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Abstract 

 
Shannon entropy and Kolmogorov complexity are two conceptually distinct information metrics since the 

latter is based on probability distributions while the former is based on program size. All recursive probability 

distributions, however, are known to have an expected Up to a constant that solely depends on the 

distribution, the Kolmogorov complexity value is equal to its Shannon entropy. We investigate if a 

comparable correlation exists between Renyi and Havrda- Charvat Entropy entropies order α, indicating that 

it is consistent solely with Renyi and Havrda- Charvat entropies of order 1. 

Kolmogorov noted that the characteristics of Shannon entropy and algorithmic complexity are comparable. 

We examine a single facet of this resemblance. Specifically, linear inequalities that hold true for Shannon 

entropy and for Kolmogorov complexity. As it happens, the following are true: (1) all linear inequalities that 

hold true for Shannon entropy and vice versa for Kolmogorov complexity; (2) all linear inequalities that hold 

true for ranks of finite subsets of linear spaces for Shannon entropy; and (3) the reverse is untrue. 
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1 Introduction  
 
“The size of the smallest program that can construct an object x is used to assess its exact information content. 

This is known as Kolmogorov complexity, or C(x). Assigning a probability of 2−𝐶(𝑥) to any given string x, it 

constructs a probability distribution over ∫∗ naturally. μ stands for the universal probability distribution, which 

is the name given to this probability distribution introduced in” [1]. 

 
“A random variable X's average uncertainty is expressed as its Shannon entropy, or S(X). In average, it is the 

least amount of bits needed to express x, the random variable X's output. Shannon entropy and Kolmogorov 

complexity are conceptually distinct from one another since the former is dependent on program length. Three 

separate generalizations of non Shannon entropy are of importance to us and that was provided” in [2,3,4,5] and 

[6].  

 
Shannon's [5] original paper introduced the concepts of discrete and differential entropy. Kolmogorov [2, 7, 3] 

established “the general rigorous definition of relative entropy and mutual information for arbitrary random 

variables. They defined mutual information as Sup𝑃,𝑄𝐼([𝑋]𝑃: [𝑌]𝑄), where the supremum is over all finite 

partitions 𝑃 and 𝑄. 

  
The Asymptotic Equipartition Property (AEP), which asserts that for a sequence of random variables 

𝑃(𝑋1, 𝑋2, … … … , 𝑋𝑛) is closed to 2−𝑛𝐻(𝑋) with high probability, is one of the key roles of entropy for discrete 

random variables. This allows us to characterize the behavior of typical sequences and establish the typical set. 

The same applies to continuous random variables”. 

 
For continuous random variables, the usual set's features are similar to those of discrete random variables. The 

volume of the typical set for continuous random variables is the analogue of the cardinality of the typical set for 

the discrete case. 

 
Shannon Entropy: “Let X be a finite or infinitely countable set and let X be a random variable taking values in 

X with distribution P introduced” in [5]. The Shannon entropy of the random variable X  

 

𝑆(𝑋)  =  − ∑ 𝑝(𝑥)

𝑥𝜖𝜒

𝑙𝑜𝑔 𝑝(𝑥) 

 
Renyi Entropy: Let X be a finite or infinitely countable set and let X be a random variable taking values in X 

with distribution P introduced in [8,9] and let α ≠ 1 be a non-negative real number. The Renyi  ́entropy of order 

α of the random variable X is defined as: 

 

 𝑅𝛼 (𝑋) =  
1

1−𝛼
 log(∑ 𝑝(𝑥)𝛼

𝑥∈𝜒 ) 

 
Havrda and Charvat Entropy: Let X be a finite or infinitely countable set and Let X be a random variable 

taking values in X with distribution P introduced in [10, 11] and let α ≠ 1 be a non negative real number. The 

Harveda –Charvat entropy of order α of the random variable X is defined as: 

 

𝐻𝐶𝛼  (𝑋)  =  
1

1−𝛼
 ∑ 𝑝(𝑥)𝛼

𝑥∈𝑋  - 
1

1−𝛼
 

 
It is easy to prove that lim

𝛼→1
𝑅𝛼 (𝑋) = lim

𝛼→1
𝐻𝐶𝛼  (𝑋) = S(X). 

