viscous dissipation and dependent viscosity effect on the skin 
friction and the local heat transfer coefficient in the entire region from upstream to downstream of a              
viscous incompressible and electrically conducting fluid over a sphere in the presence of Joule-heating              
term. The transformed non similar boundary layer equations governing the flow together with the boundary 
conditions based on conduction and convection are solved numerically using the implicit finite difference 
method with Keller box [17] scheme developed by Cebeci and Bradshaw [18] along with                  
Newton's linearization approximation method. We have studied the effect of the Prandtl’s number Pr, the 
viscous dissipation parameter N, the Joule-heating parameter J and dependent viscosity parameter  on the 
velocity and temperature fields as well as on the skin friction and local heat transfer coefficient. All the 
investigations for the fluid with a low Prandtl’s number being appropriate for the liquid metals are carried 
out. 
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2 Formulation of the Problem  
 
We consider a steady two-dimensional natural convection boundary layer flow of an electrically conducting 

and viscous incompressible fluid over a sphere of radius a
, 0H  is the magnetic field strength and   is the 

electrical conductivity. The surface temperature of the sphere is assumed as wT and T  being the ambient 

temperature of the fluid. When TTw  an upward flow is established along the surface due to free 

convection and the flow is downward for  TTw . The mathematical model for the assumed physical 

problem is prescribed by the following conservation equation of mass, momentum and energy. 
 

 
 
Under these considerations the governing equations are 
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Fig. 1. Physical model and coordinate system 
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Where r  is the radial distance from the symmetrical axis to the surface of the sphere. Here, we will 
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3 Transform of the Governing Equations 

 
The above equations are non-dimensional down usual manner by the following substitutions: 
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Using the above transformations into equations (1) to (3), we have 
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The boundary conditions associated with (8) to (9) becomes 

 

 (10) 
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The momentum and energy equations (8) to (9) reduce to 

 

 
 

 

(11) 

 

 

(12) 

 

The corresponding boundary conditions are  

 
 

(13) 

 















0,0,0

0,01,0

,01,0







asu

atvu

anyforatvu

 

23 2 2

23 2 2

2 2

2

1
1 cos

1 sin 1

sin

f f f f
f

f f f f

      


      

     


    

   
      

    

 
   

 

22 2
2

2 2

2

1
1 cos

Pr sin

f
f N

f f f
J

  
 

   

 


    

    
     

     

       
    

       

   

   

 

0 , 1 0

0 , 1 0 , 0

, ,

, ,

, 0 , 0 , 0

f f a t

f f a t

f a s

 

  

   

   

    

   

    








     



 
 
 

Alam et al.; JAMCS, 26(4): 1-16, 2018; Article no.JAMCS.39155 
 
 
 

6 
 
 

In practical application, the physical quantities of principal interest are the heat transfer and the skin- friction 
coefficient, which can be written in non- dimensional form as 
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the new variables (6), we have the simplified form of the heat transfer and the skin- friction coefficient as 

 

 and 

2

2

0

f
Cf








 
  

 
 (15) 

 

4 Method of Solution 

 
This paper deals with the natural convection flow on variation viscosity and viscous dissipation of viscous 
incompressible fluid over a heated sphere with Joule heating and magneto hydrodynamics being investigated 
using the very efficient implicit finite difference method known as the Keller box scheme developed by 
Keller [17], which has been well documented by Cebeci and Bradshaw [18].  
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 and the boundary conditions (14) are 
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Fig. 2. Net rectangle of difference approximations for the Box scheme 
 

Now, we consider the net rectangle on the   ,  plane as shown in the Fig. 2 and denote the net points by  

 
0 1

0 10, , 1,2,3, , 0, , 1,2,3, ,n n
n j j jk n N and h j J     

           (22) 

 

Here, n  and j  are just the sequence of numbers on the   ,  plane, nk  and jh  are the variable mesh 

widths. Approximate the quantities f, u, v and p , at the points  jn  ,  of the net by 

n
j

n
j

n
j

n
j pvuf ,,,  which is called net function. It is also employed so that the notation 

n
jP  for the 

quantities midways between net points as shown in Fig. 2 and for any net functions as 
 

