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Abstract

As we learned during the COVID-19 pandemic, vaccines are one of the most important tools

in infectious disease control. To date, an unprecedentedly large volume of high-quality data

on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics

beyond COVID-19, these valuable datasets should be analyzed to best shape an effective

vaccination strategy. We are collecting longitudinal data from a community-based cohort in

Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or

three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the

individually reconstructed time courses of the vaccine-elicited antibody response based on

mathematical modeling, we first identified basic demographic and health information that

contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and

the area under the curve. We showed that these three features of antibody dynamics were
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partially explained by underlying medical conditions, adverse reactions to vaccinations, and

medications, consistent with the findings of previous studies. We then applied to these fac-

tors a recently proposed computational method to optimally fit an “antibody score”, which

resulted in an integer-based score that can be used as a basis for identifying individuals with

higher or lower antibody titers from basic demographic and health information. The score

can be easily calculated by individuals themselves or by medical practitioners. Although the

sensitivity of this score is currently not very high, in the future, as more data become avail-

able, it has the potential to identify vulnerable populations and encourage them to get

booster vaccinations. Our mathematical model can be extended to any kind of vaccination

and therefore can form a basis for policy decisions regarding the distribution of booster vac-

cines to strengthen immunity in future pandemics.

Author summary

This study investigates the dynamics of antibody responses following COVID-19 vaccina-

tion, with the aim of elucidating individual-level variability in immune responses. Using a

mathematical model and longitudinal antibody measurements from a vaccination cohort

in Fukushima, Japan, we reconstructed the time course of antibody dynamics after vacci-

nation. The study showed that not everyone’s immune system responds equally to the vac-

cine. Some people may have lower antibody levels after vaccination, which could make

them more susceptible to disease. We identified key factors that influence antibody

responses, such as age, adverse reactions, comorbidities and medication use, and devel-

oped a personalized antibody score to predict individual antibody levels. These factors

play a critical role in shaping the immune landscape following vaccination, highlighting

the need for tailored approaches to assessing vaccine efficacy and recommending booster

doses for vulnerable populations. The development of a personalized antibody score pro-

vides a practical tool for healthcare professionals to stratify individuals based on their pre-

dicted antibody levels, facilitating targeted interventions to enhance immune protection.

The study underscores the importance of considering personal characteristics when

assessing vaccine efficacy and suggests potential applications in guiding booster vaccina-

tion strategies.

Introduction

The global distribution of vaccines for coronavirus disease 2019 (COVID-19) and the high vac-

cine potency and coverage will bring the pandemic caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) under control. As we learned from the COVID-19

pandemic, vaccination is an important part of a multi-faceted public health response to future

pandemic illnesses. An unprecedentedly large volume of high-quality data have been accumu-

lated during the COVID-19 pandemic, and we should use these data to prepare for future pan-

demics. In particular, given the limited global supply of vaccines during the early phase of a

pandemic, determining vaccination priority is important to effectively distribute doses and

achieve early disease control. In addition, waning of vaccine efficacy becomes a major concern

during vaccination campaigns, as we observed for COVID-19 vaccinations [1,2]. Because a

rapid decline in vaccine-elicited antibodies may result in breakthrough infections [3,4],
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provide a synthetic patient dataset created using

CTGAN (https://github.com/sdv-dev/CTGAN) based

on the original dataset (S1 Data). This synthetic

patient dataset, while not containing personally

identifiable information, retains the same statistical

properties as the original and can be analyzed in

the same manner as the original.
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additional, appropriately timed booster vaccinations will be required to maintain a high-level

antibody response at both individual and population levels. Thus, to shape an effective vacci-

nation strategy, it is important to quantify the individual-level time course of antibody dynam-

ics and to identify “vulnerable” populations with sustained low antibody titers. Thus, by using

a large volume of high-quality data on COVID-19 vaccination, our purpose in this study was

to establish an approach to quantifying vaccine-elicited time-course antibody dynamics and

predicting individual-level antibody responses with a simple and noninvasive method.

To date, the findings of studies evaluating vulnerable populations for COVID-19 have been

biased by the selection of study population. Rather than studying a general population, studies

to date have focused on specific subpopulations stratified by variables like age, sex, lifestyle

habits, comorbidities, adverse reactions, or medication use [2,3,5–8]. However, variation in

vaccine-elicited antibody responses among healthy individuals per se has also been suggested

to correlate with breakthrough infection risk [2,9–11]. In fact, although the heterogeneity in

antibody responses over time is important for identifying the characteristics of vulnerable pop-

ulations (in addition to standard risk factors such as age and comorbidities) [2,3,5–8], individ-

ual-level variation remains poorly understood. This is also true for viruses beyond SARS-CoV-

2, because the dynamics of antibody responses in humans has not been described in detail for

any vaccination.

Here we used a mathematical model to describe the process of differentiation from naïve B

cells to plasma cells to accurately reconstruct individual vaccine-elicited antibody dynamics.

To fit the model, we used longitudinal antibody measurements from non-sequential and

sequential blood sampling in the Fukushima vaccination cohort (a community-based cohort

in Fukushima, Japan). Of note, because our vaccination cohort consisted of participants from

a primarily rural area where the prevalence of COVID-19 was relatively low, the samples from

this cohort are ideal for modeling vaccine-elicited antibody dynamics. Thanks to the recon-

structed time-course of antibody dynamics, we were able to compare the antibody response at

the same time points at an individual level. This overcomes another limitation of current vacci-

nation studies, which can only directly compare antibody titers at a population level rather

than at an individual level at specific time points (i.e., date on blood sampling) [2,3,5]. The

model parameters describe highly variable individual-level antibody responses, allowing us to

partially predict variation in vaccine response on the basis of personal information including

age, adverse reactions, comorbidities, and medication use. Furthermore, we devised a person-

alized antibody score that aims to identify individuals with higher or lower antibody titers

from their personal information. Although this score may not be able to detect all individuals,

it has the potential to be used by medical practitioners to encourage individuals with low pre-

dicted antibody levels to get booster vaccinations. We stress that our approach will be easily

applied to reconstruct antibody responses even after the third, fourth and fifth booster doses.

Results

The Fukushima vaccination cohort

Our vaccination cohort, the Fukushima vaccination cohort, was conducted beginning in April

2021 and consisted of participants from a primarily rural area where COVID-19 prevalence

was relatively low: Soma City, Minami Soma City, and Hirata village in Fukushima in Japan

(Fig 1A). The data used in this study were obtained from April 2021 through December 2021.

