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The characteristics of 
intratumoral microbial 
community reflect the 
development of lung 
adenocarcinoma
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Introduction: An increasing number of studies have demonstrated the pivotal 
role of microbiota changes in the onset, progression, diagnosis, treatment, and 
prognosis of lung adenocarcinoma (LUAD). However, a comprehensive analysis 
of intratumoral microbiome variation across distinct LUAD stages has not been 
performed. The aim of this study was to identify the microbial markers that 
significantly vary during tumor stage of LUAD.

Methods: Here, we used the cancer genome atlas (TCGA) database to 
comprehensively compare and analyze the differences in microbial composition 
between 267 patients with early and 224 patients with advanced LUAD. In order to 
determine the best biomarkers, we used the random forest (RF) model and found 
that the microbial markers have a certain ability in predicting the stage of LUAD.

Results: We found that there were certain differences in the microbiome of 
patients with LUAD at different stages, especially in the tumor tissues of patients 
with advanced LUAD, whose co-abundance network was significantly more 
complex. We also found that five bacterial biomarkers (Pseudoalteromonas, 
Luteibacter, Caldicellulosiruptor, Loktanella, and Serratia) were correlated with 
LUAD stage, among which Pseudoalteromonas, Luteibacter, Caldicellulosiruptor, 
and Serratia were significantly overexpressed in patients with advanced LUAD. In 
particular, after integrating the biomarkers of mRNA, we achieved an area under 
the curve (AUC) of 0.70.

Discussion: Our study revealed the microbial profile of patients with LUAD and 
the intrinsic pathogenic mechanism between the microbiome and the disease, 
and established a multi-omics model to determine LUAD tumor stage.
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1 Introduction

Lung adenocarcinoma (LUAD) represents a form of non-small cell lung cancer and stands 
as one of the most lethal tumors globally (Chen et  al., 2017; Li et  al., 2019). Despite 
advancements in the diagnosis and treatment of lung diseases, patients with LUAD continue 
to experience high mortality and a poor prognosis, with an average 5-year survival rate of only 
15% (Riihimäki et al., 2014; Song et al., 2020; Sung et al., 2021; Yang et al., 2021). One major 
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contributing factor to the high mortality rate of lung cancer is the 
asymptomatic nature of most early-stage patients, resulting in late-
stage diagnosis for confirmed cases (Nasim et al., 2019; Mo et al., 
2020). Additionally, lung cancer patients commonly experience 
recurrence and metastasis following surgical resection (Popper, 2016). 
The treatment options and survival rates vary significantly between 
early and late-stage patients (Oudkerk et al., 2021). Hence, the precise 
identification of biomarkers associated with the early stage of LUAD 
may offer novel insights into tumorigenesis and early preventive 
measures, aiding doctors in evaluating patients’ status and adjusting 
treatment strategies (Miao et al., 2021; Yang et al., 2021).

Some studies have shown that some mRNA molecules are related 
to the progress of patients with LUAD (Chen et al., 2019). Dong et al. 
(2021) found that ZLC5 was up-regulated in lung cancer patients, and 
its high expression predicted a shorter overall survival (p = 0.007), and 
as an independent prognostic marker of lung cancer, HR = 2.892; 95% 
(Yang et al., 2021) CI: 1.297–6.449; p = 0.009; Zhang et al. (2019) found 
that nine mRNA genes (HMMR, B4GALT1, SLC16A3, ANGPTL4, 
EXT1, GPC1, RBCK1, SOD1 and AGRN) were associated with the 
overall survival rate of lung cancer patients. Through multivariate Cox 
regression analysis, the prognostic ability of nine gene characteristics 
were higher than that of clinical information; Xin et al. (2019) found 
that the mRNA levels of COX-2, cPLA2, COX-1, mPGES, PGE2 and 
PGI2 in lung cancer patients were significantly higher than those in 
healthy people, especially in patients with high expression of mPGES 
and PGI2. The 5-year survival rate was lower than that in patients with 
low expression of mPGES and PGI2, and it was statistically significant 
for the prognosis of lung cancer. Although some studies have 
identified some molecular markers for predicting lung cancer, it is still 
difficult to achieve high-precision prediction due to the lack of 
information in a single omics (Shi et al., 2022). Simultaneously, there 
remains a dearth of pertinent research and predictive assessment on 
the status of patients’ tissue microbiome.