 12

1

2

1 


 nn
n

  

 
(23) 

 
 






 


2

1
2

1 2
1

jjj


 

 
(24) 

 

 12
1

2

1 
 n

j
n
j

n

j ggg
 

 
(25) 

  

 n
j

n
j

n

j
ggg 1

2
1

2

1



 

 
(26) 

       

     

, 0 0, , 0 ,0 0, , 0 1, 0

0, 0, 0, 0, 1

0, 0 , 0

f u v g

u v g

u v as

    

  

 

   

  

  



 
 
 

Alam et al.; JAMCS, 26(4): 1-16, 2018; Article no.JAMCS.39155 
 
 
 

8 
 
 

The finite difference approximation according to box method to the three first order ordinary differential 

equations (18)-(20) is written for the mid - point 







2

1,
j

n   of the segment 21 AA  as shown in Fig. 2. 

 

2

1

2
1

1
n
j

n
jn

j
j

n
j

n
j uu

u
h

ff 


 




 

 
(27) 

2

1

2
1

1
n
j

n
jn

j
j

n
j

n
j vv

v
h

uu 



 




 

 
(28) 

2

1

2
1

1
n
j

n
jn

j
j

n
j

n
j pp

p
h

gg 



 




 

 
(29) 

 
The finite difference approximation to the first order differential equation (20) and (21) is written for the mid 

- point 










2
1

2
1

,
j

n
  of the rectangle 4321 AAAA . This procedure yields 

 

       
1 1

11 1 11 1 2 22 2 2
1 1 11 1 2 3 41

2 2 22

1 1
1 1 1 11 1 1

2 2 2 22 2 2
1 1 1

2 2 2

1 1

2 2

n n n n
nn n nj j j j

j j jj
j j

n n n n

j j j jn n n

j j j
n n

v v v v
P P P f v u P gv P g

h h

u u f f
u v

k k


 
   

  

 

     

  

    
          

   

  
  
 
 

 

 
 
 

(30) 

 

   

1 1
11 1 2
11

2

1 1
1 1 1 1 1 11 1 1

2 22 2 2 2 2 22 2 2
5 6 1 1 11 1

2 2 22 2

1 1

2 Pr 2 Pr

n n n n
nj j j j

j
j j

n n n n

n n j j j jn n n

j j jj j
n n

p p p p
P f p

h h

g g f f
P v P u u p

k k


 
 



 

       

   

    
       

   

  
    
 
 

 
 
 
 

(31) 

 
The above equations are to be linearized using Newton’s Quasi-linearization method. Then linear algebraic 
equations can be written in block matrix which forms a coefficient matrix. The whole procedure, that 
includes, reduction to first order followed by central difference approximations, Newton’s Quasi-
linearization method and the block Thomas algorithm, is well known as the Keller-box method. 
 

5 Results and Discussion 
 
Here, we have investigated the effect of viscous dissipation and dependent viscosity on free convection flow 
over a sphere in the presence of Joule-heating and heat conduction.  
 
Solutions are obtained for the fluids having Prandtl’s number Pr = 0.72, 3.00, 5.00, 7.00, and a wide range of 
the values of the viscous dissipation parameter N = 0.10, 0.40, 0.70, 0.90 and the Joule-heating parameter J = 

1.60, 1.10, 0.70, 0.30. If we know the values of the functions  ,f   ,  ,    and their derivatives for 

the different values of the Prandtl’s number Pr and the Joule-heating parameter J, we may calculate the 

numerical values of the local heat transfer coefficient )0,(x   and the velocity gradient   ,f    on the 

surface that are important from the physical point of view. 
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Fig. 3(a) and Fig. 3(b) deal with the effect of the viscous dissipation parameter N (= 0.10, 0.40, 0.60, 0.80) 
for different values of the controlling parameters Pr = 0.72, J = 0.80 and  = 2.00 on the velocity profiles 

 ,f    and the temperature profiles  ,   . From Fig. 3(a), it is revealed that the velocity profile

 ,f    increases very slightly with the increase in the viscous dissipation parameter N which indicates 

that viscous dissipation increases the fluid motion slowly. From Fig.  3(b), it is shown that there is a small 

increase in temperature profiles  ,    for the increasing values of N with other controlling parameter.  

