
Citation: Shen, C.; Li, G.; Tian, Z.;

Chen, C.; Zhou, Y. Research on

Mechanical Model and Torsional

Stiffness Properties of Leaf Spring

Torsional Vibration Dampers for

Marine Diesel Engines. Appl. Sci. 2024,

14, 1304. https://doi.org/10.3390/

app14031304

Received: 7 January 2024

Revised: 30 January 2024

Accepted: 2 February 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on Mechanical Model and Torsional Stiffness
Properties of Leaf Spring Torsional Vibration Dampers for
Marine Diesel Engines
Chunyun Shen, Genpei Li , Zhongxu Tian *, Chang Chen and You Zhou

College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
cyshen@shou.edu.cn (C.S.); lgp123456888@163.com (G.L.); chang_chen0903@163.com (C.C.);
zhouyou19991024@163.com (Y.Z.)
* Correspondence: zxtian@shou.edu.cn

Abstract: The torsional stiffness parameter significantly influences the natural frequency of a leaf
spring torsional vibration damper and its proper match with a diesel engine, and the nonlinear
characteristics of torsional stiffness avoid reduced reliability due to the excessive torsion angle of the
damper. An efficient mechanical model for the damper with nonlinear characteristics is established
by integrating the Euler–Bernoulli beam theory and accounting for the geometric nonlinearity of
leaf spring deformation during operation. The model’s validity is confirmed through finite element
analysis. This study then explores the influence of design parameters on the mechanical characteristics
of the damper. The results reveal a gradual increase in the torsional stiffness of the damper with the
expanding arc radius of the clamping groove. Simultaneously, the torsional stiffness curve exhibits
more pronounced nonlinear characteristics. In contrast, an elongation of the leaf spring leads to a
sharp decline in torsional stiffness, accompanied by a diminishing prominence of nonlinear traits.
Thus, both the arc radius of the clamping groove and the spring length significantly impact the
torsional stiffness and nonlinear features of the leaf spring torsional vibration damper. The nonlinear
characteristics intensify with an enlarged arc radius of the clamping groove and a reduced leaf
spring length. Additionally, the damper’s torsional stiffness is influenced by the leaf spring thickness
and the red copper gasket length. Future damper designs should comprehensively consider these
relevant parameters.

Keywords: leaf spring torsional vibration damper; torsional stiffness model; Euler–Bernoulli beam
theory; finite element analysis

1. Introduction

The stability and reliability of marine diesel engines, serving as the primary power
source for maritime vessels, hold significant importance. During diesel engine operation,
the crankshaft system generates cyclic torsional vibrations due to fluctuating torque. Due
to the longer length of the crankshaft in marine high-power diesel engines and the larger
moment of inertia within the crankshaft system, there is smaller torsional stiffness and
lower natural frequency, making it highly susceptible to resonance within its operational
speed [1–5]. Hence, preventive measures must be incorporated into diesel engine design to
avoid severe noise and potential crankshaft fractures. The leaf spring torsional vibration
damper, a pivotal component of the diesel engine, is positioned at the crankshaft’s free end.
When appropriately selected, it efficiently absorbs vibration energy, diminishing vibration
and noise at the engine’s limit speed [6–9]. The occurrence of torsional vibration in diesel
engines prompts the inner and outer rings of the leaf spring torsional vibration damper
to exhibit relative movement, resulting in bending and deformation of the damper’s leaf
spring. Simultaneously, the combined effect of friction from the red copper gasket between
the leaf springs and the flow of cooling oil absorbs vibration energy, effectively mitigating
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structural vibrations in the crankshaft system and the hull [10–12]. For the damper, the
torsional stiffness parameter plays a crucial role in calculating its natural frequency, thereby
influencing the damper’s design and ensuring its compatibility with the engine. Typically,
the natural frequency of the damper is selected to be close to a specific vibration frequency.
The selected natural frequency of the damper is closely tied to the torsional vibration
frequency of the diesel engine shaft system, which, in turn, depends on the speed and
structure of the engine. During the operation of the diesel engine, the torsional vibration
frequency typically falls within the range of 50–300 Hz. The torsional stiffness of the
damper is dictated by the stiffness and force exerted by the leaf spring group.