Recent advancements in microbiome research have revealed 
associations between various diseases and alterations in the gut 
microbiome (Rezasoltani et al., 2017; Fan et al., 2018; Sepich-Poore 
et al., 2021; Zhou et al., 2023). Among them, the most typical example 
is the correlation between Helicobacter pylori (H.P) infection and 
gastric cancer (El-Omar et al., 2003). Helicobacter pylori infection will 
lead to methylation of tumor related gene CpG island in gastric 
epithelial cells (Kim et al., 2021; Wang et al., 2021). It may also lead to 
peptic ulcer, or even the generation and development of gastric cancer 
(Suez et  al., 2018) by inhibiting cell apoptosis. The change of 
Fusobacterium nucleatum is related to colorectal cancer (Cheng et al., 
2019a). The study revealed an intriguing finding that, in addition to 
the gut microbiota, a considerable number of microorganisms exist in 
tumor tissues, potentially playing a significant role in cancer 
development (Wang et  al., 2021). Nevertheless, the potential 
relationship between the tissue microbiome and patients with LUAD 
at various stages remains unclear.

Evidently, surgery, radiotherapy, chemotherapy, targeted therapy, 
and other conventional methods can aid in reducing the mortality and 
incidence rates in LUAD patients. However, challenges persist, 
including high costs and inherent risks (Bray et al., 2018). Hence, 
researchers are dedicated to exploring supplementary strategies for 
diagnosing LUAD at various stages, particularly investigating the 
potential use of microbiome as biomarkers (Yuan et al., 2022). Studies 

have shown that there was a significant relationship between 
Mycobacterium tuberculosis and lung cancer (Robinson and Smyth, 
2007). Ruminococcus, Eubacterium and adolescent Bifidobacterium 
were enriched in lung cancer patients. In particular, Enterococcus and 
Pasteurella were significantly overexpressed in patients with advanced 
lung cancer. In addition, Zheng et al. (2020) analyzed 13 microbiome 
as biomarkers, and the prediction accuracy reached AUC = 97.6% in 
patients with early lung cancer and AUC = 76.4% in independent 
validation cohort. Therefore, the article delves into the microbiome 
profiles of patients with LUAD at various stages and investigates the 
potential mechanisms of their interactions.

In our study, we collected a discovery cohort of 267 patients with 
early LUAD and 224 patients with advanced LUAD, and 
comprehensively analyzed their tissue microbiome and transcriptome 
profiles. The main purpose of this study is to find the microbial 
profiles of LUAD patients and identify multi omics features that can 
distinguish patients with early and advanced LUAD.

2 Methods and materials

2.1 Patients’ cohort and data preparation

The host transcriptome, tumor microbiome data, and metadata 
in this study were all from TCGA public database. The tumor 
microbiome data of patients with LUAD was derived from the 
recleaning of sequencing data in TCGA by Rob knight’s group (Poore 
et al., 2020). We chose to use patient tissue microbial data obtained 
by RNA sequencing (RNA-seq). According to the pathological stage 
after the initial diagnosis, the samples were divided into two 
categories. We defined the patients with pathological stage I as “early” 
and the patients with stages II–IV as “advanced.” A total of 491 
samples were downloaded, including 267 “early” and 224 “advanced.” 
Each sample has corresponding clinical information such as age, sex, 
tumor node metastasis classification (TNM) stage and host 
gene expression.

2.2 Statistical analysis

R software (version 4.3.1) was used for statistical analysis. 
Considering that microbial data are sparse and non-normally 
distributed, we  employed non parametric tests for correlation 
statistics. Wilcoxon rank-sum test was used to determine the 
association between different clinical characteristics and stages. 
T-test was conducted to identify the bacterial biomarkers whose 
abundance was significant different between patients with early and 
advanced stage. A p-value less than 0.05 was considered as 
statistical significance.

2.3 Microbial diversity analysis

The alpha diversity was measured by the Shannon index, which 
was calculated by function “diversity” in “vegan” package in 
R. Principal coordinate analysis (PCoA) was performed with the 
“vegan” package in R to analyze the differences in intratumoral 
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microbial communities between groups, and the permutational 
multivariate analysis of variance (PERMANOVA) was used to conduct 
the statistical test. Wilcoxon rank-sum test was used to test the 
difference in microbial diversity between the two groups.