The participants included health care workers, frontline workers, administrative officers, gen-

eral residents, and residents of long-term care facilities. In total, 2,526 participants who had

been vaccinated with the Pfizer BNT162b2 or Moderna mRNA-1273 vaccine were recruited,

and 2,407 participants were included in the final data analysis (see Fig 1B and Methods for
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Fig 1. Characteristics of the Fukushima vaccination cohort: (A) Locations of Soma city, Minami Soma city, and Hirata village

in Fukushima prefecture are described. (B) Flowchart of the vaccination cohort along with the number of participants, testing,

and inclusion criteria for our analysis are described. (C) Age and sex distributions in the cohort are shown. (D) Timeline of

sample collection for each cohort participant (N = 2,526 participants, 5195 total samples) is described. The timings of blood

samplings are indicated in black circles. Shaded areas indicate early (<89 days), middle (90–179 days), and late (>180 days) time

periods after the first vaccination. Dates for the second vaccination are shown as the distributions in the bottom panel. (E)

Vaccination and blood sampling periods in the cohort along with the number of COVID-19 cases (i.e., cases) in Soma city,

Minami Soma city, and Hirata village [67,68] are shown. (F) Longitudinal IgG(S) and neutralizing activity measured by CLIA are

separately plotted by time after the first vaccination and age.

https://doi.org/10.1371/journal.pdig.0000497.g001
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more details). The age and sex distributions of the participants are shown in Fig 1C, and the

sample characteristics and information on adverse vaccine events stratified by age (with p-val-

ues) are provided in Table 1. A portion of this cohort was described previously for the time

period extending to 6 months after the first dose of mRNA vaccine [12–19].

Here we investigated antibody titers in the Fukushima vaccination cohort in individuals

sampled longitudinally (serum was collected at 2 or 3 different timepoints) for around 4 to 9

months after the second primary dose of mRNA vaccine (see Fig 1DE for details). Notably, the

number of SARS-CoV-2 infections in this rural area was extremely low (Fig 1E), so that we

could minimize the influence of natural breakthrough infections. Compared with some of the

largest cohorts in the world [1,5,20–23], the Fukushima vaccination cohort is community-

based, includes non-health workers, has very few dropouts among more than 2,000 individuals

who were consecutively sampled (only 3.3%), includes all necessary information for all partici-

pants, and includes measures of several modalities of antibody titers including neutralizing

activity.

We performed chemiluminescent immunoassay (CLIA) to measure antibody titers as a

measure of humoral immune status after the first COVID-19 vaccination (i.e., a total of 5195

IgG(S), 5195 neutralization activity, and 4969 IgG(N) assays were performed) (Methods). Fig

1F shows the overall profile of IgG(S) and neutralization activity against the Wuhan strain in

this study. We investigated longitudinal data for IgG(S) in the same individuals because IgG

(S) covers a wider range of antibody responses and is more sensitive than neutralization activ-

ity. In fact, these two measurements are highly correlated with each other (correlation coeffi-

cient of 0.93) (S1 Fig), and previous studies showed that neutralizing antibody and IgG(S)

titers correlate with vaccine-mediated protection, even against variants of concern (i.e., vaccine

efficacy) [9,24,25]. This is because vaccines containing the original Wuhan virus spike protein

induce variant-reactive memory B cells targeting multiple variants of concern, including the

Omicron variant [26]. To prepare for a rapid response to an early phase of a future pandemic,

we hereafter investigated longitudinal data for IgG(S) titers against the ancestral strain in the

same individuals, which we used as a biomarker for vaccine-elicited immune response at the

beginning of a COVID-19 vaccination program, and we used these data to develop an

approach for establishing an "antibody score".

Deriving measures of peak, duration, and area under the curve of vaccine-

elicited antibody dynamics

We developed a mathematical model describing the vaccine-elicited antibody dynamics to

evaluate the impact of primary two-dose COVID-19 vaccination on rapid immunity at the

individual level. We fully reconstructed the dynamics of IgG(S) titers after the first vaccination

for 2,407 individuals in the Fukushima vaccination cohort in S2 Fig (see Methods in detail).

Of note, we validated our mathematical model and the reconstructed antibody titer curves

using independent datasets (see Methods for details). Then we extracted the “features”

described in Fig 2A for each individual: the peak, duration, and area under the curve (AUC) of

the reconstructed antibody dynamics. To quantify these features, we here assumed ATH = 100,

and determined ts and te corresponding to the time for the antibody titer to be greater than

and smaller than ATH, respectively. ts and te are calculated as the minimum and maximum val-

ues of the time, respectively, during which the reconstructed IgG(S) remains above ATH.

Therefore, the duration and AUC of the antibody titer are formulated by te − ts and
R te
ts
AðsÞ ds,

respectively. In addition, defining tp to be the time for the antibody titer to reach its peak, the

peak titer is A(tp). For 89 individuals whose peak titer was below ATH, the duration and AUC

were both determined to be 0. In Fig 2B, we summarized distributions of the AUC, duration,
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Table 1. Basic demographics for the Fukushima vaccination cohort.

Characteristic <40 years 40–64 years �65 years Overall p-value

Gender 0.001

Male 338(46.8) 421(38.2) 286(40.8) 1045(41.4)

Vaccine type* 0.015

BNT162b2 (Pfizer–BioNTech) 651(90.0) 971(88.1) 649(92.6) 2271(89.9)

mRNA-1273 (Moderna) 0(0.0) 3(0.3) 0(0.0) 3(0.1)

Days from 2nd vaccination (mean [SD])

1st measurement 106.3[37.7] 104.4[35.1] 103.8[17.2] 104.8[32.0] 0.302

2nd measurement 181.4[37.5] 180.1[35.7] 180.1[16.9] 180.5[32.2] 0.292

Interval (days) (mean [SD]) 22.6[3.4] 22.8[3.7] 22.2[2.9] 22.6[3.4] 0.002

Blood type*
A 239(35.7) 427(39.0) 212(35.4) 878(37.2) <0.001

B 151(22.6) 236(21.6) 140(23.4) 527(22.3) <0.001

O 213(31.8) 326(29.8) 172(28.7) 711(30.1) 0.367

AB 66(9.9) 105(9.6) 75(12.5) 246(10.4) 0.432

BMI (kg/m2) (mean [SD]) 23.4[4.6] 23.8[3.8] 23.3[3.5] 23.6[4.0] 0.058

BCG history* 560(83.5) 907(83.1) 412(61.9) 1879(77.4) 0.395

Smoking 144(19.9) 253(23.0) 63(9.0) 460(18.2) <0.001

Drinking Habit** <0.001

Almost not 403(55.7) 542(49.2) 458(65.3) 1403(55.5)