The leaf spring group within the torsional vibration damper is structured as a double-
laminated beam, attracting continuous scholarly attention to its mechanical model and
calculations. The Newmark model [13], a classical calculation model, simplifies the up-
per and lower sections of the composite beam as Euler–Bernoulli beams derived from
their elastic interaction. This classic model remains extensively utilized in current research.
Girhammar et al. [14] utilized the Hamilton principle to derive partial differential equations,
general solutions for deflection and internal forces, and corresponding consistent boundary
conditions for the Euler–Bernoulli composite beam structure with interlayer slip subjected
to general dynamic loads. Building upon Reddy’s high-order beam theory, He et al. [15] in-
troduced the implicit kinematic hypothesis for small deformation double-laminated beams.
The Lagrange multiplier method was utilized to incorporate this assumption as a constraint
within the minimum potential energy variational principle of high-order composite beams,
resulting in a nonlinear displacement method for high-order composite beams that can be
converted into nonlinear Euler–Bernoulli composite beams. Shen et al. [16] utilized the
differential quadrature element method to derive the complete Lagrange formulation for
analyzing quadrature elements in composite beams, considering interface slip. This method
is grounded in the small-strain Euler–Bernoulli beam theory and incorporates assumptions
of large displacement and finite rotation. Furthermore, Nguyen et al. [17] introduced the
direct stiffness method to address partial interaction behavior within double-laminated
beams and performed linear static analyses on such beams.

The thickness of the damper leaf spring is uniformly varied, which is typical of a
variable cross-section leaf spring. The study of variable cross-section leaf springs commonly
employs the Euler–Bernoulli beam model. Currently, empirical formulas and macroscopic
mechanical property tests remain the primary methods for summarizing its mechanical
properties. The existing empirical formulas only calculate linear stiffness with limited
considerations, lacking the ability to evaluate nonlinear properties. The shape of a leaf
spring significantly influences its properties [18]. Various methods exist for calculating
the variable stiffness of leaf springs. These include the common curvature method [19,20],
which assumes continuous contact along the entire length of each leaf spring without
gaps under any load, with each leaf spring in the same cross-section sharing a common
radius of curvature, and the centralized load method [21–23], which presumes contact
solely at the end of each leaf spring for force transfer among them. Additionally, the finite
element method [24–26] is available. Numerous engineering application data indicate
that the centralized load method exhibits higher accuracy in calculating short leaf springs,
while the common curvature method demonstrates better accuracy for long leaf springs.
Nevertheless, both the common curvature method and the concentrated load method
display limited adaptability and lower accuracy in determining the stiffness of variable-
section leaf springs, posing challenges in meeting engineering practice requirements. In
response, Hu et al. [27] developed a comprehensive mechanical model for the gradual
stiffness of leaf springs, considering the distinct operational characteristics of the main and
auxiliary springs, and proposed a hybrid method, amalgamating the common curvature
and concentrated load methods. Shi et al. [28] introduced an efficient method to calculate
the comprehensive stiffness of parabolic leaf springs with variable stiffness. The calculation
method for their composite stiffness was derived using numerical integration. Zhou
et al. [29] proposed a curved beam model considering thickness variation along the leaf



Appl. Sci. 2024, 14, 1304 3 of 17

spring’s length and accounted for end displacement in determining the overall stiffness.
Hwang et al. [30] deduced the linear stiffness of leaf springs, treating the stiffness of
multiple groups as the cumulative stiffness of all individual leaf springs.