 
Note that we also use the notation 𝑅𝛼 (𝑃) , 𝐻𝐶𝛼  (𝑃)  and S(P) to denote the Renyi, Harveda-Charvat and 

Shannon entropies of distribution P, respectively. 
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2 Our Results 
 

2.1 Kolmogorov Complexity and Non-Shannon entropy 
 

Considering the conceptual distinctions between Shannon entropy and Kolmogorov complexity, it's noteworthy 

to note that under certain loose constraints on the string distribution, They share a relationship. Up to a constant 

term that solely depends on the distribution, the Shannon entropy value actually matches the expected value of 

Kolmogorov complexity that we provided in [12,11,4] and [6].  

 

Proposition: There are recursive probability distribution P such that: 

 

i) ∑ 𝑃(𝑥)𝑥  𝐾(𝑥) −  𝑅𝛼 (𝑃) > 𝐾(𝑃) ,where 𝛼 > 1 

ii) ∑ 𝑃(𝑥)𝑥  𝐾(𝑥) −  𝑅𝛼 (𝑃)  < 0 , where 𝛼 < 1 

iii) ∑ 𝑃(𝑥)𝑥  𝐾(𝑥) − 𝐻𝐶𝛼  (𝑃)  > 𝐾(𝑃), where 𝛼 > 1 

iv) ∑ 𝑃(𝑥)𝑥  𝐾(𝑥) −  𝐻𝐶𝛼  (𝑃)  < 0 , where 𝛼 < 1  

 

Proof:  consider the following probability distribution: 

 

 𝐷𝑛 (𝑥) = {
 
1

2
 𝑖𝑓 𝑥 =  0𝑛

2−𝑛 𝑖𝑓 𝑥 = 1𝑥 ′, 𝑥′ ∈ {0,1}𝑛−1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

i) First we observe that 

 

 S(𝐷𝑛) =  − ∑ 𝐷𝑛 (𝑥) 𝑙𝑜𝑔𝐷𝑛 (𝑥)𝑥  

 = − (
1

2
log

1

2
 +  

1

2𝑛  2𝑛−1log
1

2𝑛) 

 = − (−
1

2
−

1

2𝑛  2𝑛−1 𝑛) 

 =
𝑛+1

2
 

 

By theorem we have 

 

Let P(𝑥) be a recursive probability distribution , then: 

 

 0 ≤ ∑ 𝐷𝑛 (𝑥)𝑥 𝐾(𝑥) −  S(𝐷𝑛) ≤ 𝐾(𝐷𝑛) “ 

 

Which implies that  

 

 0 ≤ ∑ 𝐷𝑛 (𝑥)𝑥 𝐾(𝑥) −S(𝐷𝑛)  

 ∑ 𝐷𝑛𝑥 (𝑥)𝐾(𝑥) ≥ S(𝐷𝑛) 

 ∑ 𝐷𝑛 (𝑥)𝑥 𝐾(𝑥) ≥  
𝑛+1

2
  

 

On the other hand, by definition 

 

 𝑅𝛼 (𝐷𝑛) =  
1

1−𝛼
 log(∑ 𝐷𝑛(𝑥)𝛼

𝑥∈𝜒 ) 

 =
1

1−𝛼
 log (

1

2𝑛 + 2𝑛−1 ×
1

2𝑛𝛼)  

 = 
1

1−𝛼
(log(2(𝑛−1)𝛼 +  2𝑛−1) − 𝑛𝛼) 

 

To prove that ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) −  𝑅𝛼 (𝐷𝑛) > 𝐾(𝐷𝑛) , it is sufficiently to prove that 