Occasionally 247(34.2) 310(28.1) 90(12.8) 647(25.6)

Everyday 63(8.7) 222(20.2) 127(18.1) 412(16.3)

Daily Alcohol Consumption** <0.001

<20g 322(44.5) 382(34.7) 176(25.1) 880(34.8)

�20 & <40g 108(14.9) 214(19.4) 87(12.4) 409(16.2)

�40 & <60g 20(2.8) 60(5.4) 20(2.9) 100(4.0)

�60g 5(0.7) 13(1.2) 2(0.3) 20(0.8)

Comorbidities

Hypertension 8(1.1) 237(21.5) 432(61.6) 677(26.8) <0.001

Dyslipidemia 12(1.7) 123(11.2) 146(20.8) 281(11.1) <0.001

Heart disease 14(1.9) 47(4.3) 140(20.0) 201(8.0) <0.001

Diabetes 6(0.8) 72(6.5) 110(15.7) 188(7.4) <0.001

Allergic disease 69(9.5) 95(8.6) 21(3.0) 185(7.3) <0.001

Asthma 49(6.8) 45(4.1) 28(4.0) 122(4.8) 0.079

Liver disease 11(1.5) 45(4.1) 58(8.3) 114(4.5) <0.001

Cancer 3(0.4) 35(3.2) 46(6.6) 84(3.3) <0.001

Gout 5(0.7) 45(4.1) 26(3.7) 76(3.0) 0.001

Thyroid disease 8(1.1) 40(3.6) 11(1.6) 59(2.3) 0.005

Lung disease 12(1.7) 11(1.0) 28(4.0) 51(2.0) <0.001

Mental disease 17(2.4) 16(1.5) 13(1.9) 46(1.8) 0.739

Rheumatism 2(0.3) 16(1.5) 19(2.7) 37(1.5) 0.006

Kidney disease 6(0.8) 7(0.6) 14(2.0) 27(1.1) 0.089

Anaphylaxis 6(0.8) 7(0.6) 5(0.7) 18(0.7) 0.994

Collagen disease 4(0.6) 6(0.5) 5(0.7) 15(0.6) 0.993

COVID-19 (family) 4(0.6) 5(0.5) 1(0.1) 10(0.4) 0.793

COVID-19 0(0.0) 3(0.3) 4(0.6) 7(0.3) 0.38

Immune deficiency 2(0.3) 4(0.4) 0(0.0) 6(0.2) 0.654

Others 51(7.1) 147(13.3) 189(27.0) 387(15.3) <0.001

(Continued)
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Table 1. (Continued)

Characteristic <40 years 40–64 years �65 years Overall p-value

Drug

Steroid 9(1.2) 23(2.1) 26(3.7) 58(2.3) 0.002

NSAIDs 31(4.3) 78(7.1) 82(11.7) 191(7.6) <0.001

Acetaminophen 8(1.1) 22(2.0) 30(4.3) 60(2.4) <0.001

Antihistamine 46(6.4) 65(5.9) 43(6.1) 154(6.1) 0.367

Immunosuppressants 6(0.8) 10(0.9) 8(1.1) 24(1.0) 0.432

Biologics 2(0.3) 5(0.5) 4(0.6) 11(0.4) 0.395

Anti-cancer agent 0(0.0) 5(0.5) 5(0.7) 10(0.4) 0.292

Adverse Reaction

Local pain 515(71.2) 684(62.1) 228(32.5) 1427(56.5) <0.001

Fatigue 511(70.7) 627(56.9) 119(17.0) 1257(49.8) <0.001

Joint pain 327(45.2) 354(32.1) 90(2.8) 771(30.5) <0.001

Fever (37.5 degrees or higher) 370(51.2) 308(28.0) 41(5.9) 719(28.5) <0.001

Headache 321(44.4) 331(30.0) 34(4.9) 686(27.2) <0.001

Fever (under 37.5 degrees) 137(19.0) 209(19.0) 40(5.7) 386(15.3) <0.001

Dizziness 57(7.9) 45(4.1) 9(1.3) 111(4.4) <0.001

Nausea 51(7.1) 41(3.7) 6(0.9) 98(3.9) <0.001

Diarrhea 30(4.2) 25(2.3) 3(0.4) 58(2.3) <0.001

Others 40(5.5) 69(6.3) 16(2.3) 125(5.0) 0.003

Values are No. (%) unless noted otherwise. P-values were calculated using Fisher’s exact test. BMI, body mass index; BCG, bacille Calmette-Guérin; NSAIDs,

nonsteroidal anti-inflammatory drugs.

*Vaccine type was not included in the multiple regression analysis (S2 Table) because only a few participants had received the mRNA-1273 (Moderna) vaccine; blood

type and BCG history were not included in the multiple regression analysis because they were not considered relevant (see also section ’Characterizing vaccine-elicited

antibody dynamics’).

**Drinking habit and daily alcohol consumption were included in the multiple regression analysis, but are not shown in Fig 3C because they have more than two values.

https://doi.org/10.1371/journal.pdig.0000497.t001

Fig 2. Quantifying vaccine-elicited antibody dynamics: (A) Vaccine-elicited antibody response after the first vaccination (i.e., t = 0) is described with the following

“features”: the peak (A(tp)), duration (te − ts), and AUC ð
R te
ts
AðsÞ dsÞ of the antibody titers. The vertical and horizontal dashed lines correspond to the date of the second

vaccination and the arbitrary threshold (ATH) for calculating the duration and AUC, respectively. (B) Distributions of the extracted features from the reconstructed

antibody dynamics (i.e., the peak, duration, and AUC) for 2,407 participants are plotted. The dataset for each distribution was normalized by the value corresponding to

the 95th percentile of data values, and data with values larger than this value were removed to improve the visibility of the figure.

https://doi.org/10.1371/journal.pdig.0000497.g002
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and peak for 2,407 participants. Note that a similar trend was obtained under different ATH.

These features allowed us to quantitatively compare vaccine-elicited antibody dynamics

among the participants (see next section).

Characterizing vaccine-elicited antibody dynamics

To see how individual background factors contributed to the three features, we divided the

peak-duration plane into four quadrants (groups 1–4) by taking the median values of peak and

duration of titer as cutoffs (Fig 3A). We collected basic demographic and health information

from the participants, including underlying medical conditions, adverse reactions to vaccina-

tions, and medications, as described in Table 1. We then investigated whether there were dif-

ferences in these basic variables among the four groups.