The analytical method proves more efficient than the finite element method for cal-
culating the torsional stiffness of the damper, offering better support for damper design
and mechanical property research. This paper introduces, for the first time, an efficient
mechanical model for the torsional stiffness of the leaf spring’s torsion damper with non-
linear characteristics (as defined in Appendix A), integrating the Euler–Bernoulli beam
theory [31,32] and considering the geometric nonlinearity in spring deformation during
operation. This model is then employed to investigate the influence of damper design
parameters on its torsional stiffness properties.

2. Structure and Parametric Model of Leaf Spring Torsional Vibration Damper

Figure 1a depicts the typical composition of the current marine diesel engine leaf
spring torsional vibration damper, comprising a leaf spring group (refer to Figure 1b),
hub, positioning block, fastening ring, etc. The leaf spring, hub, and fastening ring are
constructed from chromium alloy, while the positioning block is crafted from 45 steel.
The leaf spring group serves as the primary component influencing the damper’s crucial
performance aspects. Torsional vibrations in the diesel engine cause reciprocal torsional
displacement in the hub concerning the outer ring (comprising the leaf spring group,
positioning block, fastening ring, etc.). The hub’s clamping groove applies force to the leaf
spring’s end, inducing bending and deformation in the leaf spring group. A well-designed,
manufactured, and installed leaf spring torsional vibration damper ensures that the thin
edge of the leaf spring group embeds into the clamping groove, while the thick edge
remains securely fixed by the fastening ring and positioning block.
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In Figure 2, the parameter model of the leaf spring torsional vibration damper is
depicted. In this figure, marked as 1 and 2 are the leaf springs. In this figure, components
labeled 1 and 2 represent leaf springs, with a red copper gasket positioned between their
middle sections, while their left ends are fixed at T1. O denotes the coordinate origin; O1
represents the center of the circular arc on both sides of the clamping groove, originating
from point Or with a radius r; N marks the contact point between the leaf spring and the
arc; a1 and a2 stand for the thicknesses of the leaf spring’s left and right ends; L signifies the
horizontal distance of point N. Fc denotes the interaction force between the two leaf springs
at the red copper gasket’s end, where S represents the bending part’s length of the red
copper gasket, and b stands for the leaf spring’s width. Additionally, the force acting on leaf
spring 1 during the deformation process aligns with the O1N direction. Due to the small
magnitude of the horizontal component force and its negligible impact on spring bending,
this component force is disregarded. Only the vertical component force is considered and
denoted as force F.
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3. Mechanical Modeling
3.1. Modeling for Leaf Spring Group Deformation

Euler–Bernoulli beam theory is a classical beam theory [33]. The displacement field of
this theory can be expressed as: {

u(x, z) = −z dw0
dx

w(x, z) = w0(x)
(1)

where w0 represents the transverse displacement of every point along the neutral axis,
synonymous with deflection. The utilization of Euler–Bernoulli beam theory relies on two
fundamental assumptions: firstly, the cross-section of the beam remains flat both before
and after deformation, and secondly, the cross-section remains perpendicular to the neutral
layer post-deformation. The primary strength of this theoretical beam model lies in having
a single generalized displacement, typically necessitating only one positional function
during solving, significantly simplifying the calculation process [34,35]. Figure 3 illustrates
the state of the Euler–Bernoulli beam pre- and post-deformation.

Figure 1b illustrates that within the leaf spring group’s structure, a red copper gasket is
positioned between the two leaf springs to prevent contact wear between identical materials.
During the bending deformation of the leaf spring group, the red copper gasket undergoes
bending, ensuring that it only makes contact with the two leaf springs at T2 in Figure 2,
facilitating force transmission. Consequently, during model establishment, we segment
the function at T2 to more effectively address the impact of the force at this point on the
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bending moment of the leaf spring. In the coordinate system depicted in Figure 2, the
bending moments M1(x) and M2(x) of leaf springs 1 and 2 are expressed as follows:

M1(x) =
{

F(L − x)− Fc(S − x), x ∈ [0, S]
F(L − x), x ∈ (S, L]

(2)

M2(x) =
{

Fc(S − x), x ∈ [0, S]
0, x ∈ (S, L]

(3)