 
From Fig. 4(a), it is observed that an increase in the Joule heating parameter is associated with a 
considerable increase in velocity profiles, But near the surface of the plate the velocity increases and 
becomes maximum and then decreases and finally approaches to zero. Fig. 4(b) shows the distribution of the 

temperature profiles  ,    against  for the same values of the Joule heating parameter J and each of 

which attains maximum at the surface.  
 
Fig. 5(a) and 5(b) deal with the effect of the dependent viscosity parameter  (= 0.30, 0.70, 1.10, 1.60) with 

other controlling parameters Pr = 0.72, N = 0.50 and J = 0.40 on the velocity profile  ,f    and the 

temperature profile  ,   . From Fig. 5(a), it is revealed that the velocity profile  ,f    increases very 

slightly with the increase in the dependent viscosity parameter   which indicates that dependent viscosity 
parameter increases the fluid motion slowly. From Fig. 5(b), it is shown that the temperature profiles 

 ,    increase for the increasing values of dependent viscosity parameter .  

 
Fig. 6(a) depicts the velocity profile for the different values of the Prandtl’s number, Pr (= 0.72, 3.00, 5.00, 
7.00) while the others controlling parameters N = 0.50, J = 0.60 and   = 1.00.  The corresponding 

distribution of the temperature profile  ,   in the fluids is shown in Fig. 6(b). From Fig. 6(a), it is seen 

that if the Prandtl’s number increases, the velocity of the fluid decreases. On the other hand, from Fig. 6(b) it 
is observed that the temperature profile decreases within the boundary layer due to the increase in the 
Prandtl’s number Pr.  
 

Numerical values of the velocity gradient  ,0f   and the local heat transfer coefficient  ,0  are 

depicted graphically in Fig. 7(a) and 7(b) respectively against the axial distance   for different values of the 

viscous dissipation parameter N (= 0.10, 0.40, 0.60, 0.80) for the fluid having Prandtl number Pr = 0.72, J = 

0.80 and  = 2.00. It is seen from Fig. 7(a) that the skin-friction  ,0f   increases when the viscous 

dissipation parameter N increases. It is also observed in Fig. 7(b) that the local heat transfer coefficient 

 ,0   deceases as viscous dissipation parameter N increases. 

 

 The effect of Joule heating parameter J (= 0.10, 0.30, 0.60, 0.90) on the skin-friction  ,0f   and the 

surface temperature distribution  ,0   against   for Pr = 0.72, N = 0.60 and  = 1.00 is shown in Fig. 

8(a) - 8(b). It is found that both values of the skin-friction  ,0f   and the local heat transfer coefficient

 ,0   increase for the increasing values of Joule heating parameter J. Here it has been observed that the 

values of the skin-friction  ,0f  increases by 76.734% and the local heat transfer coefficient  ,0   

increases by 83.264% while J increased from 0.10 to 0.90. 
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From Fig. 9(a), it is observed that increase in the value of the dependent viscosity parameter   leads to an 

increase in the value of the shear stress coefficient  ,0f  which is usually expected. Again from Fig. 

9(b) it is illustrated that the increase in the dependent viscosity parameter J leads to an increase in the local 

heat transfer coefficient  ,0  . 

 
From Fig. 10(a), it is be observed that an increase in the value of the Prandtl’s number Pr (= 0.72, 3.00, 5.00, 

7.00) leads to a decrease in the value of shear stress  ,0f  .  Similar results hold good in local heat 

transfer coefficient  , 0  as shown in Fig. 10(b) for the same values of Prandtl’s number Pr when J = 

0.60, N = 0.50 and   = 1.00. 
 