We first analyzed continuous variables such as age, BMI, and the interval between the two

vaccinations. We found that group 1 (high peak, long duration) had the youngest participants

on average, while group 4 (low peak, short duration) had the oldest participants on average

(Fig 3B top). Groups 1 and 3 (high peak) had longer intervals between the two vaccinations

than groups 2 and 4 (low peak) (Fig 3B middle). In contrast, there was no significant differ-

ence in BMI among the four groups (Fig 3B bottom). We next visualized how categorical vari-

ables differed among the four groups, stratified by gender (Fig 3C). In the figure, 1, 2, 3, 4 refer

to groups 1–4 in men, whereas 5, 6, 7, 8 refer to groups 1–4 in women. Group 4 showed higher

frequencies of underlying medical conditions (hypertension, diabetes, rheumatism, heart dis-

ease, collagen disease, liver disease) and use of medications (steroids, NSAIDs, immunosup-

pressants) as well as lower frequencies of adverse reactions to vaccinations (local pain, fever,

fatigue, headache, joint pain, nausea).

We further performed multiple regression analysis to see whether each of the three features

could be explained by the participants’ demographic and health information (S2 Table). The

obtained models for the logarithm of the peak and the duration and logarithm of AUC had R2

values of 0.215, 0.267 and 0.217, respectively. The variables that significantly influenced the

peak were age, the interval between vaccinations, dyslipidemia, fever over 37.5 degrees, and

gender; for duration, they were age, fever, smoking, steroids, immunosuppressants, and dysli-

pidemia; and for the AUC, they were age, immunosuppressants, steroids, the interval between

vaccinations, dyslipidemia, fever over 37.5 degrees, kidney disease, and rheumatism. Hence,

all three features were partially explained by the basic demographic and health information.

We note that blood groups (A, B, O, AB) and BCG vaccination history were not predictors of

these features [27,28]. In fact, there were no significant differences between BCG vaccinated

and unvaccinated individuals in peak (p = 0.892), duration (p = 0.521) and area under the

curve (p = 0.873). There were also no significant differences between blood groups in peak

(p = 0.850), duration (p = 0.211) and area under the curve (p = 0.200).

Deriving a personalized antibody score

Recently, a systematic approach to fit optimized scores with mixed-integer nonlinear program-

ming was proposed [29]. Combining the demographic and health information in Table 1, we

devised a simple score aimed at roughly estimating their antibody status. We chose the AUC

as a representative feature of individual antibody status because it reflects both the early and

the late phases of antibody dynamics. We here constructed two types of scores to cover the

whole range of AUC as follows: a score to predict whether an individual’s AUC is in the top

third of the population (i.e., top AUC score, Fig 4A) and a score to predict whether an individ-

ual’s AUC is in the bottom third (i.e., bottom AUC score, S3 Fig A).
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We first divided our dataset into training and test datasets. The training dataset consisted of

participants in Minami Soma City and Hirata Village (1935 individuals), and the test dataset

consisted of participants in Soma City (466 individuals). Six individuals who did not fully

Fig 3. Characterizing and scoring vaccine-elicited antibody dynamics: (A) The peak-duration plane was divided into four quadrants

(groups 1 to 4). The cutoff values for the peak (log10) and the duration were 2.94 and 208, respectively. The distribution of 2,407 participants

on the plane is shown as a density plot. (B) Distributions of age, BMI and the interval between the two vaccine doses in groups 1 to 4 are

plotted. (C) The frequency of each categorical variable in groups 1 to 4, stratified by gender, is shown as a heatmap. In the figure, 1, 2, 3, 4 refer

to groups 1–4 in men, whereas 5, 6, 7, 8 refer to groups 1–4 in women.

https://doi.org/10.1371/journal.pdig.0000497.g003
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answer the questionnaire were excluded from the datasets. We used the training dataset for fit-

ting the scores. The algorithm searches the space of linear combinations of factors with integer

coefficients from -5 to +5 to find the best combination to differentiate the population in the

top third of the training dataset from the rest (or the bottom third from the rest) (Fig 4A). We

then assessed the performance of these scores in the test dataset, that is, we tested whether the

scores just created could differentiate the population in the top third of the test dataset from

the rest (or the bottom third from the rest).

The top AUC scores in the test dataset were between -1 and 4, except for two individuals

with scores of -6 and -5, respectively (Fig 4B and S3 Table). The 8 individuals with scores of 4

(shown in yellow and orange) included 6 individuals (shown in yellow) whose AUC belonged

to the top third of the test dataset population (75.0%). The 72 individuals with a score of 3

included 43 individuals with AUC in the top third (59.7%). The 119 individuals with a score of

2 included 50 individuals with AUC in the top third (42.0%). The 106 individuals with a score

of 1 included 20 individuals with AUC in the top third (18.9%). The 126 individuals with a

score of 0 included 19 individuals with AUC in the top third (15.1%). The 35 individuals with

a score of -1 or less included 5 individuals with AUC in the top third (14.3%). Thus, the higher

Fig 4. Scoring vaccine-elicited antibody dynamics: (A) Metric for calculating the “top AUC score,” i.e., a score to identify individuals with AUC in the top third of the

population, is calculated. (B) Distribution of the top AUC scores in the test dataset is shown: 35, 126, 106, 119, 72, and 8 individuals had scores of -1 or less, 0, 1, 2, 3, and

4, respectively. Those in the top third of the test dataset are shown in yellow, and those not in the top third are shown in orange. The ratio of individuals with AUC in the

top third of the test dataset increased as the top AUC score increased. (C) The average AUC tended to increase as the top AUC score increased. (D) The top AUC score

was correlated with the IgG(S) titers 90 or 180 days from the second vaccination, calculated from the mathematical model.

https://doi.org/10.1371/journal.pdig.0000497.g004

PLOS DIGITAL HEALTH Modeling and predicting individual variation in vaccine-elicited antibody response

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000497 May 3, 2024 10 / 23

https://doi.org/10.1371/journal.pdig.0000497.g004
https://doi.org/10.1371/journal.pdig.0000497


an individual’s top AUC score, the more likely they were to belong to the top third of the popu-

lation and to have a higher AUC as well (Fig 4C). For example, if a healthy 30-year-old male

who drinks two bottles of beer every day had a fever of 37.7 degrees but no nausea after vacci-

nation, his score would be calculated as 1+1 = 2, indicating that his AUC is in the top third

with a probability of 42.0%. The top AUC score was also well correlated with IgG(S) titers 90

or 180 days from the second vaccination (Fig 4D). When the threshold is set to 1.5, the top

AUC score has an accuracy of 69.1%, a precision of 49.7%, and a recall of 69.2%, evaluated on

the test dataset (see Methods for calculation methods).