2.4 Microbial network analysis

To study the association between microbiome, we used spearman 
rank correlation to construct microbial interaction networks at the 
genus level. The “hmisc” package in R language was used to calculate 
the correlation and p-value. When the correlation coefficient between 
bacterial populations is >0.7 and the p-value is <0.001, it is considered 
to have significant correlation. Network visualization was performed 
using Gephi (version 0.9.6). In our network, node stands for genus, 
and edge stands for spearman’s rank correlation. Degree is the number 
of edges on each node. The higher the degree of a node, the more 
points it is connected, and the more critical it is. The clustering 
coefficient indicates the degree of connection between a node and its 
adjacent nodes.

2.5 Transcriptome analysis

The R package “Deseq2” was used to identify differentially 
expressed genes (DEGs) of mRNA (Costa-Silva et al., 2017; Cheng 
et al., 2019b). We chose to use p-value < 0.0001 and log2foldchange 
(LFC) > 1 to screen the up-regulated genes, and when p-value < 0.0001 
and LFC < −1, it was defined as the down-regulated genes. Finally, 
we used | log2 (foldchange) | ≥ 1 and adjusted p-value < 0.05 to obtain. 
The volcano map showed the distribution of the gene map of patients 
with LUAD. The R package “pheatmap” was used to visualize 
significantly different genes. Gene Ontology (GO) enrichment analysis 
was performed using the “clusterprofiler” package in R software. The 
enrichment paths of DEGs were visualized by the “ggplot2” package.

2.6 Model construction and evaluation

Construction and evaluation of lung cancer diagnosis model 
based on multi omics features. Based on the microbial features 
obtained by different feature screening methods and transcriptome 
features, the lung diagnosis of potential markers was comprehensively 
analyzed, mainly including cross validation model construction and 
model evaluation. We  label patients with early LUAD as “0” and 
patients with advanced LUAD as “1,” which translates our study into 
a binary classification of machine learning. Previous studies showed 
that random forest performed well on similar data types (Rigatti, 2017; 
Cheng et al., 2018; Li et al., 2019, 2021), thus, random forest was used 
to build the model in our study. Models were trained using data from 
the host genes, microbes and combination of the two omics. 
Classification and Regression Tree (CART) and Bagging technique are 
used in random forest algorithm. CART can be  applied to both 
classification and regression. The minimum Gini index is used as the 
segmentation rule when CART is used as classification tree. The 
GridSearchCV was used to adjust three parameters, including n_
estimators, max_depth, and max_features, and adjust the parameters 
min_samples_split and min_sample_leaf.

3 Results

3.1 Gender was significantly correlated 
with pathological stage of LUAD patients

First, we  examined the association between LUAD stage and 
clinical parameters. The correlation between clinical parameters and 
LUAD stage was shown in Table 1. There were significant differences 
in T stage (Figure 1A, P < 0.001) and gender (Figure 1B, P < 0.05) 
between patients with early and advanced LUAD. In addition, there 
was no significant difference in age, N stage, and M stage between 
patients with early and advanced LUAD (Figure 1C; Table 1). These 
results proved that there was a significant difference in gender between 
patients with early and advanced LUAD. It should be noted that the 
higher proportion of men with advanced LUAD may be due to higher 
smoking rates. The specific information of all patients was shown in 
Table 1.

3.2 There were differences in the microbial 
profiles of patients with LUAD between the 
two groups

Next, we characterized the intratumoral microbiome profiles for 
all patients (Figure  2). We  detected that genus Pseudomonas, 
Streptococcus, Mycobacterium, Neisseria, and Mesorhizobium 
constituted the dominant content of intratumoral microbial 
community in lung. Specifically, Pseudomonas was the genus with the 
highest relative abundance in lung tumors. At the same time, we also 
evaluated the alpha diversity level of the samples. Shannon index 
showed that there was no significant difference in microbial diversity 
among patients at different stages (Figure 2C), while PCoA (p = 0.614) 
also showed that there was no significant difference in bacterial 
communities among the four stages (Figure 2D). However, through 
statistical test, we still identified five bacteria whose abundances were 
significantly different between the early and late patients (Figure 3; 
p  < 0.05), which were used as the microbial markers for 
downstream analysis.