  
 

Fig. 3(a) and 3(b). Variation of dimensionless velocity profiles  ,f    and temperature profiles 

 ,   against dimensionless distance   for different values of viscous dissipation parameter N with 

Pr = 0.72,   = 2.00 and J = 0.80 
 

  
 

Fig. 4(a) and 4(b). Variation of dimensionless velocity profiles  ,f    and temperature profiles 

 ,   against dimensionless distance   for different values of Joule heating parameter J with  

Pr = 0.72,   = 1.00 and N= 0.60 
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Fig. 5(a) and 5(b). Variation of dimensionless velocity profiles  ,f    and temperature profiles 

 ,   against dimensionless distance   for different values of dependent viscosity parameter   

with Pr = 0.72, N = 0.60 and J = 0.40 
 

  

Fig. 6(a) and 6(b). Variation of dimensionless velocity profiles  ,f    and temperature profiles 

 ,   against dimensionless distance   for different values of Prandtl’s number Pr with N = 0.50, 

  = 1.00 and J = 0.60 
 

  

Fig. 7(a) and 7(b). Variation of dimensionless skin friction coefficient  ,0f   and local Nusselt 

number,  , 0  against dimensionless distance   for different values of viscous dissipation 

parameter N with Pr = 0.72, J = 0.80 and   = 2.00 
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Fig. 8(a) and 8(b). Variation of dimensionless skin friction coefficient  ,0f   and local heat 

transfer coefficient  ,0  against dimensionless distance   for different values of Joule heating 

parameter J with Pr = 0.72,   = 1.00 and N = 0.60 
 

 
 

Fig. 9(a) and 9(b). Variation of dimensionless skin friction coefficient  ,0f   and local heat 

transfer coefficient  ,0  against dimensionless distance   for different values of dependent 

viscosity parameter   with Pr = 0.72, J = 0.40 and N = 0.50 
 

  

Fig. 10(a) and 10(b). Variation of dimensionless skin friction coefficient  ,0f   and local heat 

transfer coefficient  ,0  against dimensionless distance   for different values of Prandtl’s 

number Pr with N = 0.50, J = 0.60 and   = 1.00 
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In Table 1 given the tabular values of the local skin friction coefficient  ,0f  and local Nusselt number 

 ,0   for different values of viscous dissipation parameter N while Pr =0.72 , Joule heating parameter J 

= 0.90 and  = 2.00. Here it is found that the values of local skin friction coefficient  ,0f   increase at 

different position of  
  for viscous dissipation parameter N = 0.10, 0.40, 0.60, 0.80. The rate of local skin 

friction coefficient  ,0f   increases by 24.76% as the viscous dissipation parameter N changes from 

0.10 to 0.80 and  =0.87266. Furthermore, it is seen that the numerical values of the local rate of heat 

transfer  ,0   decrease for the increasing values of viscous dissipation parameter N .The rate of increase 

the local rate of heat transfer is 49.86% at position  =0.34907 as the viscous dissipation parameter N 

changes from 0.10 to 0.80.Numerical values of local heat transfer  ,0   are calculated from equation 

(15) for the surface of the sphere from lower stagnation point to upper stagnation point. 
 

Table 1. Skin friction coefficient and rate of heat transfer against   for different values of viscous 

dissipation parameter N with other controlling parameters Pr = 0.72,   = 2.00, J = 0.90 
 