On the other hand, we calculated the bottom AUC scores in the test dataset, which were

between -4 and 2, except for one individual with a score of 3 (S3 Fig B and S3 Table). We con-

firmed similar trends. For example, the 58 individuals with a score of 1 included 40 individuals

with AUC in the bottom third (69.0%). Thus, the higher an individual’s bottom AUC score,

the more likely they were to belong to the bottom third of the population and have a lower

AUC as well (S3 Fig C). The bottom AUC score was also inversely correlated with IgG(S) titers

90 or 180 days from the second vaccination (S3 Fig D). When the threshold is set to -1.5, the

bottom AUC score has an accuracy of 61.2%, a precision of 50.7%, and a recall of 80.5%, evalu-

ated on the test dataset. Note that these AUC scores are useful for detecting the top and bottom

populations rather than the middle population, given the relatively low frequency of some of

the items listed (collagen disease, immunosuppressant, rheumatism). In fact, when we created

a "middle AUC score" to detect individuals with AUC in the middle third (S10 Fig), 92.7% of

individuals in the test dataset had the same score of 0 (S3 Table), suggesting that this middle

AUC score is not very useful. Note also that even the top and bottom AUC scores will not be

able to detect all individuals with top or bottom titer levels, and there will be false positives and

false negatives as shown in S3 Table.

We also created a scoring for groups 1 (with high peak and long duration) and 4 (with low

peak and short duration) in Fig 3A. Group 1 score had similar items to the top AUC score,

and group 4 score had similar items to the bottom AUC score (S11 Fig). These results show

that the personalized AUC score can provide a reasonable estimate of an individual’s antibody

status, especially for the top and bottom populations, allowing the individual to make

informed decisions about disease prevention.

Discussion

In this study, we created a personalized antibody score that can be used as a basis for identify-

ing populations with low sustained antibody titers. To derive an optimal score, we used a

mathematical model of antibody production in response to two-dose mRNA vaccinations and

reconstructed the vaccine-elicited antibody dynamics of 2,407 participants from the Fukush-

ima vaccination cohort. In particular, we highlighted that the reconstructed best-fit antibody

titer curves perfectly predicted the additional timepoint data sampled from 120 of the 2,407

participants. Our mechanism-based mathematical modeling, in contrast to the statistical

modeling used in recent reports [30,31], enables a biologically accurate description and precise

comparison of antibody dynamics. The parameters of the estimated dynamics showed a large

variation spanning two orders of magnitude. This variation was partially explained by individ-

ual characteristics like age, sex, the interval between the two vaccine doses, adverse reactions,

comorbidities, and medications taken. This result is consistent with previous studies reporting

age, sex, vaccine interval, and comorbidities as factors affecting antibody titers [5,32].

Our antibody scores can be easily calculated from individual demographic and health infor-

mation, yet identify participants with high and low antibody titers (AUC of the IgG(S) titers)

to a certain extent. Given the pleiotropic aspect of humoral immunity, it is surprising that a
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score consisting of several questionnaire items can provide predictions. The score showed that

COVID-19 infection history and adverse reactions positively affect the AUC, whereas age and

immunologically compromised conditions negatively affect the AUC. These positive and nega-

tive factors are consistent with previous studies [5,19,33–35]. In addition, autoimmune dis-

eases have been reported to be risk factors for breakthrough infections [36,37]. Considering

that individual antibody titers are partially predictive of the likelihood of breakthrough infec-

tions [11,38], this suggests that our antibody score has potential to be used as a risk score for

breakthrough infections. On the other hand, the antibody score also has some similarities with

COVID-19 severity scores [39–43]. In fact, both include age as a factor likely to lead to low

antibody titers and critical illness, both of which may be related to a defective immune system,

as observable in cytokine signatures [44,45] or immunoglobulin responses [46,47]. However,

whereas COVID-19 severity scores use the results of laboratory tests and clinical symptoms to

assess the patient’s condition in the hospital, our antibody score can be easily calculated on the

basis of questionnaire responses provided by individuals (i.e., not limited to patients)

themselves.

So far, 13.01 billion doses of COVID-19 vaccines have been administered globally, and 2.51

million are now administered each day [48]. Whereas 68.5% of the world population has

received at least one dose of a COVID-19 vaccine, 24.6% of people in low-income countries

have received at least one dose as the result of disparities in global access to vaccines [49,50].

For example, only a small percentage of persons have received one vaccine dose in African

countries [51]. Although the third and fourth doses of COVID-19 vaccines have already begun

to be offered, vaccine uptake after the primary two doses is challenged by (booster) vaccine

hesitancy, waning of vaccine coverage due to painful adverse reactions [49], and a drop-off in

interest in COVID-19 [52]. Even during the unprecedented but successful worldwide vaccina-

tion programs for COVID-19, we experienced difficulty in the global distribution of vaccine

doses. One of the lessons we learned was the importance of identifying vulnerable populations

to achieve early control of infectious disease. In future pandemics, the score that we have

developed may play an important role in identifying vulnerable populations.

There are limitations to this study that we can improve for a better understanding of the

role of vaccination. First, we measured IgG(S) and neutralization activity against the Wuhan

strain as the humoral immune status, and analyzed IgG(S) because of the high correlation

between these measurements. Although it is reported that antibodies induced by infection

with the ancestral SARS-CoV-2 strain and/or the first of the primary two-dose vaccinations

show cross-neutralization of variants from Alpha to Omicron BA.1 [53,54], further analysis of

antibody responses (in particular, for neutralization) against variants of concern may be

important to extend our scoring to prediction of vaccine efficacy for corresponding strains.