Based on Euler–Bernoulli beam theory, the bending mechanical model of two leaf
springs is:

M1(x) = EI
d2w1(x)

dx2 (4)

M2(x) = EI
d2w2(x)

dx2 (5)

where w1 and w2 are the deflections of leaf spring 1 and leaf spring 2, respectively, in m.

d2w1(x)
dx2 =

{
F(L−x)−Fc(S−x)

EI , x ∈ [0, S]
F(L−x)

EI , x ∈ (S, L]
(6)

d2w2(x)
dx2 =

{
Fc(S−x)

EI , x ∈ [0, S]
0, x ∈ (S, L]

(7)

where E is the elastic modulus of spring material, in MPa. The sectional moment of inertia
I is:

I(x) =
bh3(x)

12
(8)

h(x) is the thickness of any position of the leaf spring,

h(x) = a1 + kx (9)

where k is the thickness change rate of the leaf spring,

k =
(a2 − a1)

l
(10)

where l is the length of the curved portion of the leaf spring. Substitute Formulas (8)–(10)
into Formulas (6) and (7) to obtain:

d2w1(x)
dx2 =


12[F(L−x)−Fc(S−x)]

Eb(a1+kx)3 , x ∈ [0, S]
12F(L−x)

Eb(a1+kx)3 , x ∈ (S, L]
(11)

d2w2(x)
dx2 =

{
12Fc(S−x)
Eb(a1+kx)3 , x ∈ [0, S]

0, x ∈ (S, L]
(12)

Considering boundary conditions dw1(x)
dx |x=0 = dw2(x)

dx |x=0 = 0, the angle function of
the leaf spring group is obtained by integrating expressions (11) and (12) once:

dw1(x)
dx

= φ1(x) =
{

φ11(x), x ∈ [0, S]
φ12(x), x ∈ [S, L]

(13)

dw2(x)
dx

= φ2(x) =
{

φ21(x), x ∈ [0, S]
φ22(x), x ∈ [S, L]

(14)
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where:

φ11(x) =
∫ x

0
12[F(L−t)−Fc(S−t)]

Eb(a1+kt)3 dt

= 6x(FLkx − FcSkx + 2FLa1 − Fa1x − 2FcSa1 + Fca1x)/[Eb(kx + a1)
2a1

2]
(15)

φ12(x) =
∫ S

0
12[F(L−t)−Fc(S−t)]

Eb(a1+kt)3 dt +
∫ x

S
12F(L−t)

Eb(a1+kt)3 dt

= 6S(FLSk − FCS2k + 2FLa1 − FSa1 − FCSa1)/[Eb(Sk + a1)
2a1

2]−
6F(LS2k − Lkx2 − 2S2kx + 2Skx2 + 2LSa1 − 2La1x − S2a1 + a1x2)/
[Eb(kx + a1)

2(Sk + a1)
2]

(16)

φ21(x) =
∫ x

0

12Fc(S − t)
Eb(a1 + kt)3 dt = 6FCx(Skx + 2Sa1 − a1x)/[Eb(kx + a1)

2a1
2] (17)

φ22(x) =
∫ S

0

12Fc(S − t)
Eb(a1 + kt)3 dt +

∫ x

S
0 dt = 6FCS2/[a1

2(Sk + a1)bE] (18)

After inspection, φ11(S)− φ12(S) = 0, φ21(S)− φ22(S) = 0. Similarly, considering
boundary conditions w1(x)|x=0 = w2(x)|x=0 = 0, integrate Equations (13) and (14) again
to obtain the deflection function of the two leaf springs:

w1(x) =
{

w11(x), x ∈ [0, S]
w12(x), x ∈ (S, L]

(19)

w2(x) =
{

w21(x), x ∈ [0, S]
w22(x), x ∈ (S, L]

(20)

The functions in the leaf spring deflection expressions (19) and (20) are calculated. See
Appendix A for details.
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3.2. Modeling for Torsional Stiffness

As the hub rotates relative to the outer ring, the contact points between the arcs on both
sides of the clamping groove and the leaf spring undergo continuous positional changes.
In Figure 4, O2 signifies the rotation center of the damper hub; O3 denotes the position of
O1 after the torsion angle θ.