3.3 Changes of bacterial co-abundance 
network in LUAD patients at different 
stages

Previous studies have shown that there are differences in the 
microbial composition of patients with LUAD at different stages. In 
order to gain insight into the potential interactions between bacteria 
at each stage, we conducted a co-abundance association analysis based 
on their abundance. In summary, the complexity of patient network 
varies greatly in different stages. With the development of the patient’s 
condition, especially in stage IV, the complexity of the microbial 
community network reaches the maximum. The co-abundance 
networks of stage IV patients (97 species and 1,123 associations, 
Figure 4D) were more complex than that of stage I (76 species and 699 
associations, Figures  4A–C). At the same time, the degree was 
significantly increased (Figure 4E), which reflected that the association 
between the intratumoral microbes was closer in the patients with 
advanced LUAD. In addition, we detected that the degree of genera in 
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microbial co-abundance network gradually increased from stage I to 
stage IV (Figure 4F). These results suggest that disease progression in 
patients with LUAD is accompanied by changes in the pattern of 
intratumoral microbial interactions.

3.4 The mRNA gene expression profiles of 
lung cancer patients at different stages 
were significantly different

Next, we analyzed the host gene expression profiles of patients 
with early and advanced LUAD. Among 491 samples, there were 122 
genes with significant differences in mRNA expression, of which 60 
genes were significantly up-regulated and 62 were down-regulated 
(Figure  5A). The expression of these 122 genes was significantly 
different between the two groups, and we used the top 20 for display 
(Figure 5B). In addition, we also found that the up-regulated genes 
were significantly enriched in patients with early LUAD, especially 

SNORD17, RN7SK and SNORA73B. Through the GO enrichment 
analysis of differential genes, we found that in the biological process 
(BP) category, significant differential genes were mainly enriched in 
microtubule-based movement and cilia movement involved in cell 
mobility. For the cell component (CC) category, significantly different 
genes were mainly clustered in plasma membrane bounded cell and 
axonal dynein complex (Figure 5C).

3.5 Prediction of LUAD staging by multi 
omics

Based on the previous studies, we  infer that the differential 
microbiome may have a certain predictive ability for the stage of 
patients with LUAD. To this end, we constructed a machine learning 
model to classify patients. We  evaluated the predictive power of 
different omics for patients with LUAD. Random forest five-fold cross 
validation showed (Figure 5D) that mRNA had the strongest ability to 
predict the stage of patients with pancreatic cancer, with AUC = 0.66. 
At the same time, we chose to use the microbial markers and mRNA 
differential genes obtained earlier for joint prediction, with 
AUC = 0.70. Compared with single omics, the prediction accuracy of 
the model was significantly improved. This showed that the bacterial 
markers we screened have a certain predictive ability for the staging 
of patients with LUAD, and can make up for the shortcomings of 
single omics.

4 Discussion

LUAD is a common malignant tumor, and one of the prominent 
reasons for its high mortality is that most patients are only diagnosed 
in the late stage of cancer (Nasim et  al., 2019; He et  al., 2020). 

FIGURE 1

The correlations of different clinical characterization with patients of early and late. (A) The depth of tumor and the range of adjacent tissue 
involvement increased significantly in patients with advanced LUAD; (B) There was a significant correlation between the gender and LUAD stage; 
(C) There was no significant difference in age (>65) among patients with LUAD. Wilcoxon test was used to compare between two groups. 0, early; 1, 
advanced; *p-value < 0.05, ***p-value < 0.001.

TABLE 1 Clinical information.

Parameters Early 
(n  =  267) 0

Advanced 
(n  =  224) 1

p-value

Gender (M/F) 110/157 115/109 *

Age (avg years) 65.89 64.57 NS

N0/N1/N2/N3/NX/

unknown

257/2/0/0/7/1 58/90/70/2/4/0 NS

M0/MX/unknown 179/85/3 23/2/12 NS

T1/T2/T3/T4/

unknown

131/136/0/0/0 3/7/24/1/2 ***

Early, patients with stage I; Advanced, patients with stages II–IV; NS, not significant; *p-
value < 0.05, ***p-value < 0.001.
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Although, surgery, chemotherapy and radiotherapy are helpful to the 
treatment of patients, effective early detection and detailed 
pathogenesis are more conducive to reducing the mortality of patients 
with LUAD. Therefore, the early diagnosis of patients with LUAD is 
particularly important, which urgently requires the identification of 
new specific biomarkers (Nooreldeen and Bach, 2021; He et al., 2022). 
We carried out an innovative analysis of the tissue microbial atlas of 
early and late patients. Although their alpha and beta diversity was 
similar, the co-abundance network of late patients was more complex. 
Finally, we identified five bacteria that can distinguish early and late 
patients. Among them, four specific microbial markers 
(Pseudoalteromonas, Luteibacter, Caldicellulosiruptor, and Serratia) 
were also significantly overexpressed in patients with advanced 