Although our current score is limited in its detection capacity, the creation of such a personal-

ized antibody score in the future by using individual-level demographic and health informa-

tion will be an important tool for designing optimal vaccination strategies in future pandemics

(not only COVID-19 but also other infectious diseases). Second, although one of the advan-

tages of the Fukushima vaccination cohort is the extremely low number of natural infections,

and that we can evaluate antibody responses minimizing the effect of infection, large portions

of the population have been infected with COVID-19 in many parts of the world. In addition,

the third and fourth doses of COVID-19 vaccines have already begun to be administered. Our

primary purpose in this study was to establish an integrated framework for scoring, but an

extended score considering breakthrough infection and booster vaccinations is worth evaluat-

ing. Another limitation is that the model fitting was based on antibody measurements and the

antibody score was solely based on information available from the questionnaire. This is

reflected in the rather low R2 values (around 0.2–0.3) of the regression models of the antibody
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features. Therefore, further refinement of the score using additional information will be worth-

while. It is worth mentioning that the immune system is affected by multiple factors, including

genetics, the environment (such as cohabitation), and markers of metabolic health [55–58], all

of which likely influence individual antibody status but were not considered here. The biologi-

cal determinants of antibody variation will be further revealed in future studies addressing not

only B cell subsets but the whole immune system encompassing adaptive as well as innate

immunity.

In conclusion, quantifying the variability in antibody dynamics can be a basis for policy

decisions regarding the distribution of booster vaccines to strengthen immunity [59] or the

use of oral antiviral drugs for the treatment of breakthrough infections [60]. As we learned

from the COVID-19 pandemic, determining the priority for (booster) vaccines is an important

public health concern given a limited global supply of vaccines at the beginning of a pandemic.

For example, since we have data on what percentage of people with certain top/bottom AUC

scores have low antibody levels, we can estimate how many people should be prioritized for

booster vaccination based on these scores. Thus, the score developed here can be used to esti-

mate and allocate necessary vaccination resources to “priority groups” for vaccination [61,62]

in addition to the standard prioritized population [1,2,5,6]. Moreover, the score may be used

by medical practitioners to encourage individuals with low predicted antibody levels to get

(booster) vaccinations. However, we caution that our current score does not identify all indi-

viduals who need booster vaccinations and should not be the sole resource for guiding individ-

ual decisions. Taking advantage of our Fukushima vaccination cohort, we will further evaluate

the impact of booster vaccinations and post-vaccination infections on personalized antibody

scores. It is important that we make use of the lessons learned from COVID-19 vaccination to

combat future infectious diseases.

Methods

Ethics statement

The study was approved by the ethics committees of Hirata Central Hospital (number 2021-

0611-1) and Fukushima Medical University School of Medicine (number 2021–116). Written

informed consent was obtained from all participants individually before the survey.

Participant recruitment and sample collection

The candidates were mainly recruited from Hirata village, Soma city, and Minamisoma city in

rural Fukushima prefecture. We conducted non-sequential blood sampling and sequential

blood sampling. A total of 2526 individuals participated in non-sequential blood sampling

(Fig 1E). Health care workers, frontline workers, and administrative officers from each munic-

ipality were intentionally recruited to keep the cohort size large and the dropout rate low.

Although most of the health care workers, frontline workers, and administrative officers were

under the age of 65, relatively healthy community-dwelling older adults living in the commu-

nity and in long-term care facilities were also recruited to maintain a wide age range for the

cohort. Blood sampling was performed once during each period in June, September, and

November 2021, respectively. The first vaccine dose was administered between March 10 and

August 20, 2021, and the second dose between March 31 and September 14. The median

(interquartile range) interval for the two-dose vaccination was 21 days. A total of 226 health

care workers participated in the first blood sampling between May 31 and June 6, 2021. A total

of 2526 individuals participated in the second blood sampling between September 8 and Octo-

ber 8, 2021. A total of 2443 individuals participated in the third blood sampling between

November 21 and December 25, 2021. In contrast, 12 health care workers participated in the
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sequential blood sampling, and their vaccination and blood sampling schedule are shown in

Fig 1E. Note that the 12 health care workers (described in S5 Fig A) with sequential blood

sampling were not included in the non-sequential population of 2526 participants. In conclu-

sion, of the total 2526 participants, those eligible for analysis were 2459 participants who com-

pleted the second vaccination and at least two blood samplings.

Out of these 2459 participants, 43 individuals had higher IgG(S) titers on the second mea-

surement than on the first, although their IgG(N) titers were negative (meaning no infection

history). We speculated that this was due to measurement error and did not attempt model fit-

ting. Furthermore, 9 individuals who had an interval of longer than 40 days between the first

and the second vaccination were also removed. Because most of our participants had an inter-

val of 21 or 28 days and there were very few cases of longer intervals, we decided that there

were not enough data to reliably perform predictions among the participants with longer

intervals. This was a conservative decision to ensure the high quality of our model fitting. As a

result, we performed parameter estimation on the remaining 2407 participants (Fig 1B).

Information on sex, age, daily medication, medical history, date of vaccination, adverse

reaction after vaccination, type of vaccination, blood type, bacillus Calmette–Guérin (BCG)

vaccine history, smoking habits, and drinking habits was retrieved from the paper-based ques-

tionnaire (summarized in Table 1). All blood sampling was performed at the medical facilities

with 8 mL, and serum samples were sent to The University of Tokyo.

SARS-CoV-2-specific antibody measurement

All serological assays were conducted at The University of Tokyo. Specific IgG (i.e., IgG(S))

and neutralizing activity against the Wuhan strain were measured as the humoral immune sta-

tus after COVID-19 vaccination. Specific IgG antibody titers (IgG(N)) were used to determine

past COVID-19 infection status. Chemiluminescent immunoassay with iFlash 3000 (YHLO

Biotech, Shenzhen, China) and iFlash-2019-nCoV series (YHLO Biotech, Shenzhen, China)

reagents were used in the present study. The measurement range was 2–3500 AU/mL for IgG

(S) and 4–800 AU/mL for neutralizing activity. For neutralizing activity, AU/mL×2.4 was used

to convert to International Units (IU/mL); for IgG(S), AU/mL×1.0 was used to convert to

binding antibody units (BAU/mL). The testing process was as per the official guideline. Qual-

ity checks were conducted every day before starting the measurement.

Modeling vaccine-elicited antibody dynamics

We developed a mathematical model describing COVID-19 vaccine-elicited antibody dynam-

ics to evaluate the impact of primary two-dose COVID-19 vaccination on rapid immunity at

the individual level and reconstructed the best-fit antibody titer curves of 2,407 participants in

the Fukushima vaccination cohort. Here we explain the derivation and formulation of the

mathematical model in detail.