 

 lim
𝑛

( ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) −  𝑅𝛼 (𝐷𝑛) > 𝐾(𝐷𝑛))  > 0  

 i.e. lim
𝑛

( 
𝑛+1

2
 −  

1

1−𝛼
(log(2(𝑛−1)𝛼 + 2𝑛−1) − 𝑛𝛼) − 𝑐 log 𝑛)  > 0 
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But, lim
𝑛

(
𝑛+1

2
−  

log((2(𝑛−1)𝛼+ 2𝑛−1))

1−𝛼
 +  

𝑛𝛼

1−𝛼
 −  𝑐 log 𝑛) 

 ≥  lim
𝑛

(
𝑛+1

2
−  

log((2(𝑛−1)𝛼))

𝛼−1
 +  

𝑛𝛼

𝛼−1
 −  𝑐 log 𝑛) 

 = lim
𝑛

(
𝑛+1

2
+  

(𝑛−1)𝛼

𝛼−1
 −  

𝑛𝛼

𝛼−1
 −  𝑐 log 𝑛) 

 =  lim
𝑛

(
𝑛+1

2
−  

𝛼

𝛼−1
 −  𝑐 log 𝑛) 

 = +∞ 

 

ii) To prove this item we use the other inequality  

 

 ∑ 𝐷𝑛 (𝑥)𝑥 𝐾(𝑥) −  S(𝐷𝑛) ≤ 𝐾(𝐷𝑛)  

 

Which implies that  

 

 ∑ 𝐷𝑛 (𝑥)𝑥 𝐾(𝑥) ≤ 𝐾(𝐷𝑛) +  S(𝐷𝑛) 

 ≤  
𝑛+1

2
 + c log 𝑛 

 So, ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) −  𝑅𝛼  (𝐷𝑛)  

 ≤  
𝑛+1

2
 + c log 𝑛 - 

1

1−𝛼
(log(2(𝑛−1)𝛼 +  2𝑛−1) − 𝑛𝛼) 

 ≤  
𝑛+1

2
 + c log 𝑛 - 

log(2𝑛−1)

1−𝛼
 + 

𝑛𝛼

1−𝛼
  

 =  
𝑛+1

2
 + c log 𝑛 - 

1

1−𝛼
 (𝑛 − 1 − 𝑛𝛼)  

 =  −
𝑛

2 
 + 

1

2
 + 𝑐 log 𝑛 + 

1

1−𝛼
 

 

Thus, taking n sufficiently large. 

 

iii) The Havrda and Charvat Entropy of order 𝛼 of distribution 𝑃𝑛 is : 

 

 𝐻𝐶𝛼  (𝐷𝑛)  =  
1

1−𝛼
 ∑ 𝐷𝑛(𝑥)𝛼

𝑥∈𝑋  -1 

 =
1

1−𝛼
 (

1

2𝛼 + 2𝑛−1 +  
1

2𝑛𝛼)-1 

 =  
1

1−𝛼
 (2(𝑛−1)𝛼 +  2(𝑛−1)) – 1 

 =
2(𝑛−1)𝛼

1−𝛼
 +  

2(𝑛−1)

1−𝛼
 -1 

 

Using the inequality, we get 

 

 ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) − 𝐻𝐶𝛼 (𝐷𝑛)  =  ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) - 
2(𝑛−1)𝛼

1−𝛼
−  

2(𝑛−1)

1−𝛼
 + 1 

 ≥  
𝑛+1

2
 - 

2(𝑛−1)𝛼

1−𝛼
−  

2(𝑛−1)

1−𝛼
 + 1 

 ≥  
𝑛+3

2
 - 

2(𝑛−1)𝛼

1−𝛼
−  

2(𝑛−1)

1−𝛼
  

For n sufficiently large 

 ≥  
𝑛+3

2
 - 

2(𝑛−1)𝛼

1−𝛼
−  

2(𝑛−1)

1−𝛼
 

 > 𝑐 log 𝑛 

 = 𝑘𝐷𝑛 

 

iv) Using the inequality, we get: 