N = 0.10                                 N = 0.40                           N = 0.60                          N = 0.80 

   ,0f    , 0    ,0f    , 0    ,0f    ,0    ,0f    ,0   

0.00000 

0.17453 

0.34907 

0.52360 

0.69813 

0.87266 

1.04720 
1.22173 

1.39626 

1.57080                                                               

0.00000  

0.16133 

0.31963 

0.47246 

0.61656 

0.74952 

0.86886 
0.97169 

1.05588 

1.11937                                                             

0.84411 

0.62493 

0.61047 

0.59545 

0.57720 

0.55438 

0.52677 
0.49398 

0.45560 

0.41125 

0.00000 

0.17012 

0.33720 

0.49809 

0.64982 

0.78949 

0.91431 
1.02172 

1.10912 

1.17409                                                                      

1.12538 

0.85257 

0.83443 

0.81527 

0.79130 

0.76152 

0.72533 
0.68229 

0.63190 

0.57368 

0.00000 

0.17318       

0.34325 

0.50700 

0.66133 

0.80323 

0.93016 
1.03911 

1.12758 

1.19312            

1.24695 

0.95101 

0.93137 

0.91047 

0.88403 

0.85126 

0.81124 
0.76374 

0.70816 

0.64392 

0.00000 

0.17573 

0.34829 

0.51439 

0.67091 

0.81486 

0.94334 
1.05359 

1.14300 

1.20900 

1.35958 

1.04203 

1.02100 

0.99829 

0.96969 

0.93401 

0.89061 
0.83897 

0.77854 

0.70870 
 

Table 2. Comparisons of the present numerical results of Nu  for the Prandtl numbers Pr = 0.7, 7.0 

without effect of the viscous dissipation parameter, joule heating parameter and dependent viscosity 
parameter with those obtained by Molla et al. [19] and Nazar et al. [20] 

 

  in 

degree 

Pr = 0.70 Pr = 7.00 
Naza et al. 
[20]  

Molla et al. 
[19]  

Present Naza et al. 
[20] 

Molla et al. 
[19] 

Present 

0 0.4576 0.4576 0.4492 0.9595 0.9582 0.9527 
10 0.4565 0.4564 0.4485 0.9572 0.9558 0.9487 
20 0.4533 0.4532 0.4467 0.9506 0.9492 0.9410 
30 0.4480 0.4479 0.4401 0.9397 0.9383 0.9279 
40 0.4405 0.4404 0.4340 0.9239 0.9231 0.9140 
50 0.4308 0.4307 0.4259 0.9045 0.9034 0.8945 
60 0 .4189 0.4188 0.4106 0.8801 0.8791 0.8611 
70 0.4046 0.4045 0.3982 0.8510 0.8501 0.8395 
80 0.3879 0.3877 0.3769 0.8168 0.8161 0.8133 
90 0.3684 0.3683 0.3607 0.7774 0.7768 0.7707 
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The comparisons of the local heat transfer coefficient between the present work and the work of Nazar et al. 
[20] and Molla et al. [19] are presented in Table 2 respectively. We observe that the comparison without the 
effect of viscous dissipation parameter, dependent viscosity parameter and Joule heating parameter in the 
present problem is similar to the previous work. 
 

6 Conclusions 
 
From the present investigation, the following conclusions may be drawn: 
 
 Increase in the values of viscous dissipation parameter N leads to an increase in the velocity profile, 

the temperature profile, the local skin friction coefficient  ,0f   but the local rate of heat transfer 

 ,0   decreases with the increase in viscous dissipation parameter N for J =0.80,   = 2.00 and 

Pr = 0.72. 

 The velocity profiles, the temperature profiles, the local skin friction coefficient  ,0f   and also 

the local heat transfer coefficient  ,0  increase significantly when the values of dependent 

viscosity parameter   increase. 

 Significant effects of Joule heating parameter J on velocity and temperature profiles as well as on 
local skin friction coefficient and the rate of heat transfer have been found in this investigation. An 
increase in the values of Joule heating parameter J leads to an increase in both the velocity and 

temperature profiles. The local skin friction coefficient  ,0f   increases at different positions of  

and also the local rate of heat transfer  ,0   increases at different positions of   for Pr =0.72,   

= 1.00 and N = 0.60. 
 Increasing values of Prandtl’s number Pr decrease the velocity profiles. The temperature profiles, the 

local skin friction coefficient  ,0f   and also the local rate of heat transfer  ,0   increase 

with the increase in Prandtl’s number Pr when J = 0.60,   = 1.00 and N = 0.50. 
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