(i) Vaccination-elicited antibody dynamics after the first dose. After the first vaccina-

tion, naïve B cells encounter antigens and differentiate into short-lived antibody-secreting cells

(ASCs), plasmablasts, germinal center (GC) B cells, or GC-independent memory B cells

depending on BCR affinity for their cognate antigen [63]. Then, the GC B cells undergo rapid

proliferation with somatic immunoglobulin hypermutation and subsequently differentiate

into GC-dependent memory B cells or long-lived antibody-secreting cells, which are plasma

cells with immunoglobulin class switching. To describe this antigen-specific B cell expansion

and the induction of antibody-secreting cells and memory B cells after the first vaccination
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(S4 Fig A), we developed a simple but quantitative mathematical model as follows:

dM1ðtÞ
dt

¼
0 t < t1ð Þ

� dM1ðtÞ t � t1ð Þ
0

ð1Þ

(

dBðtÞ
dt
¼ P1ðtÞ

MðtÞm

Km þMðtÞm
� mBðtÞ; ð2Þ

dAðtÞ
dt
¼ pBðtÞ � cAðtÞ; ð3Þ

where the variables M(t) = M1(t), B(t), and A(t) are the amount of mRNA inoculated by the

vaccination, the number of antibody-secreting cells, and the antibody titers at time t, respec-

tively. The parameters τ1 and d represent the timing of the vaccination and the decay rate of

mRNA. We here considered D1 to be the inoculated dose of mRNA by the vaccination, that is,

M1(τ1) = D1.

Because the data we used here were limited (i.e., only time-course vaccine-elicited IgG(S)

titers), one compartment of B cells including heterogeneous cell populations that produce anti-

bodies (i.e., short-lived and long-lived antibody-secreting cells) was assumed. Therefore, we

modelled the average B cell population dynamics in Eq (2), where the product of P1(t) and M
(t)m/(M(t)m + Km) represents the average de novo induction of the antibody-secreting cells.

P1(t) is a step function defined as P1(t) = P1 for τ1 + η1� t, where η1 is the delay of induction

of antibody-secreting cells after vaccination: otherwise P1(t) = 0. The parameters m, K, and μ
correspond to the steepness at which the induction increases with increasing amount of

mRNA (i.e., the Hill coefficient), the amount of mRNA satisfying P1/2, and the average decay

rate of the antibody-secreting cell compartment, respectively. The other parameters, p and c,
represent the antibody production rate and the clearance rate of antibodies, respectively.

(ii) Vaccination-elicited antibody dynamics after the second dose. After the second vac-

cination, memory B cells are reactivated by re-exposure to the antigen. Some differentiate into

short-lived antibody-secreting cells (plasmablasts) or memory B cells outside the GC. Others

enter the GC to become secondary GC B cells. Subsequently, these secondary GC B cells differ-

entiate into GC-dependent memory B cells or long-lived antibody-secreting cells (plasma

cells). To describe these recall B cell responses and their secretion of antibody after the second

vaccination (S4 Fig B), we modified the above mathematical model, Eqs (1–3), as follows:

dM2ðtÞ
dt

¼
0 t < t2ð Þ

� dM2ðtÞ t � t2ð Þ
; ð4Þ

(

dBðtÞ
dt
¼ P2ðtÞ

MðtÞm

Km þMðtÞm
� mBðtÞ; ð5Þ

dAðtÞ
dt
¼ pBðtÞ � cAðtÞ; ð6Þ

where M2(t) is the amount of mRNA by the vaccination inoculated at τ2 satisfying M2(τ2) =

D2. In addition, P2(t) = P1 and M(t) = M1(t) for τ2�t<τ2+η2, P2(t) = P2 and M(t) = M1(t) +

M2(t) for τ2 + η2� t, where η2 is the delay of induction of antibody-secreting cells after vacci-

nation; otherwise P2(t) = 0. Here we ignored the GC-independent memory B cells induced by

the first vaccination because of their minor effect. In general, once reactivated, memory B cells

PLOS DIGITAL HEALTH Modeling and predicting individual variation in vaccine-elicited antibody response

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000497 May 3, 2024 15 / 23

https://doi.org/10.1371/journal.pdig.0000497


can re-enter the GC more rapidly than naïve B cells, and therefore the secondary antibody

responses are much faster and larger (i.e., η1 >η2 and P1 < P2, respectively). In the main recall

immunity, the quantity and quality of memory B cells established by the first vaccination is

included in P2.

(iii) Mathematical model for data fitting. Since the clearance rate of antibody is much

larger than the decay of antibody-secreting cells (i.e., c� μ), we made a quasi-steady state

assumption, dA(t)/dt = 0 dV(t)/dt = 0, and replaced Eqs (3) and (6) with A(t) = pB(t)/c. More-

over, since Eqs (1) and (4) are linear differential equations, M1(t) = D1e-dt for t� τ1 and M2(t)
= D2e-dt for t� τ2: otherwise M1(t) = M2(t) = 0, respectively. Thus, the above Eqs (1–6) are fur-

ther simplified assuming τ1 = 0 and D1 > 0, and we obtained the following single ordinary dif-

ferential equation, which we used to analyze the antibody responses (i.e., IgG(S) titers (AU/

mL)) in this study:

dAðtÞ
dt
¼ HðtÞ

D1e� dt þ D2e� d t� t2ð Þð Þ
m

Km þ D1e� dt þ D2e� d t� t2ð Þð Þ
m � mAðtÞ; ð7Þ

Where H(t) = Hi = pPi/c for τi + ηi� t<τi+1 + ηi+1 (i = 1 or 2), η3 =1 and D2 > 0 for τ2 + η2�

t: otherwise D2 = 0. This simple model can quantify the vaccine-elicited time-course antibody

dynamics as described in Fig 2A under an arbitrary threshold of antibody titers ATH (see

below).

Quantifying vaccine-elicited time-course antibody dynamics

In addition to the participants in the cohort, we included 12 health care workers whose serum

was sequentially sampled for 40 days (on average 25 samples per individual) for validation and

parameterization of a mathematical model for vaccine-elicited antibody dynamics. A nonlin-

ear mixed effects model was used to fit the antibody dynamics model, given by Eq (7), to the

longitudinal antibody titers of IgG(S) obtained from the 12 health care workers. The mathe-

matical model included both a fixed effect and a random effect in each parameter. That is, the

parameters for individual k, θk(= θ×eπk) are represented as a product of θ (a fixed effect) and

eπk (a random effect). πk follows a normal distribution with mean 0 and standard deviation O.