LUAD. In addition, in order to identify the best marker panel, 
we constructed a machine learning classification model to predict the 
stage of patients with LUAD. The results showed that tissue microbial 
biomarkers have a certain predictive ability for the staging of patients 
with LUAD, and can make up for the shortcomings of other single 
omics. Microbial markers combined with transcriptome DEGs can 
predict the stage of patients with LUAD, and the AUC can reach 0.70.

It has been reported that human microbiome especially 
Helicobacter pylori, Proteobacteria, Bacteroidetes fragilis and 
Fusobacterium nucleatum, have been proved to be related to the 
occurrence and development of some cancers (Schwabe and Jobin, 
2013; Garrett, 2015; Liu et al., 2022). With the in-depth study of 
lung microorganisms, we understand that the microbial diversity 

FIGURE 2

Colony analysis of microbiome data in patients with lung adenocarcinoma. (A) The composition of microorganisms in patients at four different stages 
(stage I, stage II, stage III, stage IV) at the genus level. The stacked diagram only shows the genus of top 5, and the rare genus was summarized as other. 
(B) The heat map showed the Spearman correlation of all samples in four stages; (C) Shannon index was used to measure the alpha diversity among 
different staging cohorts of patients with LUAD; (D) PCoA was performed on samples from all four cohorts based on Bray Curtis distance. The results 
showed that there was no difference in microbial composition between patients in the four stages (p-value  =  0.614). The beta diversity p-value based 
on Bray Curtis distance was calculated by 999 permutations (two-sided test); PCoA, Principal coordinate analysis; Black, Stage I; Blue, Stage II; Yellow, 
Stage III; Green, Stage IV.
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plays an important role in regulating the lung immune environment 
and maintaining the development of the immune system. In our 
study, especially in the analysis of co-abundance network, two 
phylum level bacteria were prominent, Firmicutes and 
Proteobacteria. Zhang et al. (2018) found that the abundance of 
Firmicutes in lung cancer patients was significantly lower and the 
Bacteroidetes were significantly higher than that in healthy people. 
Liu et al. (2019) showed that Firmicutes can convert undigested 
carbohydrates and proteins into acetic acid, and then provide 
energy for life activities. It plays an important role in the process of 
carbohydrate transport and metabolism, which reveals that the 
change of bacterial microbiome changes the energy metabolism 

pathway of lung cancer patients, and may further affect the progress 
of the disease. At the same time, more and more evidences have 
shown that Proteobacteria may cause metabolic disorders, 
inflammation, and even cancer. Recent studies have shown that in 
asthma and many lung inflammatory diseases, Proteobacteria 
expand uncontrollably, and the distribution of pulmonary 
microorganisms changes toward Proteobacteria (Hilty et al., 2010; 
Molyneaux et al., 2013), which further lead to the occurrence and 
development of LUAD. In summary, a limited but growing number 
of literatures indicated that the decrease in microbial diversity or 
increase in the abundance of taxa of Firmicutes and Proteobacteria 
may be related to the increased risk of lung cancer.

FIGURE 3

Microbial biomarkers of lung adenocarcinoma. (A) Five microbial markers were identified by t-test, including Pseudoalteromonas, Luteibacter, 
Caldicellulosiruptor, Loktanella, and Serratia. The bar graph is the mean proportions of the five markers, and the dot graph is 95% confidence intervals 
between the two groups, p-value showed that there was a significant difference between patients with early and advanced LUAD; (B) The relative 
abundances of five microbial markers in the two groups were shown. Yellow, patients with early LUAD; Blue, patients with advanced LUAD.

https://doi.org/10.3389/fmicb.2024.1353940
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Su et al. 10.3389/fmicb.2024.1353940