The coordinates of point O1 are (O1x, O1y), and the coordinates of point O3 are (O3x,
O3y), where:
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O1x = R − R1 cos α
O1y = −R1 sin α

O3x = R − R1cos(α − θ)
O3y = −R1cos(α − θ

) (21)

From Equations (9) and (19), it is easy to know that the coordinate of contact point
N is (L , ε12(L)), where ε12(L) = w12(L) − kx. It can be seen from the structure of the
damper that there is the following positional relation during the rotation process: (1) the

length of
→

O1N is always the arc radius r; (2) the tangent of the contact point N is always

perpendicular to
→

O1N. Therefore, the following equations can be obtained:{
(L − R + R1 cos(α − θ))2 + (ε12(L) + R1 sin(α − θ))2 − r2 = 0

δ12(L) (ε12(L)+R1sin(α − θ))+L − R+R1cos(α − θ) = 0
(22)

where δ12(L) = φ12(L)− k. Based on the deformation compatibility conditions of two leaf
springs at the T2 point:

w11(T2)− w21(T2) = 0 (23)

Simultaneously, Equations (22) and (23) are introduced into the specific damper param-
eters, and the numerical solution of relevant parameters is obtained by solving the nonlinear
equations with mathematical tools. Then, the total hub torque MZ of the damper is:

MZ = nF(R − L) (24)

where n is the number of circumferential leaf spring groups. The torsion angle of the hub is
θ, so the torsional stiffness of the damper is:

K =
MZ

θ
=

nF(R − L)
θ

(25)
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4. Verification of Model

The leaf spring torsional vibration damper used in marine diesel engines is sizable
and heavy, demanding considerable resources for testing. The extensively employed
finite element analysis method has matured and proven reliable in theoretical research,
commercial software, and simulation of contact surfaces. This paper utilizes Ansys 2022R1
software to validate the established mechanical model governing the damper’s torsional
stiffness. The key aspects encompass the following: (1) The leaf spring group exhibits
typical plane strain characteristics, with the four-node quadrilateral plane strain element
chosen for the finite element analysis. (2) There are degrees of freedom of the coupled
Y-axis at the end of the red copper gasket (at T2 in Figure 2). (3) The thicker edge of the
leaf spring group is fixed by the positioning block, treating the finite element model as
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a fixed constraint. (4) As observed in Section 2, both the hub and leaf spring are crafted
from chrome alloy. Nonetheless, due to the considerable discrepancy in contact area sizes
between the hub clamping groove and the leaf spring length, and the greater stiffness
of the clamping groove compared to the leaf spring, the clamping groove’s deformation
is disregarded and treated as a rigid body. (5) Classify the contact region between the
leaf spring and the clamping groove as frictional contact, with a friction coefficient of 0.1.
(6) Rotate the hub clockwise around the damper center shaft in 0.1◦ steps to reach 1.8◦.

The geometry of the damper is interconnected with the structure, size, power, and
other factors of the diesel engine. The geometric dimensions of various parts in different
dampers vary significantly. While ensuring optimal performance, researchers are tasked
with designing parameters and sizes in a manner that aligns reasonably with the diesel
engine’s space constraints. In general, the maximum diameter of the damper body typically
falls within a range of 500 to 1500 mm. Using the leaf spring torsional vibration damper
structure (depicted in Figure 5) as an example, the specific parameters include a thick
edge leaf spring thickness of 0.016 m, thin edge thickness of 0.006 m, red copper gasket’s
bending part length of 0.14 m, arc radius of 0.16 m, leaf spring bending part length of 0.22 m,
leaf spring width of 0.15 m, O1O2 center distance of 0.261 m, rotation center horizontal
distance of 0.426 m, angle between O1O2 line and horizontal direction at 39.48◦, leaf spring
elastic modulus of 2.1 × 105 MPa, and Poisson’s ratio of 0.3, with 20 leaf spring groups.
Typically, the damper’s torsion angle remains below 2◦, with this example’s maximum
torsion angle capped at 1.8◦. Figure 6 demonstrates grid independence, confirming the
upper limit criterion for the maximum hub torque with the specified parameters at a 1.8◦