 

 ∑ 𝐷𝑛(𝑥)𝑥  𝐾(𝑥) − 𝐻𝐶𝛼 (𝐷𝑛)  ≤  
𝑛+1

2
 + c log 𝑛 −

2(𝑛−1)𝛼

1−𝛼
− 

2(𝑛−1)

1−𝛼
 + 1 

 

Since n is sufficiently large, thus we conclude that: 
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<  
𝑛+1

2
 + c log 𝑛 −

2(𝑛−1)𝛼

1−𝛼
− 

2(𝑛−1)

1−𝛼
 + 1 

 

< 0 

 

2.2 Uniform Continuity of the Shannon and Non Shannon entropies 
 

i) Shannon entropy 

 

In order to prove the uniform continuity of the Shannon entropy [14,15], we need some technical lemmas and 

theorems. 

 

Theorem: let X and Y be two probability distribution over ∑ 𝑛, let S(𝑋) and S(𝑌) be the Shannon entropy of 

distribution X and Y respectively. then,  

 

 ∀ℇ > 0, ∃𝛿 > 0 , ∀𝑋, 𝑌: 𝑚𝑎𝑥 |𝑋(𝑢) − 𝑌(𝑢) | ≤ 𝛿 ⇒  |𝑆(𝑋) − 𝑆(𝑌)| ≤ 𝜀 

 

Proof. By lemma the function 𝑢 log 𝑢 is uniformly continuous in [0,1], we have that: 

 

∀𝛾 > 0 , ∃𝛽 > 0 , ∀𝑢, 𝑣: 𝑚𝑎𝑥 |𝑢 − 𝑣 | ≤ 𝛽 ⇒  |𝑢 log 𝑢 − 𝑣 log 𝑣| ≤ 𝛾 

 

So, 

 

 |𝑆(𝑋) − 𝑆(𝑌)| =  |− ∑ 𝑋(𝑢)𝑢 log 𝑋(𝑢) +  ∑ 𝑌(𝑢) log 𝑌(𝑢)𝑢 | 
 = |∑ 𝑋(𝑢)𝑢 log 𝑋(𝑢) − ∑ 𝑌(𝑢) log 𝑌(𝑢)𝑢 | 
 ≤ ∑ |𝑋(𝑢) log 𝑋(𝑢) −  𝑌(𝑢) log 𝑌(𝑢) |𝑢  

 ≤ ∑ 𝛾𝑢   

 = 2𝑛 𝛾 

 

It is sufficient to consider 𝛾 =  
𝜀

2𝑛 and consider 𝛿 = 𝛽 

 

ii) Non-Shannon Entropy 

 

a) Renyi Entropy 

 

Let X and Y be two probability distribution over ∑ 𝑛 , let 𝑅𝛼(𝑋) and 𝑅𝛼(𝑌) be the Renyi entropy [16], [17] of 

distribution X and Y respectively. then , 

 

 ∀ℇ > 0, ∃𝛿 > 0 , ∀𝑋, 𝑌: 𝑚𝑎𝑥 |𝑋(𝑢) − 𝑌(𝑢) | ≤ 𝛿 ⇒  |𝑅𝛼(𝑋) − 𝑅𝛼(𝑌)| ≤ 𝜀 

 

Proof: By Lemma,the function 𝑥𝛼 is uniformly continuous in [0,1] .Thus, 

 

 ∀𝛾 > 0, ∃𝛽 > 0 , ∀𝑥, 𝑦: 𝑚𝑎𝑥 |𝑥 − 𝑦 | ≤ 𝛽 ⇒  | 𝑥𝛼 −  𝑦𝛼| ≤ 𝜀 (2.1) 

 

We have to show that 

 