As we described above, since η1 > η2 and P1 < P2, we assumed η1 = η and η2 = fdelayη, H2 = H
and H1 = fdegreeH, and estimated η, H, 0< fdelay < 1 and 0< fdegree < 1 for conducting biologi-

cally reasonable estimations. We here assumed that the parameters η, H, fdelay, fdegree and m
varied across individuals, whereas we did not consider interindividual variability in other

parameters to ensure parameter identifiability. Note that the half-life of mRNA (i.e., log 2/d)

and dose of mRNA (i.e., Di) are assumed to be 1 day [64] and 100 (μg/0.5 mL) [65], respec-

tively. Fixed effect and random effect were estimated by using the stochastic approximation

expectation-approximation algorithm and empirical Bayes’ method, respectively. Fitting was

performed using MONOLIX 2019R2 (www.lixoft.com) [66]. The estimated (fixed and individ-

ual) parameters are listed in S1 Table. With the estimated parameters for each individual, the

dynamics of IgG(S) titers, A(t), and the average de novo antibody response elicited by the first

and second vaccinations, HðtÞ D1e� dt þ D2e� d t� t2ð Þð Þ
m
= Km þ D1e� dt þ D2e� d t� t2ð Þð Þ

m� �
, were

calculated in S5 Fig AB, respectively. Interestingly, we observed that the variations induced by

the second vaccination were much larger than those induced by the first vaccination.

We found that most of the best-fitted estimated parameters in the mathematical model (i.e.,

D1, D2, d, μ, K, η, fdelay, fdegree) were the same or similar across the 12 individuals compared

with those of parameters of m and H (see S1 Table). We note that m and H, which showed

wide variation of estimated values, contributed mainly to the vaccine-elicited antibody dynam-

ics after the second vaccine dose, whereas the other parameters contributed to that after the
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first dose. In fact, we are interested in the large variation after the second dose (but not the neg-

ligible variation after the first dose). Therefore, we hereafter fixed the parameters in our mathe-

matical model to be the estimated population parameters listed in S1 Table, except m and H.

These assumptions enabled us to accurately reconstruct the large variations in antibody

dynamics after the second dose, and these two parameters were independently estimated from

each IgG(S) by a nonlinear least-squares method, even if 2,407 participants had only 2 or 3

measurements of antibody titers at different time points. Using the estimated parameters for

each individual, we fully reconstructed the dynamics of IgG(S) titers of all participants after

the first vaccination in S5 Fig C. We summarized the distribution of parameter values m and

H for 2,407 participants in S5 Fig D, and the best-fit antibody titer curves of 200 randomly

selected individuals are plotted along with the observed data for visualization in S2 Fig.

Mathematical model validation

Outside the study period described in Fig 1E, to validate our mathematical model (i.e., Eqs (4–

5)), we first prepared Validation dataset A: the additional sequentially performed serum sam-

pling of 12 health care workers, that is, data for 3 to 4 timepoints before the booster dose (on

average 4 additional samples per individual for 165 days after the first vaccine dose). Employ-

ing our estimated parameters, which were estimated from the original dataset (i.e., the black

circles in S6 Fig), listed in S1 Table, we found our mathematical model predicted the values

for the additional 3 to 4 timepoints before booster vaccination with high accuracy. Next, to val-

idate the reconstructed best-fit antibody titer curves described in S5 Fig C, we also prepared

Validation dataset B: an additional third or fourth antibody measurement from 110 of the

2407 participants of our Fukushima vaccination cohort around 3 to 4 months after the second

or third timepoint data but before the booster vaccination. We compared the reconstructed

antibody titer curves and the additional data and confirmed that the additional data points

obtained from participants who were not infected with COVID-19 (i.e., IgG(N)-negative par-

ticipants) during that period perfectly matched the prediction of our mathematical model (S7

Fig). On the other hand, interestingly, for those who got infected with COVID-19, the addi-

tional data were significantly larger than the reconstructed curves (S8 Fig).

Additionally, we assessed the accuracy of the reconstructed best-fit antibody titers by calcu-

lating the Pearson’s correlation coefficient between the reconstructed antibody titers and the

observed (or additionally observed) antibody titers (S9 Fig). The Pearson’s correlation coeffi-

cients between the observed antibody titers, which were used in parameter estimation, and the

reconstructed antibody titers, were 0.99 for both of the 12 health care workers and the 2407

participants in the Fukushima vaccination cohort. Furthermore, the Pearson’s correlation

coefficients between the additionally observed antibody titers, which were not used in parame-

ter estimation, and the reconstructed antibody tiers, were 0.94 and 0.92 for the 12 health care

workers and the 110 participants in the Fukushima vaccination cohort, respectively.

Taken together, our additional data (i.e., Validation dataset A and B) and quantitative

analysis demonstrated that our mathematical model and the reconstructed best-fit antibody

titer curves using the same are validated for the purposes of predicting antibody dynamics in a

generalized population.

Building optimized antibody scores

A Python implementation of Ustun et al.’s [29] algorithm (risk-slim, https://github.com/

ustunb/risk-slim) was used to build optimized AUC scores. Briefly, the algorithm searches for

the best linear combination of features with integer coefficients that minimizes the sum of the
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logistic loss and the l0-norm of the coefficients. The range of coefficients was set to -5 to +5;

the l0-penalty parameter C0 was set to 1×10−3.

Evaluation of antibody scores

When an individual’s top (or bottom) AUC score is above a threshold, that individual is pre-

dicted to be in the top 1/3 (or the bottom 1/3) of the population. The accuracy, precision, and

recall of the score are defined as (TP + TN)/(TP + TN + FP + FN), TP/(TP + FP), and TP/(TP

+ FN), respectively, where TP, TN, FP, and FN denote true positives (i.e., the number of indi-

viduals predicted to be positive that were actually positive), true negatives, false positives, and

false negatives, respectively.

Statistical analysis

The answers from the 2,407 participants who completed the paper-based questionnaire were

converted into a set of categorical and numerical variables. Numerical variables included age,

BMI, and the interval between the two doses. These variables were then used in a multiple

regression analysis to explain the three antibody dynamics features. Six participants who did

not fully answer the questionnaire were excluded from the analysis. The variables used here

belonged to any of the five categories: (i) basic demographic information and lifestyle habits,

(ii) information on vaccinations, (iii) underlying medical conditions, (iv) adverse reactions,

and (v) medications being taken. When necessary, the same variables were compared among

different generations or different groups using Pearson’s chi-square test (for categorical vari-

ables), analysis of variance (ANOVA, for more than two numerical variables), or Welch T-test

(for two numerical variables). A Bonferroni correction was applied for multiple comparisons.

All statistical analyses were performed using R (version 4.1.2) or JMP Pro 16.

Map of Japan

The basemap shapefile of Japan and Fukushima Prefecture was downloaded from National

Land Numerical Information (https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-N03-v2_4.

html) and edited using the R package sf.
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