torsion angle. Findings reveal that when the element count surpasses 1485, the maximum
hub torque variation remains within 1%. Given the minimal influence of heightened mesh
density on the outcomes, a meshing strategy with 1485 elements is employed. Validation
outcomes for additional parameters are depicted in Figures 7–9. The numerical outcomes
for transverse force F, horizontal distance L, and hub torque Mz align well with the finite
element simulation’s results in this mechanical model. At a torsion angle of 1.8◦, the
maximum error of these parameters remains within 3%.
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Figure 5. Finite element contact model of key components.

At a torsion angle of 1.8◦, the mentioned parameters exhibit their maximum error
but remain within 3%. The damper’s torsional stiffness is determined based on its natural
frequency. During the design process, the torsional stiffness is calculated under various
torsion angles, based on the required natural frequency of the damper. This difference is
substantial, and the range is extensive. Through verification of our established mechanical
model, it is observed that the torsional stiffness, when the maximum torsion angle is within
1.8◦ and parameters are positive real numbers within a reasonable range, exhibits high
accuracy. This verifies the effectiveness of the torsional stiffness mechanical model of the
leaf spring torsional vibration damper presented in this paper. Furthermore, Figure 8
illustrates that the torsional stiffness of the torsional vibration damper is nearly linear when
the torsion angle is below 0.6◦, with nonlinearity emerging as the torsion angle increases.
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5. Analysis for Torsional Stiffness Properties of Leaf Spring Torsional
Vibration Damper

The torsional stiffness of a leaf spring torsional vibration damper is determined
by its natural frequency. In the design process, the torsional stiffness is calculated at
various torsion angles based on the required natural frequency of the damper. With the
establishment of an efficient mechanical model for the torsional stiffness of a leaf spring
torsional vibration damper, it becomes possible not only to calculate the damper’s torsional
stiffness but also to conveniently study the influence of design parameters on the torsional
stiffness characteristics. Using the damper depicted in Figure 5 as an example, the impact
of pertinent parameters on the torsional stiffness characteristics is investigated.

5.1. Influence of Clamping Groove Arc Radius on Torsional Stiffness Properties

The clamping groove, crucial in the interaction between the leaf spring group and the
hub, necessitates an investigation into its design parameters for the damper’s torsional
stiffness properties. Altering solely the arc radius of the clamping groove while maintain-
ing other parameters reveals its impact on the damper’s torsional stiffness (Figures 10
and 11). The figures illustrate a notable variance among the damper’s torsional stiffness
curves at varying radii, with this variance amplifying as the radius expands. Notably,
a smaller arc radius renders a less obvious nonlinear property in the torsional stiffness
curve, almost remaining linear at 60 mm. However, with increasing radii, the nonlinear
characteristics become more conspicuous. Around 160 mm, this nonlinearity peaks; further
increments to 180 mm produce marginal changes in the curve. In Figure 10, the torsional
stiffness curve under varied clamping groove arc radii starts displaying nonlinear changes
at approximately 0.6◦ of torsion angle. This illustrates the considerable influence of the
clamping groove arc radius on both the torsional stiffness and its nonlinear traits. Ex-
tremely small radii result in nearly linear stiffness curves, losing the benefit of nonlinear
effects. Conversely, beyond a certain arc radius, the damper’s torsional stiffness nearly
plateaus. Determining an optimal clamping groove arc radius based on torsional stiffness
requirements is pivotal for future leaf spring damper design.
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5.2. Influence of Leaf Spring Size on Torsional Stiffness Properties