Frontiers in Microbiology 07 frontiersin.org

In our study, compared with microbial markers, the DEGs 
obtained by mRNA screening were more accurate in predicting 
patients with LUAD, and may have more obvious changes in gene 
expression in patients with advanced LUAD than changes in microbial 
profiles. Literature data show that RN7SK RNA plays an important 
role in the process of neurodegeneration (Santoro et al., 2016), and the 
loss of this small RNA will reduce the transcription of cell cycle 
regulators, leading to cell cycle exit and differentiation, which may 
affect the occurrence of cancer (Bandiera et al., 2021); Liang et al. 
(2022) found that SNORD17 expression was significantly up-regulated 
in patient tissues. It drove cancer progression by inhibiting p53 signal 
in hepatocellular carcinoma, and is also a potential therapeutic target 
for hepatocellular carcinoma. Huang R. et al. (2022) constructed acute 
myelocytic leukemia prognostic markers based on 14 prognostic 
SNORNAs and achieved a good predictive effect. Although the 
pathogenic mechanism of these biomarkers for patients with LUAD is 
still unclear, we  can reasonably speculate that they promote the 
development of cancer.

According to the machine learning model we constructed, the 
predictive ability AUC of transcriptome gene expression to different 
stages of patients reached 0.66. However, the AUC increased to 0.70 
after the addition of microbial markers. This indicated that microbial 
markers not only have certain predictive ability for LUAD stage, but 

also can make up for the lack of information of single omics. The 
intratumoral microbes we identified can be used as a novel predictive 
marker to combine with existing markers that predict the stage of lung 
cancer, such as proteins in the blood. The fusion of data from these 
different modes may further improve the performance of models that 
predict tumor stages and aid in the development of methods for early 
lung cancer screening and diagnosis.

Also, this study has some limitations. First, although 
we comprehensively compared the intratumoral microbiome profiles 
of patients with LUAD at different stages, there was no external 
independent validation, which limited the universal applicability of 
our model. Second, we  only integrate microbiome and RNA 
expression in determining LUAD stage. Some recent studies suggested 
that pathological image is quite important in cancer diagnosis and 
prognosis prediction (Huang K. et al., 2022; Liu et al., 2022; Yang et al., 
2022; Yao et al., 2022), which presents the need for integrating more 
types of data into our model. Third, bacteria and bacterial structures 
within tumors are found in cells such as tumor cells and immune cells. 
A number of published deconvolution based algorithms can be used 
to infer the relative proportions of cells from transcriptome data (Li 
et  al., 2020). Therefore, the introduction of tumor microbiome 
information at single-cell resolution in the future could facilitate the 
understanding of tumor development mechanisms.

FIGURE 4

Network analysis revealed the co-abundance correlation of microbial communities in patients with LUAD at different stages. (A) Stage I; (B) Stage II; 
(C) Stage III; (D) Stage IV common abundance network of all samples. The color of the nodes indicate that the flora comes from Firmicutes (purple), 
Proteobacteria (green), and other phylum levels (gray). The size of the circle represents the size of the correlation. The larger the circle, the greater the 
correlation, only significant absolute correlations (r  >  0.7, significant at p-value < 0.001) were shown; (E) The line chart showed the change of the 
correlation coefficient of the patient network in the four stages. Nodes represent the genus, while edges represent the rank correlation of Spearman, 
degree is the number of edges on each node. The higher the degree of the node, the more points connecting it, and the more critical it is. The 
clustering coefficient indicates the degree of connection between a node and its neighboring nodes; (F) The degree of microbial genus in patients at 
four different stages. Black, Stage I; Blue, Stage II; Yellow, Stage III; Light green, Stage IV.
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5 Conclusion

In summary, through a comprehensive analysis of patients with 
LUAD at different stages, we identified bacterial microbial markers 
related to stage, and proved that the microbiome can make up for 
the lack of information of other omics and assist doctors in clinical 
diagnosis. This study may broaden our understanding of the 
molecular pathogenesis of LUAD and provide new ideas for 
staging prediction.
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FIGURE 5

Transcriptome profiles of patients with early and advanced LUAD. (A) The volcano map showed the distribution of all gene expression, blue, 
downregulated genes; red, upregulated genes; gray, no significant difference genes; (B) The heat map of the DEGs of mRNA between the early and 
late group, the x-axis is the sample of two groups, and the y-axis is the top 20 expressions with significant differences screened by DEseq2; (C) GO 
enrichment analysis, the names of the top 10 pathways enriched on the Y axis, and the proportion of enriched genes in the corresponding pathways 
on the X axis; (D) AUC accuracy of staging prediction of LUAD patients by different omics.
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