If 𝑚𝑎𝑥 |𝑋(𝑢) − 𝑌(𝑢) | ≤ 𝛿 ⇒  |𝑅𝛼(𝑋) − 𝑅𝛼(𝑌)| ≤ 𝜀 

 |𝑅𝛼(𝑋) − 𝑅𝛼(𝑌)|  =  |
1

1−𝛼
 log(∑ 𝑋(𝑥)𝛼

𝑥∈𝜒 ) −  
1

1−𝛼
 log(∑ 𝑌(𝑥)𝛼

𝑥∈𝜒 )| 

 =  
1

1−𝛼
|log(∑ 𝑋(𝑥)𝛼

𝑥∈𝜒 ) −  log(∑ 𝑌(𝑥)𝛼
𝑥∈𝜒 )| 

 ≤  
2

1−𝛼
 |∑ 𝑋(𝑥)𝛼 −𝑥∈𝑋 ∑ 𝑌(𝑥)𝛼

𝑥∈𝑋 | , 

 by Lemma we have” |log 𝑎 − log 𝑏| ≤ 2|𝑎 − 𝑏|" 

 ≤  
2

1−𝛼
 ∑ |𝑋(𝑥)𝛼 − 𝑌(𝑥)𝛼|𝑿  

 

From (2.1) we consider 𝛾 =  
𝜖(1−𝛼)

2𝑛+1  
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 ≤  
2

1−𝛼
 ∑

𝜖(1−𝛼)

2𝑛+1𝑥  

 ≤  
2𝑛+1

1−𝛼
 

𝜖(1−𝛼)

2𝑛+1  

 ≤  𝜖 

 

(b) Havrda and Charvat Entropy 

 

Let X and Y be two probability distribution over ∑ 𝑛  , let 𝐻𝐶𝛼(𝑋)  and 𝐻𝐶𝛼(𝑌)  be the Havrda- Charvat 

entropy [18,19] of distribution X and Y respectively. Then [20-23], 

 

∀ℇ > 0, ∃𝛿 > 0 , ∀𝑋, 𝑌: 𝑚𝑎𝑥 |𝑋(𝑢) − 𝑌(𝑢) | ≤ 𝛿 ⇒  |𝐻𝐶𝛼(𝑋) − 𝐻𝐶𝛼(𝑌)| ≤ 𝜀 

 

Proof: We have, 

 

 |𝐻𝐶𝛼(𝑋) − 𝐻𝐶𝛼(𝑌)| =  |
1

1−𝛼
 ∑ 𝑋(𝑥)𝛼

𝑥∈𝑋 −
1

1−𝛼
−  

1

1−𝛼
 ∑ 𝑌(𝑥)𝛼 + 

1

1−𝛼
 𝑥∈𝑋 |  

 =  |
1

1−𝛼
 ∑ 𝑋(𝑥)𝛼

𝑥∈𝑋 −  
1

1−𝛼
 ∑ 𝑌(𝑥)𝛼 𝑥∈𝑋 |  

 =
1

1−𝛼
|∑ 𝑋(𝑥)𝛼

𝑥∈𝑋 − ∑ 𝑌(𝑥)𝛼
𝑥𝜖𝑋 |  

 ≤  
1

1−𝛼
 ∑ |𝑋(𝑥)𝛼 − 𝑌(𝑥)𝛼|𝑥∈𝑋   

 ≤  
1

1−𝛼
 𝛾 

 

We consider 𝛾 = ∈  (1 − 𝛼) ≤ ∈ 

 

3 Conclusion 
 

Among the three entropies that we have examined, we have demonstrated that only the Shannon entropy meets 

the conditions for the relationship with the expected value of Kolmogorov complexity stated in by presenting a 

probability distribution for which the relationship breaks down for certain values of α of the Havrda - Charvat 

and Renyi ʁ entropies. This relationship also applies for the Shannon entropy in a time-bounded manner, 

assuming that the cumulative probability distribution can be computed in the given amount of time. We 

investigated the convergence of this distribution under the Havrda- Charvat and Renyi  ́entropies, which are two 

generalizations of the Shannon entropy. Additionally, we demonstrated the uniform continuity of the three 

entropies taken into consideration in this work. 
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