The stiffness of the leaf spring group governs the torsional stiffness of the torsional
vibration damper. From the leaf spring group’s structure, it is evident that the spring’s
length and thickness impact its stiffness. Maintaining the other parameters constantly,
altering the leaf spring length reveals its impact on the damper’s torsional stiffness, il-
lustrated in Figures 12 and 13. Figure 12 highlights the considerable influence of spring
length on the damper’s torsional stiffness. When the spring length is shorter, the damper’s
torsional stiffness curve displays pronounced nonlinear characteristics. However, as the
leaf spring length increases, the curve’s nonlinear aspects gradually diminish. At a leaf
spring length of 260 mm, the curve tends towards linearity. Figure 13 demonstrates the
significant influence of leaf spring length on torsional stiffness at equivalent torsion angles,
with this influence amplifying as the torsion angle increases. At smaller torsion angles,
increasing the leaf spring length leads to a gradual decline in torsional stiffness. Yet, at
torsion angles of 1.6◦ and 1.8◦, extending the leaf spring sharply reduces torsional stiffness.
Shorter springs exhibit increased stiffness in the spring group, resulting in conspicuous
nonlinear characteristics in the torsional stiffness of the damper.
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Given a uniform change in the thickness of the leaf spring, Figures 14 and 15 illustrate
the impact on the torsional stiffness of the leaf spring torsional vibration damper by altering
the thickness of the thin edge while maintaining the thickness of the thick edge. The curves
in Figure 14 exhibit noticeable nonlinear characteristics, and these properties become more
pronounced as the thickness of the thin edge of the leaf spring increases. Figure 15 indicates
that, under the same torsion angle, the impact of leaf spring thickness on the torsional
stiffness of the damper is as follows: when the torsion angle is small, the effect of spring
thickness on torsional stiffness is relatively modest; with an increase in torsion angle, the
influence of spring thickness on torsional stiffness also grows. Consequently, the thickness
of the spring has a discernible impact on the torsional stiffness and nonlinear characteristics
of the damper.
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5.3. Influence of Red Copper Gasket Length on Torsional Stiffness Properties

Figure 16 depicts the impact of the red copper gasket length on the damper’s torsional
stiffness. The figure reveals distinct nonlinear properties across all curves. Notably, when
the torsion angle surpasses 1.4◦, the minimal disparity in curvature radius is observed
among the curves, suggesting the negligible influence of the red copper gasket’s length
on the damper’s torsional stiffness nonlinear characteristics. Figure 17 demonstrates a
marginal increase in torsional stiffness with the elongation of the red copper gasket at
identical torsion angles. Consequently, in the prospective design of leaf spring torsional
vibration dampers, the effect of red copper gasket length on the damper’s torsional stiffness
nonlinear characteristics may be disregarded.
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6. Conclusions

This study establishes an efficient mechanical model for the torsional stiffness of the
leaf spring torsional vibration damper by integrating the Euler–Bernoulli beam theory with
the geometric nonlinearity observed during spring deformation. Subsequently, the research
investigates the impact of clamping groove arc radius, leaf spring thickness and length,
and red copper gasket length on torsional stiffness properties. The principal conclusions
are as follows:

(1) The analytical outcomes from the mechanical model proposed in this article exhibit a
high level of concordance with the results obtained through finite element analysis,
validating the reliability of the model. The model can not only compute the torsional
stiffness of the damper but also facilitate the study of how design parameters affect
the torsional stiffness characteristics, thereby assisting in the design of dampers.
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(2) The damper’s torsional stiffness and nonlinear features undergo significant influence
from the clamping groove arc radius. Specifically, nonlinear traits become more
pronounced with increasing arc radius. This serves to prevent damage and failure
due to excessive torsion angles within the damper.

(3) The length of the leaf spring significantly impacts the damper’s torsional stiffness.
Longer leaf springs result in reduced stiffness within the leaf spring group, sharply
diminishing the damper’s torsional stiffness and displaying pronounced nonlinear
characteristics. Leaf spring thickness minimally affects the damper’s nonlinear char-
acteristics but strongly influences its torsional stiffness. Decreasing the thickness of
the leaf spring’s thin side leads to a reduction in the damper’s torsional stiffness.

(4) The length of the red copper gasket minimally affects the damper’s torsional stiffness
nonlinearity but moderately influences its stiffness.

(5) During the design of leaf spring torsional vibration dampers, attention must be given
to the impact of clamping groover radius, spring length, and spring thickness on
torsional stiffness and its nonlinear characteristics. If researchers observe a significant
deviation in torsional stiffness from the anticipated value during the design phase,
their priority should be adjusting the spring length, followed by reasonable adjust-
ments to other parameters. Additionally, the impact of the red copper gasket length
on torsional stiffness can be taken into account, but there is no need to consider its
influence on the nonlinear characteristics of torsional stiffness.
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Appendix A

(1) The term “The nonlinear characteristics of the torsional stiffness” means the slope
of torsional stiffness curve (as shown in Figures 10, 12, 14 and 16) changes with the
increase in torsion angle.

(2) The functions in deflection expressions (19) and (20) are as follows.

w11(x) =
∫ x

0 φ11(t)dt =[−12a1
2Fkx + 12a1

2FCkx − 6Fa1k2x2 + 6FCa1k2x2 + 6FLk3x2 − 6FCSk3x2+
12 ln(kx + a1)Fa1

2kx − 12 ln(kx + a1)FCa1
2kx − 12 ln(kx + a1)FCa1

3 + 12 ln(kx + a1)Fa1
3−

12 ln(a1)Fa1
2kx + 12 ln(a1)FCa1

2kx − 12 ln(a1)Fa1
3 + 12 ln(a1)FCa1

3]/[a1
2Ebk3(kx + a1)]

w12(x) =
∫ S

0 φ11(t)dt +
∫ x

S φ12(t)dt = [−12 ln(a1)Fa1
2Sk2x + 12 ln(a1)FCa1

2Sk2x − 12Sk2 ln(Sk + a1)FCa1
2x+

6Sx2FLk4 − 6Sk3x2Fa1 + 6x2FLa1k3 + 12Sk2F ln(kx + a1)a1
2x + 12 ln(kx + a1)Fa1

4 − 12 ln(a1)Fa1
4−

12 ln(Sk + a1)FCa1
4 + 12 ln(a1)FCa1

4 + 6a1
2FCS2k2 − 6S2x2FCk4 − 6k2Fx2a1

2 + 12a1
3FCSk − 12Fa1

3xk+
12 ln(a1)FCa1

3Sk − 12 ln(Sk + a1)FCa1
3Sk − 12 ln(a1)Fa1

3Sk − 12k ln(Sk + a1)FCa1
3x + 12 ln(a1)FCa1

3kx−
12 ln(a1)Fa1

3kx + 12F ln(kx + a1)a1
3Sk + 12kF ln(kx + a1)a1

3x − 12FxSa1
2k2 + 12a1

2FCSk2x]/
[(kx + a1)k3a1

2(Sk + a1)bE ]

w21(x) =
∫ x

0 φ21(t)dt = 6FC[−2kxa1
2 − a1k2x2 + Sk3x2 + 2 ln(kx + a1)a1

3 + 2 ln(kx + a1)a1
2kx − 2 ln(a1)a1

3−
2 ln(a1)a1

2kx]/[a1
2Ebk3(kx + a1)]
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w22(x) =
∫ S

0 φ21(t)dt +
∫ x

S φ22(t)dt = −6FC[−2 ln(Sk + a1)a1
3 − 2 ln(Sk + a1)a1

2kS + 2a1
2Sk + a1S2k2 + 2 ln(a1)a1

3+
2 ln(a1)a1

2Sk − k3xS2]/[a1
2k3(Sk + a1)bE]

After inspection, w11(S)− w12(S) = 0, w21(S)− w22(S) = 0.
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